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Abstract

Quantum particles are considered as continuous media having peculiar
properties. These properties are formulated so that all main quantum me-
chanics postulates can be strictly derived from them. A deterministic de-
scription of the process of position measurement is presented. The mecha-
nism of occurrence of randomness in the measurement process is shown and
the Born rule is derived. A realistic interpretation of the wave function as a
component of a peculiar variable force acting on the apparatus is introduced,
and the wave equation is derived from the continuity equation of the peculiar
continuum. The deterministic view on the phenomena of the microcosm al-
lows us to eliminate the limitations caused by the uncertainty principle and
to describe dynamically those processes that cannot be considered using
conventional quantum mechanics.
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Introduction
The solving problem of the local realism [1] is a prerequisite for any funda-

mental microcosm theory. We sure that the nonrealistic attitude is unacceptable
for any physical theory and the wave function has to be interpreted, in accor-
dance with Srödinger’s view [2] “. . . as giving somehow the density of the stuff of
which the world is made” [3]. This means, inter alia, that any physical quantity
is an attribute of a material object (as material objects quantum particles1 will
be considered). Therefore the substance generating the wave function should be
distributed in space. The type of this distribution, first of all, must satisfy the
principle of locality. Then the simultaneous transformation of the wave function
in the remote points in space, as the resulting of a local external effect on the
quantum particle, forces us to suppose that there is no empty space between the
parts of the substance. Thus, we have the continuum (hereinafter referred to as
a physical continuum), which is not only a mathematical abstraction, but also a
physical reality. In this sense, the concept of a material point (the term of indi-
vidual particle will not be used here) of continuum mechanics should be taken
literally as an element of the substance corresponding to a point in space, i.e. the
set of the matter points that forms any particular body has the cardinality of
the continuum. These material points can play the role of intermediaries in the
instantaneous interaction between the material points that are remote in space.
This assumption allows us to eliminate the violation of relativistic requirements [4]
when interpreting the non-unitary processes (including the EPR paradox) while
maintaining the principle of local realism.

1. Attributes of the physical continuum
The first property of the physical continuum is analogous to the classical one

and consists in the fact that material points move in accordance with the principle
of least action [5].

In addition, the physical continuum has some extraordinary properties. The
second property is that there are no interaction forces between the material points
forming the continuum of an elementary particle (there are no stresses within ho-
mogeneous physical continuum).2 This means that more than one of the material
points can have the same position, i.e. the continuous medium can be a collection
of continuous media. Taking into account the quantum superposition principle, it
is logical to assume that these continuous media are formed, ultimately, by ma-
terial fields. The fact of the interaction of remote in space particles in entangled
states gives each of these fields its own physical reality, i.e., they exist even in
those spatial regions where the wave function is zero.

Suppose that a quantum particle (hereinafter referred to as a quantum ob-
ject or simply an object) is a homogeneous, inseparable object within quantum
mechanics. This gives rise to the following specific features of the dynamics:

– the inertia property of each material point is determined by the total mass of
the object, and not by the mass density, as in classical continuum mechanics

1We suppose that a quantum particle obeys the laws of conventional quantum mechanics.
Immediately after measuring position it is described by the wave function in the form of a
position delta-function, but it is not a point-like particle.

2This does not mean that there is no interaction between the material points at all. In the
paper [6], the normalizing procedure required to describe the non-unitary process is considered
as a mathematical image of a real physical process. Such a process is impossible without a
peculiar interaction between material points.
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(the third property);
– any change in the measure of one of the material points subset in a local

volume of space, instantly changes the measures of all the rest of other
subsets in the whole space, which physically means that any local external
effect on the quantum object result in the simultaneous transformation of
the state of the entire continuous medium everywhere (this property have
been considered in detail in [6]).

To introduce the spatial distribution of the physical continuum, define the
measure 𝑑𝑀 of the material point set occupying an infinitesimal volume 𝑑𝑉 as

𝑑𝑀 =
𝑑𝑄

𝑄
,

where 𝑄 is any additive conservative quantity such as electric charge, gravitational
mass of the quantum object etc; 𝑑𝑄 is the value of this quantity for a substance
in the volume 𝑑𝑉 . Therefore, for the density of the measure, we have

𝜌(𝑥, 𝑦, 𝑧) =
𝑑𝑀

𝑑𝑉
,

and for normalization condition∫︁ ∞

−∞

∫︁ ∞

−∞

∫︁ ∞

−∞
𝜌(𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧 = 1. (1)

Taking into account the forth property of the physical continuum, the formal
normalisation procedure (1) should be considered as a mathematical image of the
real transformation of a continuous medium that accompanies any non-unitary
processes in conventional quantum mechanics, such as the wave function collapse
in the measurement process. In accordance with the definition the measure 𝑀 is
an additive quantity having a positive real value.

Suppose, in accordance with the second property, that the continuous medium
of any quantum object is formed by a set of the matter fields. Denote by 𝜉1 = 𝑥(0),
𝜉2 = 𝑦(0), 𝜉3 = 𝑧(0) are the referential coordinates of the material particle (here-
inafter, the notation 𝜉𝑗 will be used as material coordinates (in this case index
𝑗 corresponds to the coordinate axes) whereas coordinate variables of the fields
at time 𝑡𝑗 will be denoted by 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 . In accordance with the second property,
material points can not uniquely be identified only by material coordinates (in
general, their initial velocities are necessary), however, in the case of matter fields,
material coordinates uniquely identify material points. We introduce the notion of
the complex density of a measure (or simply a complex density) as a characteristic
of a material point, such that

