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Abstract
Nonstationary plane flows of a viscous incompressible fluid in a poten-

tial field of external forces are considered. An elliptic partial differential
equation is obtained, with each solution being a vortex flow stream function
described by an exact solution to the Navier–Stokes equations. The obtained
solutions generalize the Beltrami–Trkal and Ballabh flows. Examples of such
new solutions are given. They are intended to verify numerical algorithms
and computer programs.
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Introduction
Starting from the studies by Gromeka and Lamb [1, 2] proposing a new method

of writing the Euler equations, a method for integrating the fluid motion equa-
tions began to be developed. The essence of this method is the rearrangement
of the initial equations to the form convenient for integration. As applied to
the Navier–Stokes equations, this line of research is discussed in studies where
new forms of writing the equations make it possible to obtain previously un-
known invariants and hidden symmetries of the constitutive equations [3–10]. One
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of the methods for representing the motion equation (the Aristov–Pukhnachev
method [6, 8, 9]) has been introduced to computational fluid dynamics [8, 9]. The
numerical solutions of the Navier–Stokes axisymmetric equations were tested by
conventional procedures [8, 9], which took no account of the invariant Helmholtz
theorems and their extensions [10].

Few nontrivial exact solutions to the Navier–Stokes equations have been known
so far [11–25]. The very notion of exact solution is unsettled and expanding [11]. It
seems obvious that the exact solutions to the Navier–Stokes equations, which offer
new problem statements in terms of different areas of mathematics, mechanics,
and physics [11–25], are of the greatest interest.

The main difficulty in the analytical and numerical integration of the fluid
motion equations lies in the absence of a clear relation of pressure to the velocity
vector components. The evolutionary equation relating pressure to the velocity
components has yet to be known [26]. Let us now illustrate the ensuing difficul-
ties by plane flow. If an arbitrary function is given on a plane and viewed as a
stream function, the velocity components calculated via the partial derivatives of
this function will satisfy the continuity equation. We then can substitute these
components into the Navier–Stokes equation, thus arriving at an equation for de-
termining the gradient of pressure 𝑝. However, the rotor of this “gradient” may
prove to be nonzero, and it will be impossible to select 𝑝.

The above-mentioned difficulties hold true not only for nonstationary flows,
but also for stationary ones. Only two examples of formulas relating pressure to
velocities are an exception, namely the Bernoulli equation (for an ideal fluid)
and the Grad–Shafranov equation [26]. A method for integrating the stationary
Euler equations for a very wide class of flows was proposed in [26]. The proposed
integration method offered a constitutive equation relating pressure to velocity
components. Consequently, the hypothesis of the existence of a universal equation
establishing a relation between the hydrodynamic fields must not be rejected.

The attempt to relate velocity to pressure resulted in the development of
classes of exact solutions to the Navier–Stokes equations. In [11] there is a sum-
mary of known classes of exact solutions to equations of continuum mechanics,
which were obtained before the mid-1950s. The Couette [27], Poiseuille [28, 29],
Stokes [30], von Karman [31], Hiemenz [32] flows have proved to be so efficient
that they have been studied up to now [11, 33–35]. These flow motions have in
common that they fall within the class of solutions where velocities depend lin-
early on a part of coordinates [11]. Linearly increasing velocities described by a
complex profile depending, as a rule, on the transverse coordinate is successfully
used in various applications [11, 19, 25]. After publication of [11], a survey that
discussed and studied this class of solutions, the solubility of the overdetermined
nonlinear system of partial differential equations for laminar vertical vortex flows
was demonstrated [33–35]. Those studies discussed the extension of the Lin class
for magnetic fluid dynamics [12] to the case of convective [36–38] and thermal
diffusion [39, 40] flows of a viscous incompressible fluid. Potential flow motions,
the Beltrami–Trkal flows [41, 42] and their modifications remain significant in
theoretical and experimental fluid dynamics. Note that the Beltrami–Trkal flow
had been first studied eight years earlier by Gromeka [43].

