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A quantum computer is a computation device operated by means of quantum mechan-
ical phenomena. There are many candidates that are being pursued for physically im-
plementing the quantum computer. The quantum logical gate based on the electron spin
resonance (ESR) was studied in ref. [3]. In this paper, we discuss a construction of
Controlled-Controlled-NOT (CCNOT) gate by using the nonrelativistic formulation of
ESR.
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1. Introduction. In classical computer, there exist inevitable demerits for
discussing logical gates. One of the demerits is an irreversibility of logical gates,
that is the AND and the OR gates. This property causes to the restriction
of computational speed for the classical computer. There are several kinds of
approaches for avoiding these demerits. One of these approaches is proposed by
Feynman [1]. He proved that every logical gates can be constructed by combining
with only two reversible gates, i.e., the NOT and the Controlled-NOT (CNOT)
gates.

There are several approaches for realizing quantum logical gates. One of those
approaches is the study by means of nuclear magnetic resonance (NMR). Quantum
logical gate based on NMR is performed by controlling the nuclear spin under the
additve magnetic fields from the environments. However, it might be difficulty
to make the logical gate of NMR using a large number of quantum bits (qubits)
because of the weakness of the spin-spin interactions among the nuclears. Our
study uses ESR to construct Feynman gates that has NOT gate and CNOT gate,
CCNOT gate. As quantum logical gate based on NMR, quantum gate based on
ESR is performed by controlling the electron spin under the additive magnetic
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fields from the environments. By employing Ising model, Ohya, Volovich and
Watanabe constructed in [3] both NOT and CNOT gates based on ESR.

In this paper, we construct the CCNOT gate in order to complete Feynman
gates and universal quantum gates based on ESR. In general, any unitary operation
on n qubits can be described by composing single qubit and CNOT gates. Unfortu-
nately, no straightforward method is known to implement all these gates resisting
errors. On the other hand, a discrete set of gates can be used to perform quantum
computation in an error-resistant fashion. To perform fault-tolerant quantum
computation, we consider discrete set of gates which are Feynman gates.

2. NOT gate based on ESR. In this section, we explain the NOT gate based
on ESR. It is one of Feynman gates, which includes CNOT and CCNOT gate,
and has been constructed [2]. First of all, let us consider one particle case. Let

H be C
2 with its canonical basis u+ = | ↑〉 =

(

1
0

)

, u− = | ↓〉 =
(

0
1

)

B(H)

be the set of all bounded operators on H and B(H)sa ≡ {A ∈ B(H);A = A∗},
where A∗ is the adjoint of A defined by

〈A∗u, v〉 = 〈u,Av〉 for any u, v ∈ H.

B(H)sa has the basis σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

, which

are called Pauli spin matrices and I =

(

1 0
0 1

)

is an identity matrix on H. That

is, σ = {σx, σy, σz} is an orthogonal basis of B(H)sa with the scalar product

〈σi, σj〉 =
1

2
trσiσj , j ∈ {x, y, z}.

Let ~S = (Sx, Sy, Sz) be a spin (angular momentum) operator of electron,

where Si =
1
2σi is a component of spin operator of electron in the direction of

i-axis (i = x, y, z). We denote unit vectors of x, y, z axis by ~ex, ~ey, ~ez and ~S is the
spin vector given by

~S = (Sx, Sy, Sz) = Sx ~ex + Sy ~ey + Sz ~ez.

Let us consider two magnetic fields ~B0 and ~B1. ~B0 is a static magnetic field given
by

~B0 = B0 ~ez

in the z direction and ~B1 is a rotating magnetic field given by

~B1(t) = B1(~ex cosωt+ ~ey sinωt)

with frequency ω in the xy plain, where B0 and B1 are certain constants due to

the magnetic fields. If ~B(t) is a magnetic vector defined by

~B(t) = ~B1(t) + ~B0,
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then one has

d~S

dt
= ~S × ~B(t) = B1(Sx cosωt+ Sy sinωt) +B0Sz.

