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In 1989, Ohya propose a new concept, so-called Information Dynamics (ID), to in-
vestigate complex systems according to two kinds of view points. One is the dynamics
of state change and another is measure of complexity. In ID, two complexities C

S

and T
S are introduced. CS is a measure for complexity of system itself, and T

S is a
measure for dynamical change of states, which is called a transmitted complexity. An
example of these complexities of ID is entropy for information transmission processes.
The study of complexity is strongly related to the study of entropy theory for classical
and quantum systems. The quantum entropy was introduced by von Neumann around
1932, which describes the amount of information of the quantum state itself. It was
extended by Ohya for C*-systems before CNT entropy. The quantum relative entropy
was first defined by Umegaki for σ-finite von Neumann algebras, which was extended
by Araki and Uhlmann for general von Neumann algebras and *-algebras, respectively.
By introducing a new notion, the so-called compound state, in 1983 Ohya succeeded to
formulate the mutual entropy in a complete quantum mechanical system (i.e., input
state, output state and channel are all quantum mechanical) describing the amount
of information correctly transmitted through the quantum channel. In this paper, we
briefly review the entropic complexities for classical and quantum systems. We intro-
duce some complexities by means of entropy functionals in order to treat the transmis-
sion processes consistently. We apply the general frames of quantum communication
to the Gaussian communication processes. Finally, we discuss about a construction of
compound states including quantum correlations.

Key words: quantum communication channel, von Neumann entropy, S-mixing en-
tropy, Ohya mutual entropy, C*-system.

1. Introduction
In [1], Ohya introduced Information Dynamics (ID) synthesizing dynamics of

state change and complexity of state. Based on ID, one can study various problems
of physics and other fields. Channel and two complexities are key concepts of ID.

Let us briefly review ID for quantum communication processes.
Let Hk (k = 1, 2) be complex separable Hilbert spaces. We denote the set of

all bounded linear operators on Hk by B(Hk) (k = 1, 2) and we express the set of
all density operators on Hk by S(Hk) (k = 1, 2). Let (B(Hk),S(Hk)) (k = 1, 2)
be input (k = 1) and output (k = 2) quantum systems, respectively.

1.1. Quantum Channels
A mapping from S(H1) to S(H2) is called a quantum channel Λ∗.

(1) Λ∗ is called a linear channel if Λ∗ satisfies the affine property such as
Λ∗(

∑

k λkρk) =
∑

k λkΛ
∗ (ρk) for any ρk ∈ S(H1) and any nonnegative

number λk ∈ [0,1] with
∑

k λk = 1.

For the quantum channel Λ∗, the dual map Λ of Λ∗ is defined by

tr Λ∗(ρ)B = tr ρΛ(B), ∀ρ ∈ S(H1),∀B ∈ B(H2).
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(2) Λ∗ is called a completely positive (CP) channel if Λ∗ is linear channel and
its dual map Λ : B(H2) → B(H1) of Λ∗ holds

〈

x,

n
∑

i,j=1

A∗
iΛ(A

∗

iAj)Aj x

〉

> 0 (∀x ∈ H1)

for any n ∈ N, any {Ai} ⊂ B(H2) and any {Ai} ⊂ B(H1).

One can describe almost all physical transform of states by using the CP
channel [2–5].

1.2. Quantum Communication Channel
Here we explain the quantum communication channels as an example of the

quantum channels.
In order to consider influence of the environment such as noise and loss, we

suppose K1 and K2 to be complex separable Hilbert spaces of noise and loss
systems, respectively. Quantum channel of quantum communication process with
noise and loss was discussed by [2, 6].

1.3. Noisy quantum channel and Generalized Beam Splitter
For an input state ρ in S(H1) and a noise state ξ ∈ S (K1), Ohya and NW

defined in [6] a generalized beam splitting Π∗ by

Π∗(ρ⊗ ξ) ≡ V (ρ⊗ ξ)V ∗,

where V is a linear mapping from H1 ⊗ K1 to H2 ⊗ K2 given by for the n1, m1,
j, (n1 +m1 − j) photon number state vectors |n1〉 ∈ H1, |m1〉 ∈ K1, |j〉 ∈ H2,
|n1 +m1 − j〉 ∈ K2

V (|n1〉 ⊗ |m1〉) =

n1+m1
∑

j

C
n1,m1

j |j〉 ⊗ |n1 +m1 − j〉

and

C
n1,m1

j =
K
∑

r=L

(−1)n1+j−r

√

n1!m1!j!(n1 +m1 − j)!

r!(n1 − j)!(j − r)!(m1 − j + r)!