𝜇(𝜉1, 𝜉2, 𝜉3, �⃗�0, 𝑡) = 𝜌(𝜉1, 𝜉2, 𝜉3, �⃗�0, 𝑡) exp
𝑖

~
𝑆[𝑥(𝜉1, 𝜉2, 𝜉3, �⃗�0, 𝑡), 𝑡, 𝑡0],

where the action 𝑆[𝑥(𝜉1, 𝜉2, 𝜉3, �⃗�0, 𝑡), 𝑡, 𝑡0] is an attribute of the material point;
material points move along the path 𝑥(𝜉1, 𝜉2, 𝜉3, �⃗�0, 𝑡) corresponding to the prin-
ciple of least action; 𝑡0 is an initial time. For the one-dimensional motion, which
will only be considered, we have

𝜇(𝜉, 𝑣0, 𝑡) = 𝜌(𝜉, 𝑣0, 𝑡) exp
𝑖

~
𝑆[𝑥(𝜉, 𝑣0, 𝑡), 𝑡, 𝑡0].
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And for a closed system, we obtain

𝜇(𝜉, 𝐸, 𝑡) = 𝜌(𝜉, 𝐸, 𝑡) exp
𝑖

~
𝑆[𝑥(𝜉, 𝐸, 𝑡), 𝑡, 𝑡0]. (2)

where 𝐸 is the energy of the material point. If the material points of the matter
field have the same moving direction and the same energy, then the continu-
ity property conserves in time (see the next section for details). The function
𝜇𝐸,𝛼(𝜉, 𝑡) (the energy dependence and the motion direction are indicated by a
superscript3) for a matter field can be rewritten in form of the field

𝜇𝐸,𝛼(𝑥, 𝑡) =

∫︁ ∞

−∞
𝜇𝐸,𝛼(𝜉, 𝑡)𝛿(𝑥− 𝑥𝐸,𝛼(𝜉, 𝑡)

)︀
𝑑𝜉,

where 𝑥𝐸,𝛼(𝜉, 𝑡) is the path corresponding to the least action of the material
point 𝜉 having the energy 𝐸 and the motion direction 𝛼. Suppose that the complex
density determines the summation law of the measure densities of those particles,
that are in the same point in space in the form

𝜇(𝑥, 𝑡) =

∫︁ ∞

0

∑︁
𝛼

𝑔𝛼(𝐸)𝜇𝐸𝛼 (𝑥, 𝑡) 𝑑𝐸 (3)

𝜇(𝑥, 𝑡) is a complex density of the measure. The complex weight 𝑔𝛼(𝐸) of the
fields forming a continuous medium is determined by the history of the formation
of the continuum mechanical state. Thus, for the measure density, we obtain

𝜌(𝑥, 𝑡) =
⃒⃒
𝜇(𝑥, 𝑡)

⃒⃒
.

Since the measure (1) of objects conserves in the processes considering in quan-
tum mechanics, for the measure density the continuity equation can be written.
Dependence (2) allows us to write corresponding equation for the strength of a
physical continuum 𝜇.

2. The continuity equation
First of all, it is necessary to determine the conditions under which a continu-

ous medium remains continuous in time. In accordance with the second property
of the physical continuum, this means that the mater fields that formed it at some
initial time remain fields in the subsequent time. Suppose 𝐹 (𝑥) is a stationary
external force field. By 𝜉1 = 𝑥1(𝑡0) and 𝜉2 = 𝑥2(𝑡0) (𝑥2(𝑡0) > 𝑥1(𝑡0)) denote the
material coordinates (Lagrange variables) of two specified material points of the
continuous medium. At the time 𝑡 their positions is expressed as

𝑥(𝜉1, 𝑡) = 𝑥1(𝑡0) +

∫︁ 𝑡

𝑡0

𝑣(𝜉1, 𝜏)𝑑𝜏,

𝑥(𝜉2, 𝑡) = 𝑥2(𝑡0) +

∫︁ 𝑡

𝑡0

𝑣(𝜉2, 𝜏)𝑑𝜏.

3The direction index 𝛼 has only two values “+” for the motion along the axis and “−” for
the motion in the opposite direction. For brevity, it will be used only if necessary (in the cases
of finite motion, when there are two continua moving in opposite directions).
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where 𝜏 is a time variable; 𝑡 denotes fixed points in time, such as the initial time
𝑡0 and the current time 𝑡; 𝑣(𝜉1, 𝜏), 𝑣(𝜉2, 𝜏) are respectively the velocities of the
first and the second material points. Then the distance between the considered
points at an arbitrary time is determined by the expression

Δ𝑥 = Δ𝑥0 +

∫︁ 𝑡

𝑡0

(︀
𝑣(𝜉2, 𝜏)− 𝑣(𝜉1, 𝜏)

)︀
𝑑𝜏 =

= Δ𝑥0 +

∫︁ 𝑡

𝑡0

(︂
𝑣(𝜉2, 𝑡0)− 𝑣(𝜉1, 𝑡0) +

1

𝑚

∫︁ 𝜏

𝑡0

(︀
𝐹 (𝜉2, 𝜃)− 𝐹 (𝜉1, 𝜃)

)︀
𝑑𝜃

)︂
𝑑𝜏,

where Δ𝑥0 = 𝑥2(𝑡0)−𝑥1(𝑡0); 𝜃 is a time variable; 𝐹 (𝜉1, 𝜃), 𝐹 (𝜉2, 𝜃) are the forces
acting on the points.4 In order for the one-to-one correspondence between the
material points 𝜉 and positions 𝑥 to take place all the time, it is necessary that

lim
Δ𝑥0→0

Δ𝑥 = 0. (4)

Suppose, that the spatial interval Δ𝑥0 is small. By 𝜀 denote the time interval
Δ𝑥0/𝑣(𝜉1, 𝑡0); by 𝜂 denote the spatial variable. Then

1

𝑚

∫︁ 𝜏

𝑡0

𝐹 (𝜉1, 𝜃)𝑑𝜏 ≈ 1

𝑚

(︂∫︁ 𝜏

𝑡0+𝜀
𝐹 (𝜉1, 𝜃)𝑑𝜃 + 𝜀𝐹 (𝜉1, 𝑡0)

