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Abstract
The article is concerned with a further development of the Active Princi-

ple of parametric system identification in the class of linear, time-invariant,
completely observable models. As the identification target model, the opti-
mal Kalman filter (OKF) is designated that is present, no more than con-
ceptually, in the system’s discretely observed response to a training excita-
tion of the white noise type. By modifying the physically given structure
into the standard observable model in both the observed response and the
Adaptive Kalman Filter (AKF), a so-called Generalized Residual (GR) is
constructed equaling the mismatch between the adaptive and the optimal
filter state estimates plus an AKF-independent noise component. By virtue
of this modification, the GR mean square becomes a new model proximity
criterion for these filters. Minimizing this criterion via conventional practi-
cal optimization methods produces exactly the same result (AKF = OKF)
as would be obtained by minimizing the theoretical criterion being, unfortu-
nately, inaccessible to any AKF numerical optimization methods. The article
presents a detailed step-by-step procedure explaining the above solution in
terms of a parameterized transfer function. For the sake of clarity and for
stimulating real world applications of the approach, the article employs the
transfer function model of a twisted-pair line in a typical xDSL system. The
implementation challenges of theoretical provisions of the method are dis-
cussed. The issue of extending the proposed approach to the problems of
identifying linear models for nonlinear systems is outlined in the directions
for further research.

Keywords: LTI model, complete observability, Kalman filter, adaptive fil-
ter, indirect performance index, implementation challenges.
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Transfer function identification by minimizing the adaptive vs. optimal filter state estimates mismatch

1. Introduction. The theory and practice of system identification (SI) in
their more than half a century of history have received a powerful development
reflected in hundreds of thousands of scientific publications around the world. As
Gianluigi Pillonetto and Lennart Ljung note in their recent paper [1], ‘Despite
its long history, such research area is still extremely active.’ Indeed, even in a
nonlinear setting, research is being done on how to deal with the presence of
nonlinear distortions in systems by using linear SI techniques [2].

The abundance of publications in this field signaled the need for some serious
cleanup work in order to single out the truly independent concepts. According
to Ljung, in SI there are two independent and universal key concepts: the choice
of a Parametric Model Structure, PMS, and the choice of a Model Proximity
Criterion, MPC, the latter is the criterion of fit indicating erroneousness of a
model with respect to a target [3]. Looking generally at what takes us in the
identification process from observed data to a validated model, there are four
main components: ‘(1) The data itself, (2) The set of candidate models, (3) The
suitability criterion, and (4) The validation procedure’ [4].

Indeed, at the heart of SI—or, in the modern AI terminology, of system math-
ematical model machine learning—is the principle of fitting the response data
of an adaptive predictive model to the data of the real system response, which
actually exists as a ‘black box,’ under conditions of the same excitatory (learning
or training) input for them, by some predefined cost function. Nevertheless, the
question of interest remains: Given the PMS, HOW to use the available data to
predefine the MPC ?

In the SI community, the impressive Prediction Error Framework, PEF, [5]
reflects a generally accepted understanding of this issue. Such a view has been
expressed [6] on more than one occasion: ‘All existing parameter identification
methods can be seen as special cases of this prediction error framework.’ At that,
existing PEF methods fit the adaptive model in the system response space, not
in the state space. This is due to the fact that the useful concept of ‘state space’
is intended for purely theoretical work to formulate and minimize the system
model optimality criterion, which we call direct performance index, DPI. This
limiting feature is generated by the certainty that it is impossible to overcome the
obvious barrier, namely, the inaccessibility of state space elements in explicit form
and, hence, of DPI. In fact, DPI cannot be accepted as MPC for identification
algorithms.

Putting this barrier overcoming on the agenda, this article proposes an alter-
native solution to the HOW question posed above. That is, in formulating the
research question, the intention here is to form an Indirect Performance Index,
IPI, and then organize the minimization of IPI so that it is equivalent to mini-
mizing the discrepancy between the internal states of the adaptive model that is
available, and the internal states of the optimal model, which is only theoretically
known as Optimal Kalman Filter, OKF, but is not accessible because of param-
eter uncertainty and, moreover, is sought as the target result of the parametric
optimization of the Adaptive Kalman Filter, AKF.

