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Abstract

Swirling axisymmetric stationary flows of an ideal incompressible fluid
are considered within the framework of the Euler equations. A number of
new exact solutions to the Euler equations are presented, where, as distinct
from the known Gromeka—Beltrami solutions, vorticity is noncollinear with
velocity. One of the obtained solutions corresponds to the flow inside a closed
volume, with the nonpermeability condition fulfilled at its boundary, the
vector lines of vorticity being coiled on revolution surfaces homeomorphic to
a torus.
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Introduction. Due to the nonlinearity of isothermal fluid motion equations
any patterns, that can be discovered when analytically studying velocity and
pressure fields are of interest. These regularities are, e.g., streamline shape [1-3]
and vortex line shape [4] properties. In was reported in [4] that “in the stationary
axisymmetric flow of a viscous incompressible fluid, the existence of vortex lines
lying on a revolution surface homeomorphic to a torus is impossible”. In other
words, it was demonstrated that the vector lines of the vorticity projection on
the meridional plane are nonclosed lines or points. That study offered an example
of the stationary axisymmetric flow of an ideal incompressible fluid, where the
above-mentioned vector lines either are closed (if they consist of more than one
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point), or consist of one isolated point. To put it differently, that was an example
of a flow in which the vortex lines lie on a revolution surface homeomorphic to a
torus and they are not lathe objects (except one isolated streamline). Hereinafter,
lathe objects are a figure of rotation around the axis of symmetry of the flow.
That example was one of the Gromeka-Beltrami helical (vorticity is collinear
with velocity) solutions [5, 6]. Here a question arises, whether there exist non-
helical flows of an ideal fluid in with the vortex lines lying on a revolution surface
homeomorphic to a torus, which are not lathe objects at that. In this paper we
attempt to obtain an example of such a flow.

Among non-helical axisymmetric flows, examples of exact solutions can be
easily obtain in the assumption that the radial velocity component is zero, all
the parameters being dependent only on the distance to the symmetry axis (the
subclass of cylindrical flows). However, in such flows the radial vorticity compo-
nent is zero, and the vortex lines cannot lie on a revolution surface homeomorphic
to a torus. Nonswirling axisymmetric flows are also unsuitable for an example,
since in them the projection of the vector lines onto a meridional half-plane are
points. We could attempt to seek a solution under other assumptions, simplifying
the Euler equations. However, as was reported in [6, 7], simplifying assumptions
may lead to equations for which vortex solutions are impossible. To avoid this
situation, we decided to search for a suitable example of the stationary axisym-
metric solution in in the most general form (without simplifying assumptions).
To obtain a new solution, we used Meissel’s equation (known as Meissel’s formula
in the world literature) [8]. This equation is discussed in what follows. Any so-
lution to this equation yields a radial-axial stream function of some solution to
the Euler equations. Two arbitrary functions are involved in Meissel’s equation,
which depend only on the stream function. A special selection of these functions
enables us to find solutions to Meissel’s equation and thus to find examples of
exact solutions. The Gromeka—Beltrami helical solutions correspond to one func-
tion selection of the kind. Another one is mathed by the Batchelor solution [9]
obtained under an additional simplifying assumption; namely, Batchelor sought
a solution among functions independent of the axial coordinate. In this study we
consider some other versions of the above-mentioned functions, which, after an
appropriate argument substitution, allow Meissel’s equation to be solved by the
variable separation method. This results in new non-helical and non-cylindrical
solutions, this being of interest in itself. One of the solutions offers an example in
which the vortex lines lie on revolution surfaces homeomorphic to a torus.