)︂
=

=
1

𝑚

(︂∫︁ 𝑥(𝜉1,𝜏)

𝑥(𝜉2,𝑡0)

𝐹 (𝜂)

𝑣(𝜉1, 𝜂)
𝑑𝜂 +

Δ𝑥0
𝑣(𝜉1, 𝑡0)

𝐹
(︀
𝑥(𝜉1, 𝑡0)

)︀)︂
and

1

𝑚

∫︁ 𝜏

𝑡0

𝐹 (𝜉2, 𝜃)𝑑𝜏 ≈ 1

𝑚

(︂∫︁ 𝜏−𝜀

𝑡0

𝐹 (𝜉2, 𝜃)𝑑𝜃 + 𝜀𝐹 (𝜉2, 𝜏)

)︂
=

=
1

𝑚

(︂∫︁ 𝑥(𝜉1,𝜏)

𝑥(𝜉2,𝑡0)

𝐹 (𝜂)

𝑣(𝜉2, 𝜂)
𝑑𝜂 +

Δ𝑥0
𝑣(𝜉1, 𝑡0)

𝐹
(︀
𝑥(𝜉2, 𝜏)

)︀)︂
.

Thus, for Δ𝑥 we obtain

Δ𝑥 =
(︁
1 +

1

𝑚𝑣(𝜉1, 𝑡0)

(︁
𝐹 (𝑥)𝑥=𝑥(𝜉2,𝑡)𝜀− 𝐹 (𝑥)𝑥=𝜉1(𝑡− 𝑡0)

)︁)︁
Δ𝑥0+

+

𝑡∫︁
𝑡0

(︂
𝑣(𝜉2, 𝑡0)− 𝑣(𝜉1, 𝑡0) +

1

𝑚

∫︁ 𝑥(𝜉1,𝜏)

𝑥(𝜉2,𝑡0)

(︁ 𝐹 (𝜂)

𝑣(𝜉2, 𝜂)
− 𝐹 (𝜂)

𝑣(𝜉1, 𝜂)

)︁
𝑑𝜂

)︂
𝑑𝜏,

To satisfy condition (4) it is necessary that

lim
Δ𝑥0→0

(︀
(𝑣2(𝑡0)− 𝑣1(𝑡0)

)︀
= 0

4These are concentrated forces which act on a matter point as a whole quantum object. This
does not result in infinite acceleration, since, as supposed above, the inertia of each material
point is characterized by the mass of the entire object.
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(velocity field continuity), and

𝑣(𝜉1, 𝜂) ≡ 𝑣(𝜉2, 𝜂)

(velocity field stationarity). For the last identity to be satisfied with the conditions
under consideration, it is necessary and sufficient to have

𝑣(𝜉2, 𝜏) = 𝑣(𝜉1, 𝜏 + 𝜀) = 𝑣(𝜉1, 𝜏) +
𝐹

𝑚

Δ𝑥(𝜏)

𝑣(𝜉1, 𝜏)
.

As Δ𝑥→ 0, the last expression takes the form(︁
𝑚𝑣

𝜕𝑣

𝜕𝑥
+
𝜕𝑈(𝑥)

𝜕𝑥

)︁
𝑑𝑥 =

𝜕𝐸

𝜕𝑥
𝑑𝑥 = 0,

where 𝐸 is the total mechanical energy of the material point. This means that
the material points of the matter field involved in the formation of the physical
continuum have the same energy.

Consider the one-dimensional motion of the matter field described above. The
infinitesimal individual body having the volume 𝑑𝜉 at time 𝑡 = 0 and identified
by the material coordinate 𝜉 = 𝑥(0) generates the density measure field at time 𝑡
in the form

𝜌𝐸(𝑥, 𝑡) =

∫︁ ∞

−∞
𝛿
(︀
𝑥− 𝑥(𝜉𝐸 , 𝑡)

)︀
𝑑𝑚, (5)

where 𝑑𝑚 = 𝜌𝐸(𝜉)𝑑𝜉 is the measure of the matter particles set occupying the
volume 𝑑𝜉 at point in time 𝑡0; 𝛿(𝑥 − 𝑥𝐸(𝜉, 𝑡)

)︀
is the Dirac’s 𝛿-function; 𝑥𝐸(𝜉, 𝑡)

is the the least action path of a material particle having the energy 𝐸. This
expression can be considered as a continuous equation, since together with the
condition (4) it guarantees the conservation of the measure in the form

𝜌𝐸(𝜉, 𝑡) 𝑑𝑥(𝜉, 𝑡) = 𝜌𝐸(𝜉, 𝑡0) 𝑑𝜉 = 𝜌𝐸(𝜉, 𝑡0) 𝑑𝑥(𝜉, 𝑡0),

where 𝑑𝑥(𝜉, 𝑡) denote the volume occupying a particular set of the material par-
ticles at point of time 𝑡. In accordance with (2) the complex density 𝜇𝐸(𝜉, 𝑡)
expressed in terms of the density measure as follows

𝜇𝐸(𝜉, 𝑡) = 𝜌𝐸(𝜉, 𝑡) exp
𝑖

~
𝑆[𝑥𝐸(𝜉, 𝑡, 𝑡𝑝)].