Different requirements are imposed on exact solutions, depending on the pur-
pose of use. For example, when the correspondence between a real process and its
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mathematical model is verified, an exact solution with “real” boundary and ini-
tial conditions is required, i.e. with conditions observable in real circumstances or
with conditions technically implementable in a natural experiment. The require-
ment of “reality” of boundary and initial conditions can be cancelled if one deals
with the verification of a numerical algorithm, i.e. with testing its accuracy. In
doing so, one checks the difference of the numerical solution of a boundary value
problem from the exact one rather than the difference of the numerical solution
from the parameters of the real process, whereas it is not necessary for such prob-
lems to have the technical implementability of initial and boundary conditions
in a natural experiment. The majority of numerical algorithms work with any
initial and boundary conditions; therefore, the search for corresponding boundary
value problems with a known exact solution can start with a search for the flow
parameters satisfying the Navier–Stokes equations, without consideration of any
boundary and initial conditions. Then, having chosen a spatial region, we can
specify initial and boundary conditions in it and on its boundaries, which are
taken from the exact solution. The thus-obtained boundary value problem with a
known exact solution is well suited for the verification of numerical algorithms.

This paper proposes an elliptic partial differential equation, each solution of
which is the stream function of a vortex flow described by an exact solution of
the Navier–Stokes equations. Besides, a method for computing the pressure field
for each of such stream functions is proposed.

1. The basic notations and equations of motion
We will now consider the flow of a viscous incompressible fluid in a potential

field of mass forces. The notations are as follows (the wave sign above the symbol
denotes a dimensional quantity or a vector): ̃︀V – velocity, ̃︀Ω = rot̃︀V is vorticity,̃︀𝑝 is pressure, ̃︀𝜌 = const is density, ̃︀Π is the potential of mass forces, ̃︀𝜇 is the
coefficient of dynamic viscosity. The fluid motion is described by the Navier–Stokes
equations [1, 44] as

𝜕

𝜕𝑡
̃︀V +

(︀ ̃︀V · ∇
)︀ ̃︀V =

̃︀𝜇̃︀𝜌Δ̃︀V −∇
(︁ ̃︀𝑝̃︀𝜌 + ̃︀Π)︁

, (1)

div ̃︀V = 0. (2)

Since ̃︀𝜌 = const, it is the sum
(︀̃︀𝑝/̃︀𝜌 + ̃︀Π)︀

rather than the pressure ̃︀𝑝 and the
potential ̃︀Π taken separately that is of interest in the exact solution. This explains
the convenience of using the following dimensionless variables: 𝑥 = ̃︀𝑥/̃︀𝐿, 𝑦 = ̃︀𝑦/̃︀𝐿,
𝑡 = ̃︀𝑡̃︀𝑈/̃︀𝐿, V = ̃︀V/̃︀𝑈 , Ω = ̃︀Ω̃︀𝐿/̃︀𝑈 , Re = ̃︀𝜌̃︀𝑈 ̃︀𝐿/̃︀𝜇, 𝑝 =

(︀̃︀𝑝/̃︀𝜌 + ̃︀Π)︀/̃︀𝑈2, where ̃︀𝐿
and ̃︀𝑈 are the characteristic length and velocity values in the flow under study.

2. Plane flows
We denote the velocity components in a rectangular Cartesian coordinate

system 𝑂𝑥𝑦 by 𝑢, 𝑣, i.e. V = (𝑢, 𝑣). Then, equations (1), (2) are written as

𝑢
𝜕

𝜕𝑥
𝑢+ 𝑣

𝜕

𝜕𝑦
𝑢 = − 𝜕

𝜕𝑥
𝑝+

{︁ 1

Re
Δ𝑢− 𝜕

𝜕𝑡
𝑢
}︁
, (3)
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𝑢
𝜕

𝜕𝑥
𝑣 + 𝑣

𝜕

𝜕𝑦
𝑣 = − 𝜕

𝜕𝑦
𝑝+

{︁ 1

Re
Δ𝑣 − 𝜕

𝜕𝑡
𝑣
}︁
, (4)

𝜕

𝜕𝑥
𝑢+

𝜕

𝜕𝑦
𝑣 = 0. (5)

We describe the method of obtaining a family of exact solutions to the system
(3)–(5). Consider the Beltrami elliptic differential equation [41] with respect to
the function 𝜓 = 𝜓 (𝑥, 𝑦):

Δ𝜓 = 𝜆𝜓 (6)

where 𝜆 is an arbitrary constant, Δ = 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2
.