Thus, the alternative approach considered in this paper should, as is conceiv-
able, minimize the discrepancy between the AKF and OKF state estimates. This
would be reasonable, since the notion of ‘state’ is intended to exhaustively charac-
terize the behavior of an object. Moreover, such minimization, if implemented in
practice, corresponds one-to-one to a theoretically optimal filter designing. This
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feature prevents the SI algorithm deviating from theoretical results of the OKF
design and, therefore, from the bias errors inherent in some other SI methods.

To make such a solution feasible, the real system observed output is repre-
sented as if it were generated by the desired but hidden from us optimal filter
rather than the given physically structured system. In the interest of realizing
such a conceptual vision, the system is supposed to be completely observable
to gain access to the ability to change the basis of the system’s internal states
formally without changing its input-output description, which is called the trans-
fer function, TF, in the class of linear time-invariant, LTI, systems the article
addresses to.

Building an LTI model for a dynamic system is usually being made either in
the frequency domain (by a TF) or in time domain (by differential or difference
equations) [7] to answer the challenge of reducing model uncertainty. The LTI SI
theory and practice have reached a high degree of maturity and are frequently used
in many disciplines where an object of interest exists, for example, in mechanical
[8], electrical [9], electronic [10], chemical [11], civil [12], and even in biomedical
[13, 14] applications. Besides, the point is that the object of interest for which
it is necessary to parameterize the model in the form of TF can be not real,
but fictitious. The most striking example of this is the construction of a dummy
filter forming a model stationary random process from a white-noise process,
which should approximate by its correlation function the experimental correlation
function of a real process in a real system. An example may be identification of a
parameterized instrumental errors model of a multi-component inertial navigation
system [15].

The novelty of this article is that it encourages the application of the ap-
proach in the real world where it has not previously been considered. As an
original example and for clarity, it uses the twisted-pair model in a typical Digital
Subscriber Line, xDSL system [16]. As known, there exists a computational cost
reduction challenge to solve the crosstalk precoding problem and this problem
cannot be solved without knowing the direct and cross channel TFs, DCTFs and
CCTFs [17]. There are several solutions to this engineering task in the literature of
recent years, to exemplify [18–23]. Most of them are similar in that they propose
to estimate channel TFs in the frequency domain, which is quite understandable
since TF itself is a function of signal frequency and is to be known for each tone
to eliminate the crosstalk phenomenon. Such methods of TF estimation narrow
the field of their possible application, reducing it to the xDSL technology, where
they are recognized to be effective. In contrast, this work proceeds from the fact
that the problem of TF estimation can be solved in a more general formulation,
considering it as a problem of parametric LTI model identification for a dynamic
system in the state space time domain.

This article addresses the following research issues.
¬ First, we intend to overcome the obvious problem that the state vector of

a dynamical system is unattainable explicitely, or, put this differently, is
beyond of reach in a perfectly measured form, just as a signal disturbed by
noise in filtering problems is, by definition, immeasurable in a pure form. The
same applies to optimal state estimators, since the optimal filter remains
machine-unrealizable or, put it tentatively, covert in the mesurement data
until the necessary parameters are identified.

 The solution to overcome this unattainability barrier in [24] considered indi-
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vidual cases of a’priori uncertainty level constraints under which the solution
works. We aim to show that this solution is in fact feasible with no limita-
tions on the size of a’priori parametric uncertainty of the system model. We
must make sure that this method of solution makes it universally applica-
ble under the only unencumbered condition: the LTI model under study is
completely observable and can be considered adequate to reality. We want
to show that this quality of solution is achievable by converting the model
into a standard observable form, SOF, to gain a solution in a computer-
implementable tool.

® As for common xDSL applications, we have to check whether it is possible
to use time-domain formulas instead of traditional frequency-domain for-
mulations to estimate the DCTFs or CCTFs, and show how to do so for any
frequency (or tone) of interest in the channel operating frequency range.

¯ Further, to organize the computational process with its numerical robust-
ness and also to translate all decisions into a software design, reasonable
suggestions are needed.

° Finally, a determination has to be made about the novelty of this work in
terms of its results, advantages, and limitations, and concerning objectives
of further research in the proposed direction.

