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Abstract

Swirling axisymmetric stationary flows of an ideal incompressible fluid
are considered within the framework of the Euler equations. A number of
new exact solutions to the Euler equations are presented, where, as distinct
from the known Gromeka–Beltrami solutions, vorticity is noncollinear with
velocity. One of the obtained solutions corresponds to the flow inside a closed
volume, with the nonpermeability condition fulfilled at its boundary, the
vector lines of vorticity being coiled on revolution surfaces homeomorphic to
a torus.
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Introduction. Due to the nonlinearity of isothermal fluid motion equations
any patterns, that can be discovered when analytically studying velocity and
pressure fields are of interest. These regularities are, e.g., streamline shape [1–3]
and vortex line shape [4] properties. In was reported in [4] that “in the stationary
axisymmetric flow of a viscous incompressible fluid, the existence of vortex lines
lying on a revolution surface homeomorphic to a torus is impossible”. In other
words, it was demonstrated that the vector lines of the vorticity projection on
the meridional plane are nonclosed lines or points. That study offered an example
of the stationary axisymmetric flow of an ideal incompressible fluid, where the
above-mentioned vector lines either are closed (if they consist of more than one
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point), or consist of one isolated point. To put it differently, that was an example
of a flow in which the vortex lines lie on a revolution surface homeomorphic to a
torus and they are not lathe objects (except one isolated streamline). Hereinafter,
lathe objects are a figure of rotation around the axis of symmetry of the flow.
That example was one of the Gromeka–Beltrami helical (vorticity is collinear
with velocity) solutions [5, 6]. Here a question arises, whether there exist non-
helical flows of an ideal fluid in with the vortex lines lying on a revolution surface
homeomorphic to a torus, which are not lathe objects at that. In this paper we
attempt to obtain an example of such a flow.

Among non-helical axisymmetric flows, examples of exact solutions can be
easily obtain in the assumption that the radial velocity component is zero, all
the parameters being dependent only on the distance to the symmetry axis (the
subclass of cylindrical flows). However, in such flows the radial vorticity compo-
nent is zero, and the vortex lines cannot lie on a revolution surface homeomorphic
to a torus. Nonswirling axisymmetric flows are also unsuitable for an example,
since in them the projection of the vector lines onto a meridional half-plane are
points. We could attempt to seek a solution under other assumptions, simplifying
the Euler equations. However, as was reported in [6, 7], simplifying assumptions
may lead to equations for which vortex solutions are impossible. To avoid this
situation, we decided to search for a suitable example of the stationary axisym-
metric solution in in the most general form (without simplifying assumptions).
To obtain a new solution, we used Meissel’s equation (known as Meissel’s formula
in the world literature) [8]. This equation is discussed in what follows. Any so-
lution to this equation yields a radial-axial stream function of some solution to
the Euler equations. Two arbitrary functions are involved in Meissel’s equation,
which depend only on the stream function. A special selection of these functions
enables us to find solutions to Meissel’s equation and thus to find examples of
exact solutions. The Gromeka–Beltrami helical solutions correspond to one func-
tion selection of the kind. Another one is mathed by the Batchelor solution [9]
obtained under an additional simplifying assumption; namely, Batchelor sought
a solution among functions independent of the axial coordinate. In this study we
consider some other versions of the above-mentioned functions, which, after an
appropriate argument substitution, allow Meissel’s equation to be solved by the
variable separation method. This results in new non-helical and non-cylindrical
solutions, this being of interest in itself. One of the solutions offers an example in
which the vortex lines lie on revolution surfaces homeomorphic to a torus.