The actions in the last expression depend on arbitrary point in time in the past 𝑡𝑝,
which cancel in the continuity equation in the form (5). Then for the continuity
equation in term of the complex density 𝜇(𝑥, 𝑡), we get

𝜇𝐸(𝑥, 𝑡)=

∫︁ ∞

−∞
𝜇𝐸(𝑥0, 𝑡0) exp

𝑖

~

(︁
𝑆𝐸(𝑥, 𝑡, 𝑡𝑝)−𝑆𝐸(𝑥, 𝑡0, 𝑡

𝑝)
)︁
𝛿
(︀
𝑥−𝑥𝐸(𝑥0, 𝑡)

)︀
𝑑𝑥0 =

=

∫︁ ∞

−∞
𝜇𝐸(𝑥0, 𝑡0) exp

𝑖

~
𝑆𝐸(𝑥, 𝑡, 𝑡0)𝛿

(︀
𝑥− 𝑥𝐸(𝑥0, 𝑡)

)︀
𝑑𝑥0,

12
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where 𝑥0 = 𝑥𝐸(𝜉, 𝑡0) = 𝜉 and for the complex density of an arbitrary physical
continuum, as a set of the matter fields, we obtain

𝜇(𝑥, 𝑡)=
∑︁
𝛼

∫︁ ∞

0
𝑔𝛼(𝐸)

(︂∫︁ ∞

−∞
𝜇𝐸(𝑥0, 𝑡0) exp

𝑖

~
𝑆𝐸(𝑥, 𝑡, 𝑡0)𝛿

(︀
𝑥−𝑥𝐸(𝑥0, 𝑡)

)︀
𝑑𝑥0

)︂
𝑑𝐸

(6)
If ambient conditions do not change with time, then the velocity fields cor-

responding to the matter fields forming a homogeneous (non-compound in terms
of [7]) object are stationary. Therefore the field of Lagrangian is stationary too,
and the field of the action 𝑆𝐸(𝑥, 𝑡) has the form

𝑆𝐸(𝑥, 𝑡) = 𝐿𝐸(𝑥)𝑡+ 𝑆𝐸(𝑥, 𝑡0).

Then for the continuity equation for the field of the complex density 𝜇𝐸𝑡 (𝑥), we
obtain

𝜇𝐸(𝑥, 𝑡) =

∫︁ ∞

−∞
exp
(︁ 𝑖
~
𝐿𝐸(𝑥)(𝑡− 𝑡0)

)︁
𝛿
(︀
𝑥− 𝑥𝐸(𝑥0, 𝑡)

)︀
𝜇𝐸(𝑥0, 𝑡0) 𝑑𝑥0

and

𝜇(𝑥, 𝑡)=

∫︁ ∞

0
𝑔𝛼(𝐸)

(︂∫︁ ∞

−∞
exp
(︁ 𝑖
~
𝐿𝐸(𝑥)(𝑡− 𝑡0)

)︁
𝛿
(︀
𝑥−𝑥𝐸(𝑥0, 𝑡)

)︀
𝜇𝐸(𝑥0, 𝑡0) 𝑑𝑥0

)︂
𝑑𝐸,

(7)
The equation (7) describes the evolution of the complex density 𝜇(𝑥, 𝑡) of a

homogeneous object under stationary ambient conditions.

3. The wave function
The complex density 𝜇 was introduced regardless of the measurement process,

and the classical quantities characterizing material points (and, therefore, deter-
mining the function 𝜇) are not observables. The wave function is determined by
observables generated during the special measurement process. On other hands,
both the complex density and the wave function, in accordance with the assump-
tion made, describe the same spatial distribution of the physical continuum. This
means that the complex density is a more general quantity and it should display
itself as a wave function in the measurement process.

According to the paper [6] the measurement process consists of two stages.
On the first of them, the quantum object interacts with the active elements of
the apparatus. As the result of this interaction, the energy of the active element
increases up to a threshold value. Then a macroscopic registering process is initi-
ated, and spatial distribution of the continuous medium instantly changes, what
is formally expressed in the collapse of the wave function. Since the wave function
of the of the system reveal itself at the first stage, we consider this stage only.

Let the system consisting of the object and one of the active element be closed
(such a consideration is possible if the interaction energies of the active elements
each others anothers are negligible compared with their interaction energies with
the object). Then the interaction of the object with the active element must obey
the equation (6). This equation will be used to determine the dependence of the
energy transfer rate from the object to the active particle on the complex density.
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Let 𝑥 be the position of the object. In general the active element consist of
a set of elementary particles. Since, the size of an element is assume to be small
compared to the spatial size Δ𝑥 ∼ 𝜌 𝜕𝑥/𝜕𝜌, the active element can be considered
as a quantum particle, whose position we denote by 𝑋5. In the considered case,
the active element is a composite continuous medium described by the function
𝜇(𝑋), which differs from zero inside a much smaller spatial volume than the
function 𝜇(𝑥).

Let the active element be a harmonic oscillator. By 𝑈(𝑋) denote correspond-
ing potential energy. By 𝑈 𝑖𝑛𝑡(𝑥,𝑋) ≈ 𝑈 𝑖𝑛𝑡(𝑥,𝑋) (here 𝑋 a mean value of the
active element position) denote the interaction energy of the object with the ac-
tive element. We cannot use the equation (7) because of time dependence of the
interaction energy 𝑈 𝑖𝑛𝑡(𝑥−𝑋), which depends on the position of the moving ma-
terial points of the object. We have a non-homogeneous system. The equation (6)
is usable in this case. It takes the form

𝜇(𝑥,𝑋, 𝑡) =

∫︁
𝐺(𝐸𝑎)

(︂∫︁
exp

𝑖

~
𝑆𝐸𝑎

(𝑋, 𝑡, 𝑡0)𝐼[𝑋,𝜇(𝑥, 𝜏), 𝑡]𝜇
𝐸𝑎

𝑡0 (𝑋, 𝑡0)×

× 𝛿
(︀
𝑋 −𝑋𝐸𝑎

(𝑋0, 𝜏)
)︀
𝑑𝑋0

)︂
𝑑𝐸𝑎, (8)

where 𝐸𝑎 is the energy of the active element matter field; 𝐺(𝐸𝑎) is the com-
plex weight of the fields forming the continuous medium of the active element;
𝑋𝐸𝑎

(𝑋0, 𝜏) is the least action path of the active element material point having
the energy 𝐸𝑎; 𝑆𝐸𝑜