1. Motion equations. We consider the axisymmetric stationary flow of an
ideal incompressible fluid. We use the following dimensionless variables: veloc-
ity, V' vorticity, £ = rot V; pressure related to density, p; the potential of vol-
ume forces II. Fluid motion is described by the Euler equations, which can be
represented in the Gromeka—Lamb form [9,10] as

2

QXV:—V[p—i—V?—i—H}, (1)

divV =0. (2)

We introduce a cylindrical coordinate system r, ¢, z with the origin at point
O so that the Oz axis coincides with the flow symmetry axis. The axisymmetric
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flow parameters are independent of the circumferential coordinate ¢. Assume that
e, ey, e, is the right-hand system of unit vectors in the radial, circumferential
and axial directions, respectively. The swirling flow velocity vector has the form
V = Ve, +V, e, + V.e, and the functions V., V,,, V. and p depend only on r
and z.

2. Meissel’s equation. The theorem stating that all possible streamline
functions for stationary axisymmetric flows obey some partial derivative equation
is referred to as Meissel’s theorem, the equation being termed Meissel’s equation
(formula). The proof of the theorem can be found in the original study |7] and
in the textbook [8], where the name of Meissel is not mentioned. Let us now
formulate this theorem. In cylindrical coordinates, in view of the fact that the flow
parameters are independent of the circumferential coordinate ¢, the continuity
equation (2) is written as

10 0

It follows that there exists a streamline function 1) = 1 (r, z) such that

V;" = 771#7 VZ = (3)
We denote
g=rV. (4)

Meissel’s theorem implies that, for regions without open zones with zero radial-
axial velocity, there can exist such, and only such, axisymmetric solutions to the
Euler equations in which Meissel’s equation is fulfilled,

1 02 9 /10 1,
r6z2w+ 8r<r(‘)rw> + 99 =rh (5)
where g = g(¢) and f = f(1)) are one-variable functions.

If v = 9(r,z) is a solution to Eq. (5) for some functions g = g¢(¢) and
f = f(%), then, for an arbitrary axisymmetric potential IT = II(r, z), the solution
to Egs. (1), (2) will be the functions V;., Vi,, V. determined by the equalities (3),
(4) and the pressure

— 2 2 2
p=po+ F(¥) - 0.5V + VS + V) 1L, (6)

where F is the primitive function f (i.e. f = F’), po is any constant ensuring that
Eq. (6) will be positive in the flow region under study.

The solutions of Meissel’s equations correspond to nonswirling flows (V,, = 0)
when g = 0 and to helical flows when f = 0, and they will be omitted here.
In non-helical flows (f # 0), both the convective derivative of velocity and the
vector product vorticity and velocity are not identically equal to zero, and the
Bernoulli function has different values for different streamlines. In what follows
we give examples of such exact solutions.
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3. Three solution families. The equation

O L R S

where «, 1 are any constants, is a (5)-type equation. For this equation, F(¢) =
—0.50%9)?, and one of the solutions is the function ¢ = — sin(ar?/2) - cos(nz). In
the partial case o = 1 = 1, the following exact solution is obtained:

L i20) g
%—T81n(r /2) -sin (2),

Vi, = —% sin (r?/2) - cos (2),
V. = cos (r?/2) - cos (z),

p=po— 0.5sin* (r?/2) - cos? () — 0.5 (V;2 + Vﬁ +V2) - 1L

The radial-axial projections of the streamlines of this cellular flow in the rect-
angle {r;z} = [0;27] x [0;/67] are shown in Fig. 1. The arrows indicate the
direction of the radial-axial velocity.

Figures 2 and 3 show the streamlines of radial-circumferential velocity for
three planes perpendicular to the Oz axis.

The radial and circumferential velocities tend to zero as the symmetry axis is
approached; this enables this solution to be considered in the region containing
the symmetry axis. This solution describes the flow in cylindrical barrels (the
axis of the cylindrical surface coincides with the Oz axis) with radii of /27,
V4m and v/67, whose bottom and cover have the coordinates 7/2 and 7/2 4+ mm,
m =1,2,3,..., along the Oz axis. Indeed, it follows from the above expressions
for velocity that the impermeability condition is met on the cylindrical walls, on
the bottom, and on the cover.