Consideration of these issues constitutes the main content of this article. Sec-
tion 2 is devoted to an illustrative example for which the IPI-based LTI sys-
tem identification method may be of practical interest. Section 3 presents a for-
mal statement of the problem with two generalizations. Section 4 explains a de-
tailed procedure of how to identify a parametric OKF estimator in terms of a
parametrized TF. Section 5 discusses three practical challenges associated with
implementing the solution: (1) organizing the computation time; (2) ordering the
computation in terms of its numerical robustness; and (3) scheduling the work
for a software project. The final Section 6 summarizes the work, describes the
limitations, and outlines possible research on the approach.

2. An illustrative example. Only within this example, symbol 𝑓 is to desig-
nate the signal frequency in the electronic 𝑅s𝐿s𝐺s𝐶s-circuit of Fig. 1 that mimics
a very short—of length Δ𝑙—section of a twisted-pair line in the typical xDSL
system [17, Chapter II]. The circuit can help the DCTF evaluation for transmis-
sion line of 𝑙 full length. Primary transmission line parameters are 𝑅 = 𝑅(𝑓),
𝐿 = 𝐿(𝑓), 𝐺 = 𝐺(𝑓) and 𝐶 = 𝐶(𝑓) being functions of frequency 𝑓 can be seen
as expressed through the secondary cable parameters for standard twisted pairs
depending on cable diameter, material and design. Taking these values from [17,
p. 19] yields the parameters of a short section: the section resistance 𝑅s = 𝑅·Δ𝑙,
the section inductance 𝐿s = 𝐿·Δ𝑙, the section conductivity 𝐺s = 𝐺·Δ𝑙, and the
section capacitance 𝐶s = 𝐶·Δ𝑙.

Remark 1.The subscript s written in roman typestyle for lowercase index
should not to be confused with the below Laplace variable 𝑠. It serves to remind
that the quantity refers to a twisted pair section as shown in Fig. 1. The square
brackets below denote the dimensionality of physical quantities in units of SI.

The formula called Generalized Ohm’s Law (GOL) in the complex domain
defines the impedance of an electronic two-terminal element as across variable
(voltage) divided by through variable (current), both in terms of the Laplace
transform. When it is coupled with Kirchhoff’s Current and Voltage Laws (com-
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Figure 1. Line section of length Δ𝑙 for a twisted pair transmission line of full length 𝑙

monly shortened to KCL and KVL), one has a sufficient set of tools for analyzing
circuits. By writing KCL and KVL for the circuit in Fig. 1 (a), the equivalent
linear Two-Port Network (TPN) shown in Fig. 1 (b) is obtained, yielding the
following equations (1) in terms of the Laplace transform variables:[︂

𝑉1
𝐼1

]︂
=

[︂
𝐴(𝑠) 𝐵(𝑠)
𝐶(𝑠) 𝐷(𝑠)

]︂ [︂
𝑉2
𝐼2

]︂
,

𝐴(𝑠) , 1 + 𝐹s(𝑠); [𝐴(𝑠)] = 1,

𝐹s(𝑠) , (𝑅s + 𝑠𝐿s)(𝐺s + 𝑠𝐶s); [𝐹s(𝑠)] = 1,

𝐵(𝑠) , (𝑅s + 𝑠𝐿s); [𝐵(𝑠)] = Ω,

𝐶(𝑠) , (𝐺s + 𝑠𝐶s); [𝐶(𝑠)] = S ≡ Ω−1,

𝐷(𝑠) , 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1)

Remark 2. In this notation, referring to variables and their transforms inter-
changeably, Laplace transforms are distinguishable by the use of an uppercase letter
or (in more detail) the complex-valued argument (𝑠 , 𝜎+j𝜔) with 𝜔, [𝜔] =Rad/s,
equaling angular velocity 2𝜋𝑓 and 𝑓, [𝑓 ] =s−1, meaning the frequency variable,
j ,

√
−1.