Let | ↑〉 =
(

1
0

)

and | ↓〉 =
(

0
1

)

be spin vectors related to spin up and spin

down, respectively. Let us take an initial state ψ(0) = a0| ↑〉 + b0| ↓〉 =
(

a0
b0

)

,

then state vector at time t is denoted by

ψ(t) = a(t)| ↑〉+ b(t)| ↓〉 =
(

a(t)
b(t)

)

,

where a(t), b(t) ∈ C are satisfying |a(t)|2 + |b(t)|2 = 1.
Let Schrödinger equation in one particle be

i
∂ψ(t)

∂t
= −~S × ~B(t)ψ(t) = −[B1(Sx cosωt+ Sy sinωt) +B0Sz]ψ(t)

where B0, B1, ω are arbitrary constants, A solution of the Schrödinger equation
is given by

ψ(t) = e−iωtSzeit((ω+B0)Sz+B1Sx)ψ(0),

which means time evolution. In particular, we see the resonance condition

ω +B0 = 0,

that is, ψ(t) = eiB0tSzeitB1Sxψ(0). Based on the above results, we reconstruct the
Not gate based on ESR. If we take t = t1 such that

B0t1

2
=
B1t1

2
=
π

2
,

then

ψ(t1) =

(

0 1
1 0

)

ψ(0) = b0u+ + a0u−.

It means that this gate is performed as the NOT gate based on ESR. Let UNOT (t) ≡
eiB0tSzeiB1tSx be a unitary operator expressing the NOT gate based on ESR.
Quantum channel denoting the NOT gate based on ESR is defined by

Λ∗
NOT (t1)

( · ) ≡ UNOT (t1)( · )U∗
NOT (t1).

For the initial state |ψ(0)〉〈ψ(0)| at time 0, the output state of Λ∗
NOT (t1)

is obtained

by
Λ∗
NOT (t1)

(|ψ(0)〉〈ψ(0)|) = |ψ(t1)〉〈ψ(t1)|.

3. CNOT gate based on ESR. In this section, we introduce the CNOT gate
based on ESR. Let us consider N particle systems to treat the Controlled Not
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gate. Let ~e1, ~e2, ~e3 be unit vectors of x, y, z axis, respectively, and let ~S(1), . . . , ~S(N)

be spin vectors of N electrons such as

~S(i) = (S
(i)
1 , S

(i)
2 , S

(i)
3 ) = S

(i)
1 ~e1 + S

(i)
2 ~e2 + S

(i)
3 ~e3.

The spin operators satisfy the following commutation relations

[S(p)
α , S

(q)
β ] = iδpq

3
∑

γ=1

ǫαβγS
(q)
γ ,

where ǫαβγ =

{

+1
−1

and δpq is a certain constant. Let us consider a Hamiltonian

operator for N particle systems given by

H(N) ≡ B3

(

N
∑

i=1

S
(i)
3

)

+B1

(

N
∑

i=1

S
(i)
1

)

f(t) +

N
∑

i,j=1

JijS
(i)
3 ⊗ S

(j)
3 ,

where f(t) is a certain function, for example f(t) = cosωt and Jij is a coupling

constant with respect to i-th spin and j-th spin. S
(i)
k is embedding Sk into i-th

position of N tensor product.

S
(i)
k = I ⊗ · · · ⊗ Sk ⊗ · · · ⊗ I (k = 1, 2, 3).

Let us take a Hamiltonian H(N) as a Ising type interaction, that is

H(N) ≡ B3

(

N
∑

i=1

S
(i)
3

)

+

N
∑

i,j=1

JijS
(i)
3 ⊗ S

(j)
3 .

If N = 2 then one can denote

H(2) = B3(S3 ⊗ I + I ⊗ S̃3) + J(S3 ⊗ S3) +B0(I ⊗ I),

where B0, B3 and J are determined by a certain phase parameter ω.
Let us take u+, u−, v+, v− as

u+⊗v+ =







1
0
0
0






, u+⊗v− =







0
0
1
0






, u−⊗v+ =







0
1
0
0






, u−⊗v− =







1
0
0
1






.

Let ψ(0) be an initial state vector given by

ψ(0) = a0u+ ⊗ v+ + b0u+ ⊗ v− + c0u− ⊗ v+ + d0u− ⊗ v−

=







a0
b0
c0
d0






(a0, b0, c0, d0 ∈ C).
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For the initial state vector ψ(0), if J = 2ω,B3 = −ωandB0 = 1
2ω are hold, then

the state vector at time t is expressed by

ψ(t) = e−itH(2)ψ(0)

= e−it(B3(S3⊗I+I⊗S̃3)+J(S3⊗S3)+B0(I⊗I))ψ(0)

= eiωt(S3⊗I)eiωt(I⊗S̃3)e−2ωt(S3⊗S̃3)e−
1
2
ωt(I⊗I)ψ(0).