The radial-axial vorticity component
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Figure 2. The streamlines of radial-circumfe-

Figure 1. The radial-axial projections of the . -
rential velocity for z =0

streamlines of the cellular flow
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Figure 3. The streamlines of radial-circumferential velocity for z = w/4 and z = 7/2

lies on the lines of the form rV,, = const. It follows from Eq. (8) that, for the found
solution, they are lines of the form sin (r?/2) - cos (z) = const. It can be easily
believed that these lines are closed and that they once enclose the points with the
coordinates r, = v2mm +m, z; = jm, m = 0,1,2,3,..., 7 = 0, £1,£2,43,.. ..
These points are isolated. Consequently, except the isolated vortex lines going
through these points, the vortex lines (8) are not lathe objects, and they lie on
revolution surfaces homeomorphic to a torus (the search for such a solution is the
main aim of this study).

Another solution family is obtained if we consider the following (5)-type equa-
tion:

(o) + 35 () +75 =t

where «, 1 are any constants. For this equation, F(v)) = o??/2, the functions
¥ = exp(ar?/2)-sin(nz) and 1) = exp(—ar?/2)-sin(nz) being the solutions. These
solutions are unsuitable for studying flows in channels containing the Oz axis. The
fact is that the radial velocities V, = nt exp(£ar?/2) - cos (nz) corresponding to
these solutions have a peculiarity on the Oz axis. However, due to the linearity
of Eq. (7), the linear combination of these solutions ¢ = sinh (ar?/2) - sin (nz) is
also a solution to Eq. (7). The corresponding solution of the Euler equations has
the form

1
V, = n=sinh (ar?/2) - cos (
r
1
V, = U sinh (ar?/2) - sin (
V., = —acosh (ar2/2) sin
p = po + 0.5a2 sinh? (ar?/2) - sin? (nz) — 0.5 (V2 + V2 +V?) -
In this solution, all the parameters admit the continuation on the Oz axis;
herewith, the radial and circumferential velocities tend to zero as the symmetry
axis is approached, and this allows us to formulate a boundary problem with

a known exact solution of the flow in an axisymmetric channel containing the
symmetry axis. It seems excessive to illustrate this flow. The third solution family
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is represented by solutions of the following (5)-type equation:

S ) ) e

where ) is any constant. For this equation, F(3)) = A%, and the solutions 1) =
¥ (r, z) will be all the known helical solutions with a constant coefficient A relating
velocity to vorticity if the function 72 is added to them. This corresponds to the
addition of constant velocity along the symmetry axis, and new solutions will no
longer be helical.

Conclusion. Within the framework of the Euler equations, we have discussed
swirling axisymmetric stationary flows of an ideal incompressible fluid in a po-
tential field of external forces. Three new families of exact solutions have been
obtained. As distinct from Gromeka’s solution, vorticity is not parallel to fluid
velocity in these families, and in contrast to cylindrical flows, the radial velocity
component is not identically equal to zero. The solution (8) is a solution to the
problem of motion inside a barrel (inside a portion of a straight cylinder), with the
impermeability condition met on its walls. The vortex lines of this flow, not being
lathe objects (except isolated lines), lie on revolution surfaces homeomorphic to
a torus.
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HeBuHTOBBIE TOYHBIE pEllleHUs] yPaBHeHUl Jditjepa JaJjis
3aKpPy4Y€HHBIX OCECUMMETPUYHBIX T€YEHUIl >KUIKOCTHA

E. 10. IIpoceupaxos'?

I Uncruryr manmuosenenus YpO PAH,

Poccust, 620049, Exarepunbypr, yin. Komcomousbekast, 34.
2 Vpamnbckuit dbeepanbHbii yHIBEPCATET

uM. niepsoro [Ipesugenta Poccuu B. H. Enbiuna,
Poccus, 620002, Exarepunbypr, yi1. Mupa, 19.