Define the dimensionless TF of a Δ𝑙-length line section as 𝑇s(𝑠) , 𝑉2/𝑉0.
Applying KVL yields 𝑉0 and KCL 𝐼1 in (2)

[︂
𝑉0
𝐼1

]︂
=

⎡⎣ 𝑉2 + [𝑍0 + (𝑅s + 𝑠𝐿s)]𝐼1
𝑉2/𝑍2⏟  ⏞  

𝐼2

+(𝐺s + 𝑠𝐶s)𝑉2⏟  ⏞  
𝐼3

⎤⎦ . (2)

It follows that 𝑇s(𝑠) is the quantity inverse to

1 + [𝑍0 + (𝑅s + 𝑠𝐿s)]
[︀
𝑍−1
2 + (𝐺s + 𝑠𝐶s)

]︀
.

Together with (1), it leads to (3)

𝑇s(𝑠) =
{︀
𝐴(𝑠) + 𝑍0

[︀
𝑍−1
2 +𝐶(𝑠)

]︀
+ 𝑍−1

2 𝐵(𝑠)
}︀−1

. (3)

From now on, consider a mathematically idealized experiment with, condi-
tion (i), a voltage source 𝑉0 connected to the section input thus assuming 𝑍0 → 0;
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and with, condition (ii), a voltmeter having a very large inner impedance 𝑍2 → ∞
connected to the section output to measure 𝑉2. In this scenario, 𝑇s(𝑠) → 𝑇s(𝑠) ,
𝐴−1(𝑠). 𝑇s(𝑠) is the section intrinsic transfer function, SITF, we are interested in
to move closer to the reality of xDSL multi-user transmission, xDSL–MUT.

As known from [17, Chapters II and III], the DCTF denoted by 𝐻(𝑓, 𝑙) is
frequency-dependent and changes with the cable length 𝑙. When the transmission
line is connected to a source 𝑉𝑆 with source impedance 𝑍𝑆 and terminated with
load impedance 𝑍𝐿, this 𝐻(𝑓, 𝑙) is expressed by (4)

𝐻(𝑓, 𝑙) =
𝑍𝑆 + 𝑍𝐿

(𝑍𝑆 + 𝑍𝐿)cosh(𝛾𝑙) + 𝑍⋆
⋆sinh(𝛾𝑙)

𝑍⋆
⋆ , 𝑍⋆ +

𝑍𝑆 · 𝑍𝐿

𝑍⋆

⎫⎪⎪⎬⎪⎪⎭ (4)

through the characteristic line impedance 𝑍⋆ defined as

𝑍⋆ ,

√︃
𝑅+ j2𝜋𝑓𝐿

𝐺+ j2𝜋𝑓𝐶
(5)

and the propagation constant 𝛾 , 𝛾(𝑓) calculated by

𝛾(𝑓) =
√︀

(𝑅+ j2𝜋𝑓𝐿)(𝐺+ j2𝜋𝑓𝐶). (6)

If the line terminates ideally at 𝑍⋆ (5), so that 𝑍𝐿 = 𝑍⋆ = 𝑍𝑆 , the channel transfer
function simplifies [17, Chapters II and III] to

𝐻(𝑓, 𝑙) = 𝑒−𝛾(𝑓)·𝑙. (7)

Now, noticing a similarity between (6) and 𝐹s(𝑠) in (1), we obtain 𝐹s(𝑠) =
(Δ𝑙)2𝛾2(𝑠) after substitution 𝑠 = j2𝜋𝑓 . Hence

𝛾(𝑓) = (Δ𝑙)−1
√︁
[𝑇s(𝑠)]−1

⃒⃒
𝑠=j2𝜋𝑓

− 1. (8)

If one manages to evaluate the expression under the square root sign in (8) as
a complex-valued magnitude in dependence on frequency 𝑓 , then the problem is
solved for any 𝑓 value desired. Thus, the solution is to parametrically identify the
SITF, that is, 𝑇s(𝑠) to use it in (8) and then substitute in (7).

Remark 3. Everywhere, the fact that a value {·} is unknown and so is to be
estimated is reminded by the notation {̊·} with the overscript .̊ When moving later
to the solution, we change marking the estimated parameters to the commonly used
{̂·}, instead of true {̊·}.