×αm1−j+2r
(

−β̄
)n1+j−2r

(1)

α and β are complex numbers satisfying |α|2 + |β|2 = 1. K and L are constants
given by K = min{n1, j}, L = max{m1 − j, 0}. For the coherent input state
ρ = |θ〉 〈θ| ⊗ |κ〉 〈κ| ∈ S (H1⊗K1) , the output state of Π∗ is obtained by

Π∗ (|θ〉 〈θ| ⊗ |κ〉 〈κ|) = |αθ + βκ〉 〈αθ + βκ|

⊗
∣

∣−β̄θ + ᾱκ
〉 〈

−β̄θ + ᾱκ
∣

∣ .

By using Π∗, Ohya and NW introduced in [6] the noisy quantum channel Λ∗ with
a fixed noise state ξ ∈ S (K1) defined by

Λ∗(ρ) ≡ trK2
Π∗(ρ⊗ ξ) = trK2

V (ρ⊗ ξ)V ∗. (2)

306



Note on complexity of quantum transmission processes

The generalized beam splitting Π∗ with the vacuum noise state ξ0 = |0〉 〈0| is
called the beam splitter Π∗

0 given by

Π∗
0 (|θ〉 〈θ| ⊗ ξ0) = |αθ〉 〈αθ| ⊗

∣

∣−β̄θ
〉 〈

−β̄θ
∣

∣

for the coherent input state ρ ⊗ ξ0 = |θ〉 〈θ| ⊗ |0〉 〈0| ∈ S (H1⊗K1). The beam
splitter Π∗

0 was described by means of the lifting E∗
0 from S (H) to S (H⊗K) in

the sense of Accardi and Ohya [7] as follows

E∗
0 (|θ〉 〈θ|) = |αθ〉 〈αθ| ⊗ |βθ〉 〈βθ| .

Based on the liftings, the beam splitting was studied by Accardi–Ohya and Ficht-
ner–Freudenberg–Libsher [8]. Moreover, the noisy quantum channel Λ∗

0 with the
vacuum noise state ξ0 = |0〉 〈0| is called the attenuation channel given by Ohya [2]
as

Λ∗
0(ρ) ≡ trK2

Π∗
0(ρ⊗ ξ0) = trK2

V0(ρ⊗ |0〉〈0|)V ∗
0 , (3)

which plays an important role for investigating the quantum communication
processes.

2. Complexities
Two kind of complexities CS(ρ), T S(ρ; Λ∗) are used in ID. CS(ρ) is a comple-

xity of a state ρ measured from a subset S and T S (ρ; Λ∗) is a transmitted
complexity according to the state change from ρ to Λ∗ρ. These complexities
should fulfill the following conditions: Let S, S, St be subsets of S (H1) , S (H2) ,
S (H1 ⊗H2), respectively.

(1) For any ρ ∈ S, CS(ρ) and T S(ρ; Λ∗) are nonnegative ( CS(ρ) > 0,
T S (ρ; Λ∗) > 0 ).

(2) For a bijection j from exS (H1) to exS (H1),

CS(ρ) = CS(j(ρ))

is hold, where exS (H1) is the set of extremal point of S (H1).
(3) For ρ⊗ σ ∈ S (H1 ⊗H2), ρ ∈ S (H1), σ ∈ S (H2),

CSt(ρ⊗ σ) = CS(ρ) + CS(σ).

It means that the complexity of the state ρ ⊗ σ of totally independent
systems are given by the sum of the complexities of the states ρ and σ.

(4) CS(ρ) and T S (ρ; Λ∗) satisfy the following inequality 0 6 T S (ρ; Λ∗) 6

CS(ρ).
(5) If the channel Λ∗ is given by the identity map id, then T S (ρ; id) = CS(ρ)

is hold.

One of the example of the above complexities are the Shannon entropy S (p)
for CS(p) and classical mutual entropy I (p; Λ∗) for T S (p; Λ∗). Let us consider
these complexities for quantum systems.