(𝑋, 𝑡) = 𝑆𝐸𝑜
[𝑋𝐸𝑎

(𝑋0, 𝜏), 𝑋, 𝑡] is the action on the paths of
the active element, excluding the action part corresponding to interaction with
the object. The functional

𝐼[𝑋,𝜇(𝑥, 𝜏), 𝑡] =

∫︁ ∞

0
𝑔(𝐸𝑜)

(︂∫︁ ∞

−∞
exp

(︂
𝑖

~

∫︁ 𝑡

𝑡0

(︀
𝐿𝐸𝑜

(𝑥)− 𝑈 𝑖𝑛𝑡(𝑥−𝑋)
)︀
𝑑𝜏

)︂
×

× 𝛿
(︀
𝑥− 𝑥𝐸

𝑜
(𝑥0, 𝜏)

)︀
𝜇𝐸

𝑜
(𝑥0, 𝑡0) 𝑑𝑥0

)︂
𝑑𝐸𝑜 (9)

describes the effect of the object on the active element; 𝐸𝑜 is the total mechanical
energy of the object material point; 𝐿𝐸𝑜

(𝑥) is the spatial field of the object’s
Lagrangian; 𝑔(𝐸𝑜) is the complex weights of the matter fields of the object.

By 𝜀 = (𝑡− 𝑡0)/𝑁 denote an infinitesimal time interval (𝑁 is an infinitely
large integer); by 𝑡𝑘 = 𝑡0 + 𝑘𝜀 denote the digital time variable. By 𝑅 denote
interaction radius of the object with the active element and suppose that the
interaction energy 𝑈 𝑖𝑛𝑡 differs from zero only for the range of positions of the
object from 𝑋 − 𝑅 to 𝑋 + 𝑅. If the time integral on the right hand side of (9)
is represented as an integral sum, then for the matter field having energy 𝐸𝑜 we
obtain

𝐼[𝑋,𝜇𝐸
𝑜
(𝑥, 𝜏), 𝑡] =

∫︁ ∞

−∞
· · ·
∫︁ ∞

−∞
𝜇𝐸

𝑜
(𝑥0, 𝑡0)×

5The condition limiting the size of the interaction field with the active element, expressed
through a change in the density 𝜌 is a considerably less strict than the similar condition expressed
through a change in the complex density of 𝜇. The last condition, practically, cannot be realised.
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×
𝑁∏︁
𝑗=0

exp
(︁ 𝑖
~
𝐿𝑗(𝑥𝑗)𝜀

)︁
exp
(︁
− 𝑖

~
𝑈 𝑖𝑛𝑡
𝑗 (𝑥𝑗)𝜀

)︁
𝛿(𝑥𝑗+1 − 𝑥𝑗) 𝑑𝑥𝑗 ,

Expand the exponents containing the interaction energy in a Taylor series. Holding
the first-order term, we get

𝐼[𝑋,𝜇𝐸
𝑜
(𝑥, 𝜏), 𝑡] =

∫︁ ∞

−∞
· · ·
∫︁ ∞

−∞
𝜇𝐸

𝑜

0 (𝑥0)×

×
𝑁∏︁
𝑗=0

T𝑗(𝑥𝑗)
(︁
1− 𝑖

~
𝑈 𝑖𝑛𝑡
𝑗 (𝑥𝑗)𝜀

)︁
𝛿(𝑥𝑗+1 − 𝑥𝑗) 𝑑𝑥𝑗 ,

where 𝜇𝐸𝑜

0 (𝑥0) ≡ 𝜇𝐸
𝑜
(𝑥0, 𝑡0); T𝑗(𝑥𝑗) = exp

𝑖

~
𝐿𝑗(𝑥𝑗)𝜀.

Taking into account that

𝜇𝑗(𝑥𝑗) ≈
𝑗∏︁

𝑘=0

T𝑘(𝑥𝑘)𝜇
𝐸𝑜

0 (𝑥0),

the last equation takes the form

𝐼[𝑋,𝜇𝐸
𝑜

𝑗 (𝑥), 𝑁 ] =

=

∫︁ ∞

−∞
· · ·
∫︁ ∞

−∞

𝑁∏︁
𝑗=0

𝜇𝐸
𝑜

𝑗 (𝑥𝑗)
(︁
1− 𝑖

~
𝑈 𝑖𝑛𝑡
𝑗 (𝑥𝑗)𝜀

)︁
𝛿(𝑥𝑗+1 − 𝑥𝑗) 𝑑𝑥𝑗 ≈

≈ 𝜇𝐸𝑜
𝑁 (𝑥𝑁 ) exp

(︂
− 𝑖

~

𝑁∑︁
𝑗=0

∫︁ 𝑋+𝑅

𝑋−𝑅
𝜇𝐸𝑜
𝑗 𝑈 𝑖𝑛𝑡(𝑋 − 𝑥𝑗) 𝑑𝑥𝑗

)︂
.

Integrating over all energies 𝐸𝑜 for 𝜀→ 0, we obtain

𝐼[𝑋,𝜇(𝑥, 𝜏), 𝑡] = 𝜇𝑜(𝑥, 𝑡) exp

(︂
− 𝑖

~

∫︁ 𝑡

𝑡0

(︂∫︁ 𝑋−𝑅

𝑋−𝑅
𝜇𝑜(𝑥, 𝜏)𝑈 𝑖𝑛𝑡(𝑋 − 𝑥) 𝑑𝑥

)︂
𝑑𝜏

)︂
.

Thus, according to (8), the complex density of the continuum of the active particle
varies with time as

𝜇𝑎(𝑋, 𝑡) =

∫︁ ∞

0
𝐺(𝐸𝑎)

(︂∫︁ ∞

−∞
exp

𝑖

~

[︂∫︁ 𝑡

𝑡0

(︂
𝑇 (�̇�)− 𝑈(𝑋)−

−
∫︁ 𝑋−𝑅

𝑋−𝑅
𝜇𝑜(𝑥, 𝜏)𝑈 𝑖𝑛𝑡(𝑥−𝑋) 𝑑𝑥

)︂
𝑑𝑡

]︂
×

× 𝜇𝐸
𝑎
(𝑋0, 𝑡0)𝛿

(︀
𝑋 −𝑋0

)︀
𝑑𝑋0

)︂
𝑑𝐸𝑎.