Directly from equations (1) and/or Fig. 1 (a), the following expression

𝑇s(𝑠) =
�̊�0

𝑠2 + �̊�1𝑠+ �̊�0
(9)
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is obtained with the following three parameters

�̊�0 , 1/(𝐿s𝐶s), [̊𝑐0] = s−2,

�̊�0 , (𝑅s𝐺s + 1)/(𝐿s𝐶s) = 𝜔2
n, [̊𝑎0] = s−2,

�̊�1 ,
𝑅s

𝐿s
+
𝐺s

𝐶s
= 2𝜁𝜔n, [̊𝑎1] = s−1.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (10)

Here are some intermediate values

𝜔n =
√︀
�̊�0, [𝜔n] = s−1,

𝜁 =
�̊�1

2
√
�̊�0
, [𝜁] = 1,

𝐷 = �̊�0 − �̊�21/4 = 𝜔2
n(1− 𝜁2), [𝐷] = s−2,

𝜒 =
�̊�1

2
√
𝐷

=
𝜁√︀

1− 𝜁2
, [𝜒] = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(11)

introduced through the basic parameters (10) for further convenience, checking
𝜁2 < 1 for the literature obtainable secondary cable parameters [17, Table 2.1].

3. Problem statements. Given the specific case A with TF (9), good-quality
estimates are required for parameters (10) of the numerator and denominator of
this TF. In the most general case B, given an LTI ‘black-box’ as an 𝑛th order
ordinary differential equation (𝑛th order ODE), good-quality estimates are re-
quired for the numerator and denominator parameters of the corresponding TF.
The solution is sought for the below A and B cases.

A. Illustrative example (9). The DSL environment is a multi-user trans-
mission environment enabling a Central Office and the Customer Premises Equip-
ment (CPE) to communicate in the downstream (from the CO to the different
users) or in upstream (opposite) directions. The CO and the locally distributed
CPEs are connected via twisted pair lines, each line belonging to one user. The
twisted pairs are physically close to each other because they are bundled in a cable
binder. Electromagnetic coupling between lines results in mutual interferences at
all modems operating within the same cable [25]. These interferences known as
crosstalk channels must be mitigated or, better, canceled.

Of two different kinds of crosstalk, namely near-end crosstalk (NEXT) and
far-end crosstalk (FEXT), the latter represents the largest performance limiter in
the xDSL system. A variety of suggestions have been made to reduce the impact
of FEXT.

Most DSL and discrete multi-tone transmission (DMT) scenarios use the
decomposition-based zero-forcing precoding (DBZF) to deal with FEXT. In DBZF,
the transmit vector signal is pre-perturbed by the [𝑁 × 𝑁 ] precoder matrix 𝑃
defined for each tone, where 𝑁 is the number of users. For each tone, this number
may be in thousands, matrix 𝑃 is the inverse of the normalized (i.e. unit-diagonal)
channel matrix 𝐻−1

norm. Formally, 𝐻norm is the channel matrix 𝐻 pre-multiplied
by matrix 𝐻−1

diag, the latter being a diagonal matrix composed of inverse transfer
coefficients of direct channels [16; 17, pp. 34–35]. Hence, for downstream transmis-
sion with efficient precoding, i.e. full crosstalk cancellation, it is necessary to know
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the channel [𝑁 × 𝑁 ] matrix 𝐻, which consists of the DCTFs (on the diagonal)
and crosstalk channel transfer functions, CCTFs (off the diagonal).

For a very short section (see Fig. 1), the generally accepted model DCTF is
given by formula (9). A large number of such DCTFs cascade to form a DCTF
of the entire line. It is shown in Fig. 2 with approximations d𝑅 , 𝑅·d𝑙 ≈ 𝑅s,
d𝐿 , 𝐿·d𝑙 ≈ 𝐿s, d𝐺 , 𝐺·d𝑙 ≈ 𝐺s, and d𝐶 , 𝐶·d𝑙 ≈ 𝐶s, 𝑖𝑜𝑢𝑡 = 𝑖𝑖𝑛 + d𝑖𝑖𝑛
and 𝑣𝑜𝑢𝑡 = 𝑣𝑖𝑛 + d𝑣𝑣𝑛, given Δ𝑙 ≈ d𝑙. Therefore, the resulting DCTF will be
of a higher order, while remaining a proper fractional-rational function of 𝑠. As
for the CCTF, solutions for its modeling include various approaches that have a
solid physics basis but high computational complexity [17, p. 28]. Nevertheless,
the adopted CCTF model does not escape the proper fraction form we move to
now.