2.1. Example of Complexity CS (ρ)
2.1.1. von Neumann Entropy and S-mixing entropy
One of the example of the complexity CS(ρ) of ID in quantum system is the

von Neumann entropy S(ρ) [9] described by

CS(ρ) ⇔ S(ρ) = − tr ρ log ρ
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for any density operators ρ ∈ S (H1), which satisfies the above conditions (1),
(2), (3).

Let (A,S(A), α(G)) be a C*-dynamical system and S be a weak* compact
and convex subset of S(A). For example, S is given by S(A) (the set of all states
on A), I(α) (the set of all invariant states for α), K(α) (the set of all KMS states),
and so on. Every state ϕ ∈ S has a maximal measure µ pseudosupported on exS
such that

ϕ =

∫

S

ωdµ, (4)

where exS is the set of all extreme points of S. The measure µ giving the above
decomposition is not unique unless S is a Choquet simplex. We denote the set of
all such measures by Mϕ(S), and define

Dϕ(S) =
{

Mϕ(S); ∃µk ⊂ R
+ and {ϕk} ⊂ exS

s.t.
∑

k

µk = 1, µ =
∑

k

µkδ (ϕk)
}

, (5)

where δ(ϕ) is the Dirac measure concentrated on an initial state ϕ. For a measure
µ ∈ Dϕ(S), we put

H(µ) = −
∑

k

µk log µk. (6)

The C*-entropy of a state ϕ ∈ S with respect to S (S-mixing entropy) is defined
by

CS (ϕ) ⇔ SS(ϕ) =

{

inf {H (µ) ; µ ∈ Dϕ(S)}
+∞ if Dϕ(S) = ∅.

(7)

It describes the amount of information of the state ϕ measured from the subsystem
S. We denote SS(A)(ϕ) by S(ϕ) if S = S(A). It is an extension of von Neumann’s
entropy.

This entropy (mixing S-entropy) of a general state ϕ satisfies the following
properties [10].

Theorem 2.1.When A = B(H) and αt = Ad(Ut) (i.e., αt(A) = U∗
t AUt for

any A ∈ A) with a unitary operator Ut, for any state ϕ given by ϕ( · ) = tr ρ ·
with a density operator ρ, the following facts hold:

(1) S(ϕ) = − tr ρ log ρ.
(2) If ϕ is an α-invariant faithful state and every eigenvalue of ρ is non-

degenerate, then SI(α)(ϕ) = S(ϕ), where I(α) is the set of all α -invariant
faithful states.

(3) If ϕ ∈ K(α), then SK(α)(ϕ) = 0, where K (α) is the set of all KMS states.

Theorem 2.2.For any ϕ ∈ K(α), we have

(1) SK(α)(ϕ) 6 SI(α)(ϕ).

(2) SK(α)(ϕ) 6 S(ϕ).

2.2. Example of Transmitted Complexity T S (ρ; Λ∗)
The classical mutual entropy I (p; Λ∗) defined by using the joint probability

distribution between the input state and the output state is an example of the
transmitted complexity T S (p; Λ∗) of ID. In general, there does not exit the joint
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states in the quantum system [11]. We need to introduce the compound state in
quantum system instead of the joint probability distribution in classical system.

2.3. Compound state
The quantum mutual entropy I (ρ,Λ∗) should satisfy the following three con-

ditions:

1) If the channel is given by the identity channel id, then I (ρ; id) = S(ρ) (von
Neumann entropy) is hold.

2) If the system is classical, then the quantum mutual equals to the classical
mutual entropy.

3) The quantum mutual entropy should satisfy the Shannon’s type inequalities:

0 6 I (ρ,Λ∗) 6 S(ρ).

Ohya introduced two compound states σ0 and σE. σ0 is the trivial compound
state given by

σ0 = ρ⊗ Λ∗ρ.

σE is the compound state representing a certain correlation between the input
state and the output state given by

σE =
∑

n

λnEn ⊗ Λ∗En

associated with the Schatten–von Neumann (one dimensional spectral) decompo-
sition [12] ρ =

∑

n λnEn of the input state ρ.