From the classical point of view, the last term of the action in this equation is
generated by the the work of the force with which the object acts on the active
particle, having the position 𝑋. For this force we have
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𝐹 (𝑋, 𝜏) =
𝜕

𝜕𝜁

∫︁ 𝑅

−𝑅
𝜇𝑜(𝑋 + 𝜁, 𝜏)𝑈 𝑖𝑛𝑡(𝜁)𝑑𝜁 =

=
(︁
𝜇𝑜(𝑋 +𝑅, 𝜏)− 𝜇𝑜(𝑋 −𝑅), 𝜏)

)︁
𝑈(𝑅) ≈

≈ 𝜌𝑜(𝑋)
(︁
exp

𝑖

~
𝑆𝑜(𝑋 +𝑅)− exp

𝑖

~
𝑆𝑜(𝑋 −𝑅)

)︁
𝑈(𝑅) ≈

≈ 𝜌𝑜(𝑋) exp
𝑖

~

(︁
𝑝𝑜
(︀
𝑋
)︀
𝑋 − 𝐸𝑜𝜏

)︁(︂
exp

𝑖

~
𝑝𝑜
(︀
𝑋
)︀
𝑅− exp

(︁
− 𝑖

~
𝑝𝑜
(︀
𝑋
)︀
𝑅
)︁)︂

𝑈(𝑅) =

= 2𝑖𝑈(𝑅) sin
(︁ 2𝜋𝑅

𝜆(𝑋)

)︁
𝜇(𝑋, 𝜏), (10)

where 𝜁 = 𝑥−𝑋 ; 𝜌𝑜, 𝑆𝑜, 𝑝𝑜, 𝐸𝑜 are respectively the density, action, momentum
and energy of the object (it is supposed, that the momentum 𝑝 does not depend
on the position in the interaction region); 𝜆(𝑋) = ℎ/𝑝(𝑋).

Let the active particle is a harmonic oscillator having the cyclic eigenfrequency
𝜔0. Material points of the oscillator move in accordance with the dynamic equation
in the form

�̈� + 𝜔2
0𝑋 =

1

𝑚
𝐹 (𝑋, 𝜏).

In accordance with (10) the forces 𝐹 (𝑋, 𝜏) are the same for all matter points of
the active particle continuum and does not depend on the coordinate 𝑋. Then the
energy received by a harmonic oscillator under the action of an external variable
force is determined by the expression [8]

𝐸(𝜔0) =
1

2𝑚

⃒⃒⃒⃒
⃒
∫︁ ∞

−∞
𝐹 (𝜏) exp 𝑖𝜔0𝜏 𝑑𝜏

⃒⃒⃒⃒
⃒
2

.

Taking into account (10), we get

𝐸(𝜔0) =
1

2𝑚

⃒⃒⃒⃒
⃒2𝑖𝑈(𝑅) sin

(︁ 2𝜋𝑅

𝜆(𝑋)

)︁⃒⃒⃒⃒⃒
2 ⃒⃒⃒⃒
⃒
∫︁ ∞

−∞
𝜇(𝑋, 𝜏) exp 𝑖𝜔0𝜏 𝑑𝜏

⃒⃒⃒⃒
⃒
2

.

Since the duration of the measurement process is less than the time 𝑇 , when the
complex density field is nonzero at the observation point, the energy E should
be limited not by the time of the force (as in [8]), but by the interaction time
Δ𝑡 = 𝑡− 𝑡0. Then the the last expression must be rewritten in the form

𝐸(𝑡, 𝑡0, 𝜔0) = 𝛽

⃒⃒⃒⃒
⃒
∫︁ ∞

−∞
ℎ(𝑡− 𝜏)ℎ(𝜏 − 𝑡0)𝜇(𝑋, 𝜏) exp 𝑖𝜔0𝜏 𝑑𝜏

⃒⃒⃒⃒
⃒
2

,

where ℎ(𝑡 − 𝜏), ℎ(𝜏 − 𝑡0) are Heaviside functions; 𝑡0, 𝑡 are the moments of the
beginning and end of the interaction; 𝛽 is a constant characterizing the sensitivity
of the active particle. The time interval Δ𝑡 must be large enough so that∫︁ ∞

−∞
ℎ(𝑡− 𝜏)ℎ(𝜏 − 𝑡0)𝜇(𝑋, 𝜏) exp 𝑖𝜔0𝜏 𝑑𝜏 ≈ lim

𝑇→∞

Δ𝑡

𝑇

∫︁ ∞

−∞
𝜇(𝑋, 𝜏) exp 𝑖𝜔0𝜏 𝑑𝜏,
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where 𝑇 is the time when the field of the function
⃒⃒
𝜇(𝑋, 𝜏)

⃒⃒
does not depends on

time. Then, for the rate of increase of an active particle energy, we have

Δ𝐸

Δ𝑡
=
𝛽

𝑇

⃒⃒⃒⃒
⃒
∫︁ ∞

−∞
𝜇(𝑋, 𝜏) exp

(︀
−𝑖𝜔0𝜏) 𝑑𝜏

⃒⃒⃒⃒
⃒
2

.