Figure 2. Equivalent lumped 𝑅𝐿𝐶𝐺-circuit of a 2-wire transmission line

B. General case. In the most general form, the transfer function of a channel
to the 𝑗th output from the 𝑖th input is defined as follows:

𝑇𝑗𝑖(𝑠) =
�̊�𝑚𝑠

𝑚 + �̊�𝑚−1𝑠
𝑚−1 + · · ·+ �̊�1𝑠+ �̊�0

𝑠𝑛 + �̊�𝑛−1𝑠𝑛−1 + · · ·+ �̊�1𝑠+ �̊�0
(12)

where 𝑚+𝑛+1 < 2𝑛+1 parameters may be unknown. With (12), a DSL system
is thought of as a MIMO—specifically, [𝑁 ×𝑁 ]—system, for which the crosstalk
is modeled as an input rather than noise and the acronym MIMO stands for
Multiple-Input Multiple-Output (Fig. 3).

Thus, the 𝑖th input 𝑈𝑖(𝑠) causes a direct response 𝑧𝑖 on the (𝑗 = 𝑖)th output
and creates crosstalk contributions 𝑧𝑗 on all other, (𝑗 ̸= 𝑖)th outputs, plus an
external noise 𝑉𝑗(𝑠) in every 𝑗th channel:

𝑌𝑗(𝑠) =

𝑁∑︁
𝑖=1

𝑇𝑗𝑖(𝑠)𝑈𝑖(𝑠) + 𝑉𝑗(𝑠), 𝑗 = 1, 2, . . . , 𝑁. (13)

The fact we are seeking to solve the inverse problem of recovering (12) from
(13) dictates the only possible identification scenario (cf. Fig. 3): feed only one,
namely 𝑖th input 𝑈𝑖(𝑠) per single, namely 𝑖th identification session, into the MIMO
system:

𝑌𝑗(𝑠) = 𝑇𝑗𝑖(𝑠)𝑈𝑖(𝑠) + 𝑉𝑗(𝑠), 𝑗 = 1, 2, . . . , 𝑁. (14)
(As for the uppercase variables notations in (13) and (14), cf. Remark 2.) The
time of each 𝑖th session (14) needs to be spent to determine the 𝑖th column
𝑇 (𝑠)(·,𝑖) = [𝑇𝑗𝑖(𝑠)], 𝑗 = 1, 2, . . . , 𝑁 of matrix 𝑇 (𝑠) , [𝑇𝑗𝑖(𝑠)], and the whole
scenario will require repeating 𝑁 sessions: 𝑖 = 1, 2, . . . , 𝑁 as in (14).

4. Problem solution framework. Focusing the research on the class of
linear constant-coefficient ODEs to describe the wide range of LTI dynamical
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Figure 3. The distributed MIMO channel estimation structure. Legend: CE – Channel Estima-
tion; SCO – System Central Office; SI – System Information; CI – Channel Information; CPE –

Customer Premises Equipment; 𝑁 – the number of customers, 𝑗 = 1, 2, . . . , 𝑁

systems, we first state that the choice of the excitation signal 𝑢𝑖(𝑡) (cf. Fig. 3)
is extremely important for parameter system identification. Gaussian white-noise
random excitations 𝑤(𝑡) are very popular among practitioners because they seem
to be simple to design. We also stick to this choice, assuming 𝑢𝑖(𝑡) ≡ 𝑤𝑖(𝑡). How-
ever, using random-phase multisines for 𝑢𝑖(𝑡) is also possible, given the design of
the amplitude spectrum of the multisine is such that the equivalence between the
random-phase multisine and the Gaussian random noise concerning the system
behavior is guaranteed. Such signals are known as Riemann-Equivalent Excita-
tion Signals, REESs [2, p. 44]. Using random input excitations makes the system
output under study a stochastic process.