2.4. Ohya Mutual Entropy for density operator
An example of the transmitted complexity T S (ρ; Λ∗) of ID in quantum system

is the Ohya mutual entropy with respect to the initial state ρ and the quantum
channel Λ∗ defined by

T S (ρ; Λ∗) ⇔ I (ρ; Λ∗) ≡ sup

{

∑

n

S(σE , σ0), ρ =
∑

n

λnEn

}

,

where S ( · , · ) is the Umegaki’s relative entropy [13] denoted by

S (ρ, σ) ≡

{

tr ρ (log ρ− log σ) (when ran ρ ⊂ ranσ)
∞ (otherwise)

(8)

which was extended to more general quantum systems by Araki and Uhlmann
[1, 3, 4, 14, 16]. The Ohya mutual entropy holds the above conditions (1), (4), (5)
such as

0 6 I (ρ,Λ∗) 6 S(ρ),

I (ρ, id) = S(ρ).

The capacity means the ability of the information transmission of the channel,
which is used as a measure for construction of channels. The quantum capacity
is formulated by taking the supremum of the Ohya mutual entropy with respect
to a certain subset of the initial state space. The quantum capacity of quantum
channel was studied in [17–20].
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Theorem 2.3. Let ΦE be a compound state w.r.t. the initial state ρ, the quan-
tum CP channel Λ∗ and aSchatten decomposition of ρ =

∑

k λkEk defined by

ΦE =
∑

n

(I ⊗ Vn)

[

∑

k

√

λk|xk〉 ⊗ |xk〉

][

∑

k′

√

λk′〈xk′ | ⊗ 〈xk′ |

]

(I ⊗ V ∗
n )

under the condition
∑

n

(I ⊗ V ∗
n ) (I ⊗ Vn) = I ⊗ I

and Λ∗ is given by Λ∗(ρ) =
∑

n VnρV
∗
n . By defining the compound state ΦE , one

can obtain the following theorem.

Theorem 2.4. For the compound state ΦE given above, one can obtain two
marginal states as follows

trH2
ΦE= S(ρ),

trH1
ΦE= S (Λ∗ρ) .

The upper bound of the relative entropy S(ΦE, ρ⊗ Λ∗ρ) is obtained as follows:

S(ΦE, ρ⊗ Λ∗ρ) 6 2S (ρ) .

Let ΨE be a compoundstate defined by

ΨE,µ = µ σE + (1− µ)ΦE (µ ∈ [0,1]) .

We have the following theorem.
Theorem 2.5. For the compound state ΨE,µ w.r.t. µ ∈ [0, 1] given above, one

can obtain two marginal states as follows

trH2
ΨE,µ= S(ρ),

trH1
ΨE,µ= S (Λ∗ρ) .

The upper bound of the relative entropy S(ΨE,µ, ρ⊗ Λ∗ρ) is obtained as follows:

S(ΨE,µ, ρ⊗ Λ∗ρ) 6 (2− µ)S(ρ) (µ ∈ [0,1]) .

2.5. Ohya Mutual Entropy for general C*-system
Let (A,S(A), α (G)) be a unital C∗-system and S be a weak* compact convex

subset of S(A). For an initial state ϕ ∈ S and a channel Λ∗ : S (A) → S (B),
two compound states [3, 10] are defined by

ΦS
µ =

∫

S

ω ⊗ Λ∗ω dµ, (9)

Φ0 = ϕ⊗ Λ∗ϕ. (10)
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The compound state ΦS
µ expresses the correlation between the input state ϕ and

the output state Λ∗ϕ. The mutual entropy with respect to S and µ is given by

ISµ (ϕ; Λ∗) = S
(

ΦS
µ ,Φ0

)

(11)

and the mutual entropy with respect to S is defined by Ohya [3, 10] as

T S (ϕ; Λ∗) ⇔ IS (ϕ; Λ∗) = sup
{

ISµ (ϕ; Λ∗) ; µ ∈ Mϕ (S)
}

. (12)

2.6. Other Mutual Entropy Type Measures
Recently, several mutual entropy type measures were proposed by Shor [21]

and Bennet et al [22,23], which defined by using the entropy exchange [24] given
by

Se (ρ,Λ
∗) = −trW logW , (13)

where W is a matrix W = (Wij)i,j with the elements

Wij ≡ trA∗
i ρAj (14)

obtained by means of the input state ρ and the CP channel Λ∗ described by a
Stinespring–Sudarshan–Kraus form

Λ∗ ( · ) ≡
∑

j
A∗

j ·Aj . (15)