The completion stage of the measurement process is the macroscopic registering
process [6], which is initiated when the energy one of the active particles increases
up to a threshold value.The values of the initiation threshold for the different
active particles have a statistical straggling (as well as the sensitivity 𝛽). Macro-
scopic changes are initiated by only one active particle, for which the threshold
is exceeded before the others. By 𝐸𝑡ℎ

𝑛 denote the threshold energy value for the
the active element 𝑛. This is a random quantity. Then, the random time 𝑡𝑛 of the
“triggering” of the active particle 𝑛 is determined by the condition

𝛽𝑛
𝑇

⃒⃒⃒⃒
⃒
∫︁ ∞

−∞
𝜇(𝑋𝑛, 𝜏) exp

(︀
−𝑖𝜔0𝜏) 𝑑𝜏

⃒⃒⃒⃒
⃒
2

𝑡𝑛 = 𝐸𝑡ℎ
𝑛 .

Thus, the registration process is initiated in that active particle for which the
value of

1

𝑇

𝛽𝑛
𝐸𝑡ℎ

𝑛

⃒⃒⃒⃒
⃒
∫︁ ∞

−∞
𝜇(𝑋𝑛, 𝜏) exp

(︀
−𝑖𝜔0𝜏) 𝑑𝜏

⃒⃒⃒⃒
⃒
2

is maximum. The coefficient before the module in the last expression has a random
value from 0 to ∞ with the probability density function 𝑓( 𝛽𝑛

𝐸𝑡ℎ
𝑛
), which does not

depend on the positions of active particles. This coefficient converts the measure
into the registration probability 𝑃𝑛 by the particle 𝑛 having the eigenfrequency
𝜔0. This probability has the form

𝐶

⃒⃒⃒⃒
⃒
∫︁ ∞

−∞
𝜇(𝑋𝑛, 𝜏) exp

(︀
−𝑖𝜔0𝜏) 𝑑𝜏

⃒⃒⃒⃒
⃒
2

,

where 𝐶 is a normalization constant. Then, integrating over all 𝜔0, for the inter-
action radius 𝑅 → 0 and 𝑁 → ∞, the registration probability density 𝜌𝑝(𝑋)6

takes the form

𝜌𝑝(𝑋) ∼

⃒⃒⃒⃒
⃒
∫︁ ∞

0

(︂∫︁ ∞

−∞
𝜇(𝑋, 𝜏) exp 𝑖𝜔0𝜏 𝑑𝜏

)︂
𝑑𝜔0

⃒⃒⃒⃒
⃒
2

.

If to follow to the Born interpretation of the wave function, then we should suppose
that

𝜌𝑝(𝑋) =

⃒⃒⃒⃒
Ψ𝜏 (𝑋)

⃒⃒⃒⃒2
∼

⃒⃒⃒⃒
⃒
∫︁ ∞

0

(︂∫︁ ∞

−∞
𝜇(𝑋, 𝜏) exp 𝑖𝜔0𝜏 𝑑𝜏

)︂
𝑑𝜔0

⃒⃒⃒⃒
⃒
2

. (11)

6However, there is a remark: the limit 𝑅 → 0 is incorrect physically for 𝑅 ≪ 𝜆𝑋, because,
in this case, the force (9) becomes zero; thus, we suppose that the Born interpretation has the
corresponding spatial limit.
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This equality will be satisfied if the wave function is the superposition of the
harmonic components of the force (10). Supposing this and taking into account
that

Ψ𝜏 (𝑋) =

∫︁ ∞

0
𝜓𝜖(𝑋) exp

(︂
− 𝑖

~
𝜖𝜏

)︂
𝑑𝜖,

where 𝜖 is a observable energy(~𝜔0 = 𝜖), we obtain

𝜓𝜖(𝑋) =

∫︁ ∞

−∞
𝜇(𝑥, 𝜏) exp

𝑖

~
𝜖𝜏 𝑑𝜏. (12)

Using the expression for the complex density (3), we have

𝜓𝜖(𝑋) =

∫︁ ∞

0

(︂ ∞∫︁
0

∑︁
𝛼

𝑔𝛼(𝐸)𝜇𝐸𝛼 (𝑥, 𝜏) 𝑑𝐸

)︂
exp

𝑖

~
𝜖𝜏 𝑑𝜏.

For infinite one-dimensional motion, the parameter 𝛼 has a unique value. In
this case, the spectral density of the complex measure 𝜇𝐸(𝑥, 𝜏) is a travelling
wave, that is, 𝐸 = 𝜖, and it is not quantized. In a finite one-dimensional motion,
two waves travelling in opposite directions form a stationary wave only for the
discrete energy values 𝐸𝑛. In this case, the superposition of travelling waves 𝜇𝐸
with energies close to 𝐸𝑛 also contributes to the stationary wave function 𝜓𝜖(𝑋),
so that 𝜓𝐸𝑛 ̸= 𝜇𝐸𝑛 .

The proposed representation of the wave function (11) is based on the equal-
ity (12) and is not unique. To confirm this representation, we derive the quantum
evolution law from the equation (6).

4. The wave equation
The continuity equation for the complex density according to eqrefeq:math:ex8

has the form

𝜇𝑡(𝑥) =

∫︁ ∞

0

(︃∫︁ ∞

−∞
𝐾𝐸

𝑡,𝑡0(𝑥, 𝑥0)𝜇
𝐸
𝑡0(𝑥0) 𝑑𝑥0

)︃
𝑑𝐸,

where for the kernel of the integral operator 𝐾𝐸
𝑡,𝑡0(𝑥, 𝑥0), we have

𝐾𝐸
𝑡,𝑡0(𝑥, 𝑥0) = exp

𝑖

~
𝑆𝐸
𝑡,𝑡0(𝑥, 𝑥0)𝛿

(︀
𝑥− 𝑥(𝜉𝐸 , 𝑡)

)︀
.