1. Motion equations. We consider the axisymmetric stationary flow of an
ideal incompressible fluid. We use the following dimensionless variables: veloc-
ity, V; vorticity, Ω = rotV; pressure related to density, 𝑝; the potential of vol-
ume forces Π. Fluid motion is described by the Euler equations, which can be
represented in the Gromeka–Lamb form [9,10] as

Ω×V = −∇
[︁
𝑝+

V2

2
+ Π

]︁
, (1)

divV = 0. (2)

We introduce a cylindrical coordinate system 𝑟, 𝜙, 𝑧 with the origin at point
𝑂 so that the 𝑂𝑧 axis coincides with the flow symmetry axis. The axisymmetric
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flow parameters are independent of the circumferential coordinate 𝜙. Assume that
e𝑟, e𝜙, e𝑧 is the right-hand system of unit vectors in the radial, circumferential
and axial directions, respectively. The swirling flow velocity vector has the form
V = 𝑉𝑟e𝑟 + 𝑉𝜙e𝜙 + 𝑉𝑧e𝑧 and the functions 𝑉𝑟, 𝑉𝜙, 𝑉𝑧 and 𝑝 depend only on 𝑟
and 𝑧.

2. Meissel’s equation. The theorem stating that all possible streamline
functions for stationary axisymmetric flows obey some partial derivative equation
is referred to as Meissel’s theorem, the equation being termed Meissel’s equation
(formula). The proof of the theorem can be found in the original study [7] and
in the textbook [8], where the name of Meissel is not mentioned. Let us now
formulate this theorem. In cylindrical coordinates, in view of the fact that the flow
parameters are independent of the circumferential coordinate 𝜙, the continuity
equation (2) is written as

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑉𝑟) +

𝜕

𝜕𝑧
𝑉𝑧 = 0.

It follows that there exists a streamline function 𝜓 = 𝜓(𝑟, 𝑧) such that

𝑉𝑟 =
1

𝑟

𝜕

𝜕𝑧
𝜓, 𝑉𝑧 = −1

𝑟

𝜕

𝜕𝑟
𝜓. (3)

We denote

𝑔 = 𝑟𝑉𝜙. (4)

Meissel’s theorem implies that, for regions without open zones with zero radial-
axial velocity, there can exist such, and only such, axisymmetric solutions to the
Euler equations in which Meissel’s equation is fulfilled,

1

𝑟

𝜕2

𝜕𝑧2
𝜓 +

𝜕

𝜕𝑟

(︁1
𝑟

𝜕

𝜕𝑟
𝜓
)︁
+

1

𝑟
𝑔𝑔′ = 𝑟𝑓, (5)

where 𝑔 = 𝑔(𝜓) and 𝑓 = 𝑓(𝜓) are one-variable functions.
If 𝜓 = 𝜓(𝑟, 𝑧) is a solution to Eq. (5) for some functions 𝑔 = 𝑔(𝜓) and

𝑓 = 𝑓(𝜓), then, for an arbitrary axisymmetric potential Π = Π(𝑟, 𝑧), the solution
to Eqs. (1), (2) will be the functions 𝑉𝑟, 𝑉𝜙, 𝑉𝑧 determined by the equalities (3),
(4) and the pressure

𝑝 = 𝑝0 + 𝐹 (𝜓)− 0.5(𝑉 2
𝑟 + 𝑉 2

𝜙 + 𝑉 2
𝑧 )−Π, (6)

where 𝐹 is the primitive function 𝑓 (i.e. 𝑓 = 𝐹 ′), 𝑝0 is any constant ensuring that
Eq. (6) will be positive in the flow region under study.

The solutions of Meissel’s equations correspond to nonswirling flows (𝑉𝜙 = 0)
when 𝑔 = 0 and to helical flows when 𝑓 = 0, and they will be omitted here.
In non-helical flows (𝑓 ̸= 0), both the convective derivative of velocity and the
vector product vorticity and velocity are not identically equal to zero, and the
Bernoulli function has different values for different streamlines. In what follows
we give examples of such exact solutions.
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3. Three solution families. The equation

𝜕

𝜕𝑟

(︁1
𝑟

𝜕

𝜕𝑟
𝜓
)︁
+

𝜕

𝜕𝑧

(︁1
𝑟

𝜕

𝜕𝑧
𝜓
)︁
+ 𝜂2

𝜓

𝑟
= −𝑟𝛼2𝜓, (7)

where 𝛼, 𝜂 are any constants, is a (5)-type equation. For this equation, 𝐹 (𝜓) =
−0.5𝛼2𝜓2, and one of the solutions is the function 𝜓 = − sin(𝛼𝑟2/2) · cos(𝜂𝑧). In
the partial case 𝛼 = 𝜂 = 1, the following exact solution is obtained:

𝑉𝑟 =
1

𝑟
sin

(︀
𝑟2/2

)︀
· sin (𝑧) ,

𝑉𝜙 = −1

𝑟
sin

(︀
𝑟2/2

)︀
· cos (𝑧) ,

𝑉𝑧 = cos
(︀
𝑟2/2

)︀
· cos (𝑧) ,

𝑝 = 𝑝0 − 0.5 sin2
(︀
𝑟2/2

)︀
· cos2 (𝑧)− 0.5

(︀
𝑉 2
𝑟 + 𝑉 2

𝜙 + 𝑉 2
𝑧

)︀
−Π.

(8)

The radial-axial projections of the streamlines of this cellular flow in the rect-
angle {𝑟; 𝑧} = [0; 2𝜋] × [0;

√
6𝜋] are shown in Fig. 1. The arrows indicate the

direction of the radial-axial velocity.
Figures 2 and 3 show the streamlines of radial-circumferential velocity for

three planes perpendicular to the 𝑂𝑧 axis.
The radial and circumferential velocities tend to zero as the symmetry axis is

approached; this enables this solution to be considered in the region containing
the symmetry axis. This solution describes the flow in cylindrical barrels (the
axis of the cylindrical surface coincides with the 𝑂𝑧 axis) with radii of

√
2𝜋,√

4𝜋 and
√
6𝜋, whose bottom and cover have the coordinates 𝜋/2 and 𝜋/2+𝑚𝜋,

𝑚 = 1, 2, 3, . . ., along the 𝑂𝑧 axis. Indeed, it follows from the above expressions
for velocity that the impermeability condition is met on the cylindrical walls, on
the bottom, and on the cover.

The radial-axial vorticity component

Ω𝑟𝑧 =
1

𝑟

{︁ 𝜕

𝜕𝑧
(𝑟𝑉𝜙) e𝑟 +

𝜕

𝜕𝑟
(𝑟𝑉𝜙) e𝑧

}︁

Figure 1. The radial-axial projections of the
streamlines of the cellular flow

Figure 2. The streamlines of radial-circumfe-
rential velocity for 𝑧 = 0
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Figure 3. The streamlines of radial-circumferential velocity for 𝑧 = 𝜋/4 and 𝑧 = 𝜋/2

lies on the lines of the form 𝑟𝑉𝜙 = const. It follows from Eq. (8) that, for the found
solution, they are lines of the form sin

(︀
𝑟2/2

)︀
· cos (𝑧) = const. It can be easily

believed that these lines are closed and that they once enclose the points with the
coordinates 𝑟𝑚 =

√
2𝑚𝜋 + 𝜋, 𝑧𝑗 = 𝑗𝜋, 𝑚 = 0, 1, 2, 3, . . ., 𝑗 = 0,±1,±2,±3, . . ..

These points are isolated. Consequently, except the isolated vortex lines going
through these points, the vortex lines (8) are not lathe objects, and they lie on
revolution surfaces homeomorphic to a torus (the search for such a solution is the
main aim of this study).

Another solution family is obtained if we consider the following (5)-type equa-
tion:

𝜕

𝜕𝑟

(︁1
𝑟

𝜕

𝜕𝑟
𝜓
)︁
+

𝜕

𝜕𝑧

(︁1
𝑟

𝜕

𝜕𝑧
𝜓
)︁
+ 𝜂2

𝜓

𝑟
= 𝑟𝛼2𝜓,

where 𝛼, 𝜂 are any constants. For this equation, 𝐹 (𝜓) = 𝛼2𝜓2/2, the functions
𝜓 = exp(𝛼𝑟2/2) ·sin(𝜂𝑧) and 𝜓 = exp(−𝛼𝑟2/2) ·sin(𝜂𝑧) being the solutions. These
solutions are unsuitable for studying flows in channels containing the 𝑂𝑧 axis. The
fact is that the radial velocities 𝑉𝑟 = 𝜂 1