Based on the entropy exchange, the coherent entropy IC (ρ; Λ∗) [15] and the
Lindblad-Nielson entropy IL (ρ; Λ∗) [23] were defined by

IC (ρ; Λ∗) ≡ S (Λ∗ρ)− Se (ρ,Λ
∗) , (16)

IL (ρ; Λ∗) ≡ S(ρ) + S (Λ∗ρ)− Se (ρ,Λ
∗) . (17)

2.7. Comparison among these quantum mutual entropy type measures
In this section, we compare with these mutual types measures.
By comparing these mutual entropies for quantum information communication

processes, we have the following theorem [25]:

Theorem 2.6. Let {Aj} be a projection valued measure with dim Aj = 1. For
arbitrary state ρ and the quantum channel Λ∗ ( · ) ≡

∑

j Aj ·A
∗
j , one has

(1) 0 6 I (ρ; Λ∗) 6 min {S(ρ), S (Λ∗ρ)} (Ohya mutual entropy),
(2) IC (ρ; Λ∗) = 0 (coherent entropy),
(3) IL (ρ; Λ∗) = S(ρ) (Lindblad entropy).

For the attenuation channel Λ∗
0, one can obtain the following theorems [25]:

Lemma 2.1. For the attenuation channel Λ∗
0 and the input state

ρ = λ|0〉〈0|+ (1− λ)|θ〉〈θ|,

there exists a unitary operator U such that

UWU∗ = λ|0〉〈0|+ (1− λ)
∣

∣−βθ
〉〈

−βθ
∣

∣.
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Theorem 2.7. For the attenuation channel Λ∗
0 and the input state

ρ = λ|0〉〈0|+ (1− λ)|θ〉〈θ|,

the entropy exchange is obtained by

Se (ρ,Λ
∗
0) = −trW logW = −

1
∑

j=0

µj log µj,

where

µj =
1

2

{

1 + (−1)j
√

1− 4λ (1− λ)
(

1− exp
(

− |β|2 |θ|2
))

}

(j = 0, 1) .

Theorem 2.8. For any state ρ =
∑

n λn |n〉 〈n| and the attenuation channel

Λ∗
0 with |α|2 = |β|2 = 1

2 , one has

(1) 0 6 I (ρ; Λ∗
0) 6 min {S(ρ), S (Λ∗

0ρ)} (Ohya mutual entropy),
(2) IC (ρ; Λ∗

0) = 0 (coherent entropy),
(3) IL (ρ; Λ∗

0) = S(ρ) (Lindblad entropy).

Theorem 2.9. For the attenuation channel Λ∗
0 and the input state

ρ = λ |0〉 〈0|+ (1− λ) |θ〉 〈θ| ,

we have
(1) 0 6 I (ρ; Λ∗

0) 6 min {S(ρ), S (Λ∗
0ρ)} (Ohya mutual entropy),

(2) −S(ρ) 6 IC (ρ; Λ∗
0) 6 S(ρ) (coherent entropy),

(3) 0 6 IL (ρ; Λ∗
0) 6 2S (ρ) (Lindblad entropy).

It shows that the coherent entropy holds IC (ρ; Λ∗
0) < 0 for |α|2 < |β|2 and

the Lindblad entropy satisfies IL (ρ; Λ∗
0) > S(ρ) for |α|2 > |β|2. From the above

theorems, we can conclude that the transmitted complexity in quantum system
is the Ohya mutual entropy and it is most fitting measure for studying the
efficiency of information transmission in quantum communication processes. It
means that Ohya mutual entropy can be considered as the transmitted complexity
for quantum communication processes.

Theorem 2.10. For the attenuation channel Λ∗
0 and the input state

ρ = λ|0〉〈0|+ (1− λ)|θ〉〈θ|,

if λ = 1
2 and β =

√

2
3 , then there exists a compound state Φ satisfying

IL(ρ; Λ
∗
0) = S (Φ, ρ⊗ Λ∗

0ρ) .

Theorem 2.11. For the attenuation channel Λ∗
0 and the input state

ρ = λ|0〉〈0|+ (1− λ)|θ〉〈θ|,

312



Note on complexity of quantum transmission processes

if λ = 1
2 and α = 1, then there exists a compound state Φ satisfying

S (Φ, ρ⊗ Λ∗
0ρ) = S (ρ) .
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