4.1. Cauchy form ODE system. Since there is no uniformity in the struc-
ture of matrices for the general Cauchy form and little else can be said about this
form without additional knowledge of the particular dynamical system, we assume
that the output, i. e. measurement data are generated by a completely observable
physical system whose observability index is designated 𝑝. Hence, we focus the
attention on the SOF among the known three standard system forms [26, pp. 28–
32]. The SOF provides a sort of unified approach to TFs of general form (12), not
just (9). Besides, using SOF is beneficial to the below solution.

Given (9), using the notation mentioned in Remark 3 yields the following
system of equations

𝑑

𝑑𝑡

[︂
𝑥1
𝑥2

]︂
=

[︂
0 1

−�̊�0 −�̊�1

]︂
⏟  ⏞  

𝐹

[︂
𝑥1
𝑥2

]︂
+

[︂
0
�̊�0

]︂
⏟  ⏞  

Γ̊

𝑤(𝑡)
(15)

with 𝑤(𝑡) as a stationary input voltage 𝑣1(𝑡) (cf. Fig. 1). Let 𝑤(𝑡) be REES, that
is Riemann-equivalent to the Gaussian white-noise excitation with the correlation
function 𝑅𝑤𝑤(𝜏) = 𝑄𝛿(𝜏) in terms of Dirac’s delta function 𝛿(𝜏) with some 𝑄 > 0,
[𝑄] = V2· s where 𝑄 is possibly given. Next, assume that the output voltage
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𝑣2(𝑡) ≡ 𝑥1(𝑡) is measured with random error 𝑣(𝑡) of Gaussian type with correlation
function 𝑅𝑣𝑣(𝜏) = 𝑅𝛿(𝜏), 𝑅 > 0, [𝑅] = V2· s, to obtain the measurement data as

𝑦(𝑡) = [ 1 0 ]⏟  ⏞  
𝐻

[︂
𝑥1
𝑥2

]︂
+ 𝑣(𝑡). (16)

SOF model (15)+(16) corresponds to conditions (𝑖) and (𝑖𝑖) of the experiment
above mentioned on page 549. Its characteristic polynomial �̊�(𝑠) , 𝑠2 + �̊�1𝑠+ �̊�0
has the discriminant −𝐷 < 0. Besides, 𝑇s(𝑠) = 𝐻Φ̊s(𝑠)̊Γ with Φ̊s(𝑠) = (𝐼𝑠−𝐹 )−1,
in matrix notation. The inverse Laplace transform of Φ̊s(𝑠) yields the continuous-
time state transition matrix

𝜑(𝑡) =

[︂
𝜑11(𝑡) 𝜑12(𝑡)
𝜑21(𝑡) 𝜑22(𝑡)

]︂
(17)

with its entries

𝜑11(𝑡) = 𝑒−𝜁𝜔n𝑡
[︁
cos(𝑡

√
𝐷) + 𝜒sin(𝑡

√
𝐷)
]︁
,

𝜑12(𝑡) = 𝑒−𝜁𝜔n𝑡 1√
𝐷
sin(𝑡

√
𝐷),

𝜑21(𝑡) = −𝜔2
n𝜑12(𝑡),

𝜑22(𝑡) = 𝑒−𝜁𝜔n𝑡
[︁
cos(𝑡

√
𝐷)− 𝜒sin(𝑡

√
𝐷)
]︁
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(18)

Given (12), it leads to the general SOF

⎡⎢⎢⎢⎢⎣
�̇�1
�̇�2
...

�̇�𝑛−1

�̇�𝑛

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0 1 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1

−�̊�0 −�̊�1 · · · −�̊�𝑛−1

⎤⎥⎥⎥⎥⎦
⏟  ⏞  

𝐹𝑗𝑖

⎡⎢⎢⎢⎢⎣
𝑥1
𝑥2
...

𝑥𝑛−1

𝑥𝑛

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
�̊�1
�̊�2
...