𝑟 exp(±𝛼𝑟
2/2) · cos (𝜂𝑧) corresponding to

these solutions have a peculiarity on the 𝑂𝑧 axis. However, due to the linearity
of Eq. (7), the linear combination of these solutions 𝜓 = sinh

(︀
𝛼𝑟2/2

)︀
· sin (𝜂𝑧) is

also a solution to Eq. (7). The corresponding solution of the Euler equations has
the form

𝑉𝑟 = 𝜂
1

𝑟
sinh

(︀
𝛼𝑟2/2

)︀
· cos (𝜂𝑧) ,

𝑉𝜙 = 𝜂
1

𝑟
sinh

(︀
𝛼𝑟2/2

)︀
· sin (𝜂𝑧) ,

𝑉𝑧 = −𝛼 cosh
(︀
𝛼𝑟2/2

)︀
· sin (𝜂𝑧) ,

𝑝 = 𝑝0 + 0.5𝛼2 sinh2
(︀
𝛼𝑟2/2

)︀
· sin2 (𝜂𝑧)− 0.5

(︀
𝑉 2
𝑟 + 𝑉 2

𝜙 + 𝑉 2
𝑧

)︀
−Π.

In this solution, all the parameters admit the continuation on the 𝑂𝑧 axis;
herewith, the radial and circumferential velocities tend to zero as the symmetry
axis is approached, and this allows us to formulate a boundary problem with
a known exact solution of the flow in an axisymmetric channel containing the
symmetry axis. It seems excessive to illustrate this flow. The third solution family
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is represented by solutions of the following (5)-type equation:

𝜕

𝜕𝑟

(︁1
𝑟

𝜕

𝜕𝑟
𝜓
)︁
+

𝜕

𝜕𝑧

(︁1
𝑟

𝜕

𝜕𝑧
𝜓
)︁
+ 𝜆2

𝜓

𝑟
= 𝑟𝜆2,

where 𝜆 is any constant. For this equation, 𝐹 (𝜓) = 𝜆2𝜓, and the solutions 𝜓 =
𝜓 (𝑟, 𝑧) will be all the known helical solutions with a constant coefficient 𝜆 relating
velocity to vorticity if the function 𝑟2 is added to them. This corresponds to the
addition of constant velocity along the symmetry axis, and new solutions will no
longer be helical.

Conclusion. Within the framework of the Euler equations, we have discussed
swirling axisymmetric stationary flows of an ideal incompressible fluid in a po-
tential field of external forces. Three new families of exact solutions have been
obtained. As distinct from Gromeka’s solution, vorticity is not parallel to fluid
velocity in these families, and in contrast to cylindrical flows, the radial velocity
component is not identically equal to zero. The solution (8) is a solution to the
problem of motion inside a barrel (inside a portion of a straight cylinder), with the
impermeability condition met on its walls. The vortex lines of this flow, not being
lathe objects (except isolated lines), lie on revolution surfaces homeomorphic to
a torus.
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Невинтовые точные решения уравнений Эйлера для
закрученных осесимметричных течений жидкости

Е. Ю. Просвиряков1,2

1 Институт машиноведения УрО РАН,
Россия, 620049, Екатеринбург, ул. Комсомольская, 34.
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им. первого Президента России Б. Н. Ельцина,
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Аннотация

В рамках уравнений Эйлера рассмотрены закрученные осесиммет-
ричные стационарные течения идеальной несжимаемой жидкости. Пред-
ставлено несколько новых точных решений уравнений Эйлера, в кото-
рых, в отличие от известных решений Громеки–Бельтрами, завихрен-
ность неколлинеарна скорости. Одно из полученных решений соответ-
ствует течению внутри замкнутого объема, на границе которого выпол-
нено условие непротекания, а векторные линии завихренности наматы-
ваются на гомеоморфные тору поверхности вращения.

Ключевые слова: уравнения Эйлера, идеальная несжимаемая жид-
кость, закрученные осесимметричные течения, точные решения.
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