If we take t = t1 such that 2ωt = π (π2pulse) then one can denote the matrix form

UΦ(t1) of eiωt(S3⊗I)eiωt(I⊗S̃3)e−2ωt(S3⊗S̃3)e−
1
2
ωt(I⊗I) by

UΦ(t1) =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1






.

Next we construct a unitary operator UH(t) related to a Hadamard transformation
based on ESR. Let us define UH(t) by

UH(t) = e−iω2t(I⊗S̃2),

where ω2 is a certain phase parameter. Then we have

e−iω2t(I⊗S̃2) = cos(
ω2t

2
)(I ⊗ I)− 2i sin(

ω2t

2
)(I ⊗ S̃2).

For the initial state vector ψ(0), the state vector at time t is expressed by

ψ(t) = UH(t)ψ(0) = e−iω2t(I⊗S̃2)ψ(0).

If we take t = t2 such that

ω2t

2
=
π

4

(π

2
pulse

)

,

then one can denote the matrix form UH(t2) of e−iω2t2(I⊗S̃2)

UH(t2) =

(

1 0
0 1

)

⊗ 1√
2

(

1 −1
1 1

)

.

Thus unitary operator UCNOT (t1+2t2) related to the CNOT gate can be reconst-
ructed by the combination of UΦ(t1) and UH(t2) as

UCNOT (t1 + 2t2)

= UH(t2)
∗UΦ(t1)UH(t2)

= eiω2t2(I⊗S̃2)eiωt1(S3⊗I)eiωt1(I⊗S̃3)e−2iωt1(S3⊗S̃3)e−
1
2
iωt1(I⊗I)e−iω2t2(I⊗S̃2).

It means that this unitary operator UCNOT (t1 + 2t2) is performed as CNOT
(Controlled-NOT) gate based on ESR. Quantum channel denoting the CNOT
gate based on ESR is defined by

Λ∗
CNOT (t1+2t2)

( · ) ≡ UCNOT (t1 + 2t2)( · )U∗
CNOT (t1 + 2t2).
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For the initial state |ψ(0)〉〈ψ(0)| at time 0 , the output state of Λ∗
CNOT (t1+2t2)

is

obtained by

Λ∗
CNOT (t1+2t2)

(|ψ(0)〉〈ψ(0)|) = |ψ(t1 + 2t2)〉〈ψ(t1 + 2t2)|.

4. CCNOT gate based on ESR. This section shows how to construct CCNOT
gate, which is our main result, based on ESR. Let us consider some gates to treat
the CCNOT gate. First of all, we construct Controlled-phase gate based on ESR.
If Hamiltonian H(N) has N = 3 then one can denote

H(3) = B3(S
(1)
3 + S

(2)
3 + S

(3)
3 ) + J(1,2)(S3 ⊗ Ṡ3 ⊗ I) + J(2,3)(I ⊗ Ṡ3 ⊗ S̈3)

+B0(I ⊗ I ⊗ I),

where B0, B3, andJ(1,2), J(2,3) are determined by a certain phase parameter ω. Let
ψ(0) be an initial state vector given by

ψ(0) = a0u+ ⊗ u+ ⊗ u+ + b0u− ⊗ u+ ⊗ u+ + c0u+ ⊗ u− ⊗ u+

+d0u− ⊗ u− ⊗ u+ +

e0u+ ⊗ u+ ⊗ u− + f0u− ⊗ u+ ⊗ u− + g0u+ ⊗ u− ⊗ u−

+h0u− ⊗ u− +⊗u−.
For the initial state vector ψ(0), if B0 = ω

4 , B3 = −ω
2 and J(1,2) = J(2,3) = ω are

hold, then operator UΦ related to the state vector at time t is expressed by

UΦ(t) = ei
ωt

2
(S

(1)
3 +S

(2)
3 +S

(3)
3 )−iωt(S3⊗Ṡ3⊗I+I⊗Ṡ3⊗S̈3)−iωt

4
(I⊗I⊗I) .

If we take t1, t2 such that ωt1 = −π
2 , ω2t2 = π

2 then operator US of Controlled-
phase is denoted by

US(t1 + 2t2) = UΦ(t1)e
−iω2t2(S3⊗Ṡ3⊗I)ei2ω2t2(S3⊗I⊗I)

= I ⊗







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i






.

Second, we reconstruct a CNOT gate of three particles, employing Ising model.
We denote unitary operator U3

CNOT related to a CNOT gate of three particles by
use of operator UΦ(t) of time evolution. Let us define U3

CNOT by

U3
CNOT (t) = e−iω3tS

(2)
2 UΦ(t)e

i2ω5t(S
(2)
3 ·S

(3)
3 )e−iω5tS

(3)
3 eiω3tS

(2)
2 .