For any solution 𝜓 = 𝜓 (𝑥, 𝑦) of equation (6), we assume that

𝑢 =
(︁ 𝜕

𝜕𝑦
𝜓
)︁
exp

𝑡𝜆

Re
, 𝑣 = −

(︁ 𝜕

𝜕𝑥
𝜓
)︁
exp

𝑡𝜆

Re
. (7)

This representation of the velocity components ensures that the expressions be-
tween the curly brackets in the right-hand parts of (3) and (4) are equal to zero.
Indeed, according to (6), we have

{︁ 1

Re
Δ𝑢− 𝜕

𝜕𝑡
𝑢
}︁
=

1

Re
Δ
[︁(︁ 𝜕

𝜕𝑦
𝜓
)︁
exp

𝑡𝜆

Re

]︁
− 𝜕

𝜕𝑡

[︁(︁ 𝜕

𝜕𝑦
𝜓
)︁
exp

𝑡𝜆

Re

]︁
=

=
1

Re
exp

𝑡𝜆

Re

𝜕

𝜕𝑦
(Δ𝜓 − 𝜆𝜓) =

1

Re
exp

𝑡𝜆

Re

𝜕

𝜕𝑦
0 = 0.

Similarly,
{︀

1
ReΔ𝑣 −

𝜕
𝜕𝑡𝑣

}︀
= 0. Next, we substitute the expressions from (7) into

the left-hand part of (3) and transform it in view of (6) as follows:

𝑢
𝜕

𝜕𝑥
𝑢+ 𝑣

𝜕

𝜕𝑦
𝑢 =

[︁ 𝜕
𝜕𝑦
𝜓

𝜕2

𝜕𝑥𝜕𝑦
𝜓 − 𝜕

𝜕𝑥
𝜓
𝜕2

𝜕𝑦2
𝜓
]︁
exp

2𝑡𝜆

Re
=

=
[︁1
2

𝜕

𝜕𝑥

(︁ 𝜕

𝜕𝑦
𝜓
)︁2

− 𝜕

𝜕𝑥
𝜓
(︁
− 𝜕2

𝜕𝑥2
𝜓 +

𝜕2

𝜕𝑥2
𝜓 +

𝜕2

𝜕𝑦2
𝜓
)︁]︁

exp
2𝑡𝜆

Re
=

=
[︁1
2

𝜕

𝜕𝑥

(︁ 𝜕

𝜕𝑦
𝜓
)︁2

+
𝜕

𝜕𝑥
𝜓
𝜕2

𝜕𝑥2
𝜓 − 𝜆𝜓

𝜕

𝜕𝑥
𝜓
]︁
exp

2𝑡𝜆

Re
=

=
1

2

𝜕

𝜕𝑥

[︁(︁ 𝜕

𝜕𝑦
𝜓
)︁2

+
(︁ 𝜕

𝜕𝑥
𝜓
)︁2

− 𝜆𝜓2
]︁
exp

2𝑡𝜆

Re
. (8)

Similarly, for the left-hand part of (4) we obtain

𝑢
𝜕

𝜕𝑥
𝑣 + 𝑣

𝜕

𝜕𝑦
𝑣 =

1

2

𝜕

𝜕𝑦

[︁(︁ 𝜕

𝜕𝑦
𝜓
)︁2

+
(︁ 𝜕

𝜕𝑥
𝜓
)︁2

− 𝜆𝜓2
]︁
exp

2𝑡𝜆

Re
. (9)

Assume that

𝑝 = 𝑝0 +
1

2

{︁
𝜆𝜓2 −

(︁ 𝜕

𝜕𝑦
𝜓
)︁2

−
(︁ 𝜕

𝜕𝑥
𝜓
)︁2}︁

exp
2𝑡𝜆

Re
, (10)
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where 𝑝0 is an arbitrary constant. Then it follows from (8) and (9) that 𝑢, 𝑣 and
𝑝 satisfy equations (3) and (4). The continuity equation (5) will also be fulfilled,
this following directly from (7).

Thus, any solution of any (6) type equation gives birth to the exact solu-
tion (7), (10) of the Navier–Stokes equations. Note that 𝜓 = 𝜓(𝑥, 𝑦) is the stream
function of such solutions and that the equations 𝜓(𝑥, 𝑦) = const define the
streamlines. Also note that the solutions of equation (6) for the case 𝜆 = 0 corre-
spond to stationary vortex-free motion, which was studied in detail in the complex
variable function theory [45]; therefore, flows for 𝜆 ̸= 0 are presented in what fol-
lows.