The wave function is expressed in terms of the complex density 𝜇𝜏 (𝑥) as follows

Ψ𝑡(𝑋) =

∫︁ ∞

0

(︃∫︁ ∞

−∞
𝜇𝑡(𝑥) exp

𝑖

~
𝜖𝑡 𝑑𝑡

)︃
exp
(︁
− 𝑖

~
𝜖𝑡
)︁
𝑑𝜖 =

=

∫︁ ∞

0

(︃∫︁ ∞

−∞

(︂∫︁ ∞

0

(︁∫︁ ∞

−∞
𝐾𝐸

𝑡,𝑡0(𝑥, 𝑥0)𝜇
𝐸
𝑡0(𝑥0) 𝑑𝑥0

)︁
𝑑𝐸

)︂
exp

𝑖

~
𝜖𝑡 𝑑𝑡

)︃
exp
(︁
− 𝑖

~
𝜖𝑡
)︁
𝑑𝜖.

For fixed final time, initial and final positions, 𝑡0 is different for material fields
corresponding to different energies and motion directions. Then, changing the
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order of integration with respect to the position 𝑥0 and the energy 𝐸 in the last
expression, we obtain the convolution function

(︀
𝐾 * 𝜇

)︀
(𝑡). Using the convolution

theorem, we finally obtain

Ψ𝑡(𝑥) =

∫︁ ∞

−∞
𝐾𝑡,𝑡0(𝑥, 𝑥0)Ψ𝑡0(𝑥0) 𝑑𝑥0,

where
𝐾𝑡,𝑡0(𝑥, 𝑥0) =

∫︁ ∞

0
exp

𝑖

~
𝑆𝐸
𝑡,𝑡0(𝑥)𝛿

(︀
𝑥− 𝑥(𝜉𝐸 , 𝑡)

)︀
𝑑𝐸.

In accordance with [5] this expression is equivalent to the path integral [9]

𝐾𝑡,𝑡0(𝑥, 𝑥0) =

∫︁
exp

(︁ 𝑖
~
𝑆[𝑥0(𝜏)]

)︁
[𝑑𝑥0(𝜏)].

Thus we obtained the integral wave equation with the kernel in the form of a
path integral. For infinitesimal time intervals this equation takes the form of
Schrödinger equation [10,11]. Schrödinger steady-state equation is the direct con-
sequence of the fact that the stationary wave function is factorized. This formal
mathematical reason for quantization has a physical basis in the observability (in
the sense of the possibility of macroscopic registration) of the physical continuum.

Conclusion
The approach to the description of the phenomena of the microcosm consid-

ered here is fundamentally different from the approach of conventional quantum
mechanics. First of all is that the quantum mechanics assertion “. . . all occurrences
of an atomic and molecular order of magnitude, obey the “discontinuous” laws of
quanta” [7] is correct only for directly observable processes. Directly observable
processes are those that can be detected at any stage by a macroscopic apparatus.
As have been shone, this requirement implies a harmonic time dependence of the
complex density at the detector location. In the case of finite motion, this, in
turn, means that only such mechanical motion can be detected that generates a
standing wave of complex density, which result in the quantization of energy. I.e.
a superposition of only a stationary states is detectable. But it is not means that
other mechanical states do not exist. Thus, there is no reason to consider quantum
as a fundamental object and the principle of continuity “natura non facit saltus”
is correct for microscopic phenomena.

If complex density waves is generated by the mechanical motion of physical
continua definitely, then the set of the matter fields corresponding to the different
energies of this motion has the cardinality of continuum. Like energy quantization,
countability of the wave functions set is the result of the observability requirement.

Since the waves of complex density are generated by the movement of material
fields, the latter can exist even if the superposition of these waves (the complex
density 𝜇 of the continuous medium) is equal to zero and the concept of physical
vacuum acquires a concrete mathematical image. In turn, the Fourier components
of complex density 𝜇𝐸 becomes a mathematical image corresponding to the ma-
terial waves in a physical vacuum. In accordance with [6] such a possibility is
indirectly confirmed by the interaction of particles in entangled states.

Thus all main quantum mechanics phenomena can be described using the
simple mechanical model based on the motion of a peculiar continuous medium.
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Moreover, such a representation avoids the problems associated with causality
principle, non-epistemic nature of quantum probability, contradiction with the
special relativity and so on. This approach is based on the local reality principle.

However, the theory under consideration is not reduced to quantum mechan-
ics representation. It can describe phenomena, that cannot be described by the
methods of conventional quantum mechanics . These are, first of all, phenomena
connected with the processes are “masked” by uncertainty principle. Really, sub-
ject to the description of micro-phenomena by the proposed method of mechanical
motion of material fields, we proceed to a deterministic mechanical description
and thereby avoid the quantum principle of uncertainty.

Another type of problem that can be solved by the theory under considera-
tion is a description on the fundamental level of the dynamics of open quantum
systems [6].
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Механическое движение специфической сплошной среды
как физическая основа квантовой эволюции

А. Ю. Самарин
Самарский государственный технический университет,
Россия, 443100, Самара, ул. Молодогвардейская, 244.

Аннотация

Квантовая частица рассматривается как сплошная среда, обладаю-
щая рядом специфических свойств. Эти свойства сформулированы так,
чтобы основные постулаты традиционной квантовой механики были пря-
мым следствием механического движения такой сплошной среды. Пред-
ставлено детерминистическое описание процесса взаимодействия кван-
товой частицы с измерительным прибором при измерении координа-
ты. Показана природа возникновения случайности в процессе измере-
ния и выведено правило Борна для пространственной плотности веро-
ятности. Волновая функция интерпретируется как специфическая объ-
емная сила, с которой сплошная среда квантового объекта воздействует
на измеритель, а квантовое волновое уравнение выводится из уравнения
непрерывности для этой среды. Предложенный подход к представлению
микроявлений позволяет исключить ограничения, связанные с принци-
пом неопределённости, и описывать динамику процессов недоступных
для рассмотрения методами квантовой механики.

Ключевые слова: детерминистическое описание квантовых явлений,
сплошная среда, принцип локального реализма, материальное поле, урав-
нение непрерывности, реалистическое представление волновой функ-
ции, правило Борна, принцип неопределенности.
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