If we take t3, t4, t5 such that ω3t3 =
π
2 , ωt4 = π, ω5t5 =

π
2 , then one has

U3
CNOT (2t3 + t4 + 2t5) = e−iω3t3S

(2)
2 UΦ(t4)e

i2ω5t5(S
(2)
3 ·S

(3)
3 )e−iω5t5S

(3)
3 eiω3t3S

(2)
2 .

Then one can denote the matrix form U3
CNOT (2t3 + t4 + 2t5) by

U3
CNOT (2t3 + t4 + 2t5) =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






⊗ I.
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Next we denote operator U3
CNOT (t) of CNOT gate that the role of control and

target are changed. Let us define U3
CNOT (t) by

U3
CNOT (t) = e−iω3tS

(1)
2 UΦ(t)e

i2ω5t(S
(2)
3 ·S

(3)
3 )e−iω5tS

(3)
3 eiω3tS

(1)
2 .

If we take t3, t4, t5 such that ω3t3 =
π
2 , ωt4 = π, ω5t5 =

π
2 , then one has

U3
CNOT (2t3 + t4 + 2t5)

= e−iω3t3S
(1)
2 UΦ(t4)e

i2ω5t5(S
(2)
3 ·S

(3)
3 )e−iω5t5S

(3)
3 eiω3t3S

(1)
2 .

and the matrix form of U3
CNOT (2t3 + t4 + 2t5) is obtained by

U3
CNOT (2t3 + t4 + 2t5) =







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0






⊗ I.

It means that this unitary operator U3
CNOT (2t3 + t4 + 2t5) is performed as CNOT

gate of three particles.
Third, we construct a SWAP gate based on ESR. The SWAP gate swaps two

qubits. Let us define a unitary operator USWAP (t) by

USWAP (6t3 + 3t4 + 6t5) = U3
CNOT (2t3 + t4 + 2t5)U

3
CNOT (2t3 + t4 + 2t5)

×U3
CNOT (2t3 + t4 + 2t5)

=







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






.

Thus the unitary operator USWAP (6t3 + 3t4 + 6t5) related to the SWAP gate
can be reconstructed by the combination of U3

CNOT . It means that this unitary
operator is performed as SWAP gate based on ESR.

We reconstruct the CCNOT gate based on ESR using by Controlled-phase
and SWAP gate.

|q0〉 • ⊕ • ×

|q1〉 • ⊕ • • ⊕ • ×

|q2〉 H S S† S H

Fig. CCNOT

If U3
H is operator related to a Hadamard gate of three particles then it is

denoted by e−iω3t3S
(3)
2 . The unitary operator UCCNOT related to the CCNOT

gate can be reconstructed by the combination of U3
CNOT ,US , U3

H and USWAP as

UCCNOT (3t1 + 6t2 + 14t3 + 6t4 + 12t5)
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= USWAP (6t3 + 3t4 + 6t5)U
3
H(t3)(I ⊗ US(t1 + 2t2))

UCNOT (2t3 + t4 + 2t5)
3U3

CNOT (2t3 + t4 + 2t5)

(I ⊗ U∗
S(t1 + 2t2))UCNOT (2t3 + t4 + 2t5)

3

(I ⊗ US(t1 + 2t2))U
3
H(t3)

and the matrix form of UCCNOT (3t1+6t2+14t3+6t4+12t5) is obtained by

UCCNOT (3t1 + 6t2 + 14t3 + 6t4 + 12t5) =























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0























.

This unitary operator UCCNOT is performed as CCNOT gate based on ESR.
Quantum channel denoting the CCNOT gate based on ESR is defined by

Λ∗
CCNOT ( · )

≡ UCCNOT (3t1+6t2+14t3+6t4+12t5)( · )
×U∗

CCNOT (3t1+6t2+14t3+6t4+12t5).

For the initial state |ψ(0)〉〈ψ(0)| at time 0, the output state of
Λ∗
CCNOT (3t1+6t2+14t3+6t4+12t5)

is obtained by

Λ∗
CCNOT (|ψ(0)〉〈ψ(0)|)

= |ψ(3t1 + 6t2 + 14t3 + 6t4 + 12t5)〉〈ψ(3t1 + 6t2 + 14t3 + 6t4 + 12t5)|.
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