The solutions of equations of the form (6) for 𝜆 ̸= 0 can be exemplified by the
following functions 𝜓 = 𝜓 (𝑥, 𝑦):

𝑥 cos𝛽𝑦, 𝐴 cos𝛼𝑥+𝐵 cos𝛼𝑦, cos𝛼𝑥 sin𝛽𝑦, cos𝛼𝑥 exp𝛽𝑦,

cosh𝛼𝑥 cosh𝛽𝑦, 𝐴 cosh𝛼𝑥+𝐵 cosh𝛼𝑦, sinh𝛼𝑥 cosh𝛽𝑦,

where 𝐴, 𝐵, 𝛼, 𝛽 are arbitrary constants.
This list can be easily continued. Various solutions are obtained, particularly,

by the variable separation method. All these solutions of equation (6) offer exact
solutions to the Navier–Stokes equations by formulas (7) and (10). The obtained
solutions will be nonstationary, but with fixed streamlines. These streamlines
coincide with the streamlines of another flow, namely the stationary flow of an
ideal incompressible fluid. Indeed, if the non-stationary multiplier exp(𝑡𝜆/Re) is
discarded, the velocity components 𝑢 =

(︀
𝜕
𝜕𝑦𝜓

)︀
, 𝑣 = −

(︀
𝜕
𝜕𝑥𝜓

)︀
and the pressure

𝑝 = 𝑝0 +
1

2

{︁
𝜆𝜓2 −

(︁ 𝜕

𝜕𝑦
𝜓
)︁2

−
(︁ 𝜕

𝜕𝑥
𝜓
)︁2}︁

will satisfy the stationary Euler equations [1, 44] for incompressible fluids

𝑢
𝜕

𝜕𝑥
𝑢+ 𝑣

𝜕

𝜕𝑦
𝑢 = − 𝜕

𝜕𝑥
𝑝, 𝑢

𝜕

𝜕𝑥
𝑣 + 𝑣

𝜕

𝜕𝑦
𝑣 = − 𝜕

𝜕𝑦
𝑝,

𝜕

𝜕𝑥
𝑢+

𝜕

𝜕𝑦
𝑣 = 0.

Such (vortex) solutions for the stationary flows of an ideal fluid are a partial case
of the solutions obtained in [46]. In that paper, instead of equation (6), for finding
the stream function, an equation of a more general form was used, Δ𝜓 = 𝑓 (𝜓),
where 𝑓 is an arbitrary function.

3. Exact solution examples
Example 1. Consider the function 𝜓 = cos𝑥 sin 𝑦. It satisfies equation (6)

when 𝜆 = −2. The corresponding exact solution of the Navier–Stokes equations
is as follows:

V = (i cos𝑥 cos 𝑦 + j sin𝑥 sin 𝑦) · exp
(︁
− 2𝑡

Re

)︁
,

𝑝 = 𝑝0 −
1

2

(︀
cos𝑥2 + sin 𝑦2

)︀
· exp

(︁
− 4𝑡

Re

)︁
,

where i and j are the directional vectors of the coordinate axes. The fluid velocity
field and the streamlines in the square [0;𝜋] × [0;𝜋] are shown in Fig. 1. In this
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and all the other figures, the 𝑂𝑥 axis is positioned horizontally and the 𝑂𝑦 axis
is directed vertically. The velocity field V is shown in the left part of Fig. 1, the
length of the arrows being proportional to |V|.

Example 2. If we take a stream function with smaller periods along 𝑥 and 𝑦,
we will have a flow with a cellular structure. The smaller the stream function
periods, the finer the cells. The streamlines for the case 𝜓 = cos 4𝑥 sin 4𝑦 are
shown in Fig. 2.

Example 3. Consider the function 𝜓 = 𝐴 sin
√
8𝑦 + cos 2𝑥 sin 2𝑦. It satisfies

equation (6) when 𝜆 = −8 for any value of the constant 𝐴. The corresponding
exact solution of the Navier–Stokes equations is as follows:

V =
(︁
i
(︀
𝐴
√
8 cos

√
8𝑦 + 2 cos 2𝑥 cos 2𝑦

)︀
+ j 2 sin 2𝑥 sin 2𝑦

)︁
· exp

(︁
− 8𝑡

Re

)︁
, (11)

𝑝 = 𝑝0 −
1

2

{︁
8(𝐴 sin

√
8𝑦 + cos 2𝑥 sin 2𝑦)2+

Figure 1. The velocity field and the fixed streamlines of a decaying flow

Figure 2. Cellular structure
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+(𝐴
√
8 cos

√
8𝑦 + 2 cos 2𝑥 cos 2𝑦)2 + (2 cos 2𝑥 cos 2𝑦)2

}︁
· exp

(︁
−16𝑡

Re

)︁
.