AnHHOTaNNsA

B pamkax ypaBHeHnil Ditrepa pacCMOTPEHBI 3aKPYIEHHBIE OCECHMMET-
pUUHbBIE CTAIIMOHAPHBIE TeUEHUs 1lea/IbHOI HeczkuMaeMol »xuikoctu. [Ipes-
CTaBJIEHO HECKOJILKO HOBBIX TOYHBIX PEIIeHUil ypaBHEHMiT Ditjepa, B KOTO-
DBIX, B OTJINYME OT WU3BECTHBIX perreHnit ['pomekn-BenbrpaMu, 3aBUXpeH-
HOCTH HeKoJuimHeapHa ckopocTu. OJHO U3 IIOJIYYE€HHBIX PEIIeHUil COOTBET-
CTBYeT TE€YEHHIO BHYTPH 3aMKHYTOI'0 00beMa, Ha I'PAHUIE KOTOPOT'O BBIIIOJI-
HEHO YCJIOBHE HENIPOTEKAHNdA, & BEKTOPHBIC JIMHANA 3aBUXPEHHOCTH HAMATDI-
BalOTCsl Ha 'OMeOMOP(MHBIE TOPY TOBEPXHOCTU BPAIIIE€HUSI.

KurouyeBbie ciioBa: ypaBHeHusi Diljiepa, HeabHasi HECKUMAEMAS JKUJI-
KOCTbB, 3aKpYUYEHHbIE OCECUMMETPUYHbIE T€UYEeHNs, TOUHbIE PEIleHUS.
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®dunancupoBauue. Pabora qactuuano nojaep:kana [IporpaMmoit KOMILIEKCHBIX DYyHIA-
MeHTaIBHBIX uccaenobaruii YpO PAH (npoexkr Ne 18-1-1-5).

Kpartkoe coobuaienune

@@ Konrent nybsmkyercss Ha yciaousix Jimnensun Creative Commons Attribution 4.0
International (https://creativecommons.org/licenses/by/4.0/deed.ru)

O6paser ajsd MUTUPOBAHUS

Prosviryakov E. Yu. Non-helical exact solutions to the Euler equations for swirling axisym-
metric fluid flows, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State
Tech. Univ., Ser. Phys. Math. Sci.], 2019, vol. 23, no. 4, pp. 764-770. doi: 10.14498/vsgtul715.

CBeneHnus o6 aBTope

Eseenuti I0pvesun Ipocsupsaros R © https://orcid.org/0000-0002-2349-7801
NOKTOP (PUBUKO-MATEMATHIECKUX HAYK; 3aBELyIOIHi CEKTOPOM; CEKTOD HEJIMHEHHON BUXPEBO
rupoHaMuKn | ; Tpodeccop; Kadeapa TeopeTHUecKoil MEXaHIKH;

e-mail: evgen_pros@mail.ru

770


https://doi.org/10.14498/vsgtu1715
http://www.mathnet.ru/php/organisation.phtml?orgid=2665&option_lang=rus
http://www.mathnet.ru/php/organisation.phtml?orgid=2665&option_lang=rus
http://www.mathnet.ru/php/organisation.phtml?orgid=7370&option_lang=rus
http://www.mathnet.ru/php/organisation.phtml?orgid=7370&option_lang=rus
http://www.mathnet.ru/php/organisation.phtml?orgid=7370&option_lang=rus
https://creativecommons.org/licenses/by/4.0/deed.ru
https://creativecommons.org/licenses/by/4.0/deed.ru
https://creativecommons.org/licenses/by/4.0/deed.ru
https://doi.org/10.14498/vsgtu1715
http://www.mathnet.ru/php/person.phtml?option_lang=rus&personid=41426
https://orcid.org/0000-0002-2349-7801
https://orcid.org/0000-0002-2349-7801
mailto:evgen_pros@mail.ru