The velocity field of this flow results from the addition of the flow fields corre-
sponding to the stream functions 𝜓1 = 𝐴 sin

√
8𝑦 and 𝜓2 = cos 2𝑥 sin 2𝑦, each of

which satisfies equation (6) when 𝜆 = −8. The function 𝜓1 defines the horizontal
(𝑣 = 0) flow; the function 𝜓2 defines the flow with square cells (𝐴 = 0 in Fig. 3).
The larger the constant 𝐴, the greater the contribution of the horizontal flow.
The streamlines of the total flow (11) for four values of 𝐴 (𝐴 = 0; 0.5; 1/

√
2; 1)

are shown in Fig. 3.
For three values 𝐴 = 0.5; 1/

√
2; 1 in Fig. 3, fluid streams with recirculation

zones in between are clearly visible. As the contribution of the horizontal flow
increases (i.e. with increasing 𝐴), the recirculation zones change their shape, with
some zones expanding and the other ones shrinking.

Note that all the discussed solutions of the form (7) are valid at any Reynolds

Figure 3. The streamlines of the total flow for four values of the constant 𝐴

325



P r o s v i r y a k o v E. Yu.

number, and this makes them advantageous over many previously known exact
solutions [11, 19, 25].

4. Summation of the solutions
By virtue of the linearity of equation (6), the velocity fields corresponding to

identical 𝜆 can be added up to yield a velocity field of another exact solution
of the Navier–Stokes equations. And although the pressure field in the obtained
“new” flow is not equal to the sum of the “initial” pressure fields, the fact of the
possibility of summing the velocities is somewhat unexpected since the nonlinear
terms of the Navier–Stokes equations are nonzero in all the flows under study.

The summation of the velocity fields was demonstrated in the previous section
(example 3), the streamline patterns were shown for different linear combinations
of the stream functions, each satisfying equation (6) when 𝜆 = −8.

If an exact solution is obtained by the here-proposed method, then there is a
flow with the same number 𝜆 for shear, rotation, and axial symmetry. This is a
“source” for obtaining various flow patterns.

Note that the above-mentioned property of the superposition of two flows of a
viscous incompressible fluid, which leads to the formation of a new velocity field,
was discussed by Ballabh in [47–49]. The condition enabling the superposition of
the here-obtained flows is determined by the linearity of equation (6) and the heat
conduction type equations

𝜕

𝜕𝑡
𝑢 =

1

Re
Δ𝑢, and

𝜕

𝜕𝑡
𝑣 =

1

Re
Δ𝑣.

The solution of these equations is given by (7). The presented condition for obtain-
ing solutions by the superposition method differs from the constraints reported
in [47–49].

Conclusion
Plane and nonstationary flows of a viscous incompressible fluid in potential

fields of external forces have been considered. These flows are described by the
Navier–Stokes equations. A method for constructing boundary value problems
with a known exact solution has been proposed and exemplified. The exact solu-
tion (7) is special in that the streamlines of the nonstationary flow coincide with
the trajectories of the fluid particles and that they also coincide with the stream-
lines of another flow – the stationary flow of an ideal incompressible fluid. In the
solutions proposed in the paper the sum of the nonstationary and viscous terms
in the Navier–Stokes vector equation is zero; consequently, the rotor of this sum
is zero. In this sense, the solution family (7) extends the Beltrami–Trkal flows to
the nonlinear Navier–Stokes equations since in the Beltrami–Trkal flows the rotor
of the above-mentioned sum is also zero; this has enabled us to simplify the study
of these flows.

The solution class (7) gives a new example of the Ballabh flow, for which the
addition of the velocity fields is possible.

The obtained method of integrating the nonstationary Navier–Stokes equa-
tions can be applied in computational fluid dynamics to verifying numerical algo-
rithms and computer programs.
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Точные решения обобщенных плоских течений
Бельтрами–Тркала и Беллаба
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Аннотация

Рассмотрены плоские нестационарные течения вязкой несжимаемой
жидкости в потенциальном поле внешних сил. Получено уравнение
в частных производных эллиптического типа, каждое решение которо-
го является функцией тока вихревого течения, описываемого некото-
рым точным решением уравнений Навье–Стокса. Полученные решения
обобщают течения Бельтрами–Тркала и Беллаба. Даны примеры таких
новых решений. Они предназначены для верификации численных алго-
ритмов и компьютерных программ.
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