�̊�𝑛−1

�̊�𝑛

⎤⎥⎥⎥⎥⎥⎦
⏟  ⏞  

Γ̊𝑗𝑖

𝑤(𝑡),

𝑦(𝑡) = [ 1 0 · · · 0 0 ]⏟  ⏞  
𝐻

𝑥(𝑡) + 𝑣(𝑡)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
instead of (15)+(16), where �̊�1, �̊�2, . . . , �̊�𝑛 satisfy the following equation⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
�̊�𝑚
...
�̊�0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0
�̊�𝑛−1 1 0 · · · 0 0
�̊�𝑛−2 �̊�𝑛−1 1 · · · 0 0

...
...

...
. . .

...
...

�̊�2 �̊�3 · · · �̊�𝑛−1 1 0
�̊�1 �̊�2 · · · �̊�𝑛−2 �̊�𝑛−1 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�̊�1
�̊�2
�̊�3
...

�̊�𝑛−1

�̊�𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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and 𝐹𝑗𝑖 is the Frobenius companion matrix for the characteristic polynomial
�̊�(𝑠) , 𝑠𝑛 + �̊�𝑛−1𝑠

𝑛−1 + · · ·+ �̊�1𝑠+ �̊�0 of (12). Acting as before (17) yields the
check relation 𝑇𝑗𝑖(𝑠) = 𝐻Φ̊𝑗𝑖(𝑠)̊Γ𝑗𝑖, in which Φ̊𝑗𝑖(𝑠) = (𝐼𝑠− 𝐹𝑗𝑖)

−1 serves to find
𝜑𝑗𝑖(𝑡) as the inverse Laplace transform of Φ̊𝑗𝑖(𝑠), quite similar to (17). Check: the
𝑇𝑗𝑖(𝑠) thus found must coincide with (12).

Remark 4. What will be done in the next Subsec. 4.2. and Subsec. 4.3 based on
the preceeding Subsec. 4.1 for the illustrative example given in (9) can be repeated
similarly for the general case given by (12), furnishing the results with the subscript
𝑗𝑖. We omit these details and 𝑗𝑖 subscripts due to the obviousness of the technique.
We also omit subscript s as is done at the transition to (17).

4.2. Discrete-time model (DTM). Belonging of {·} to the discrete-time
model is indicated below by the subscript d as in {·}d. Before making the change, it
is necessary to reasonably choose the sampling interval 𝑇 . Obviously, the sampling
rate 1/𝑇 must be much higher than the natural frequency 𝑓n , 1/𝑇n = 𝜔n/(2𝜋)
of the system to be able to track the system behavior. This requirement means
𝑇𝑓n ≪ 1. From the other side, 𝜁2, cf. (11), must remain less than one for the
consideration to stand. As a result, requirement 𝑇 ≪ 𝑇n in the transition to the
discrete-time model means that parameter

𝑑 , 𝑒−𝜁𝜔n𝑇 (19)

appearing in (18) at 𝑡 = 𝑇 must lie within the sufficiently wide boundaries of
inequality 𝑒−2𝜋 ≪ 𝑑 < 1, that is be less than one, but possible insignificantly less.

Given (9) and its continuous-time model (15)+(16), the DTM

𝑥(𝑡𝑖+1) = Φ̊d𝑥(𝑡𝑖) + 𝑤d(𝑡𝑖), Φ̊d , 𝜑(𝑇 ),

𝑦(𝑡𝑖) = [ 1 0 ]⏟  ⏞  
𝐻

𝑥(𝑡𝑖) + 𝑣d(𝑡𝑖)

⎫⎪⎬⎪⎭ (20)

yields by the standard method [26]. Here it is checked that (20) is observable with
the observability index 𝑝 = 𝑛 = 2 and has physical dimentionalities [𝑥1(𝑡𝑖)] = V,
[𝑥2(𝑡𝑖)] = V· s−1. The discrete white-noise 𝑤d(𝑡𝑖) in (20) is a zero-mean process

𝑤d(𝑡𝑖) ,
∫︁ 𝑡𝑖+1

𝑡𝑖

𝜑(𝑡𝑖+1 − 𝜏 )̊Γd𝛽(𝜏)

definded via the Brownian motion 𝛽(𝑡) related formally with 𝑤(𝑡) in its differential
𝑑𝛽(𝜏) , 𝑤(𝜏)𝑑𝜏 . The covariance [2× 2]-matrix of 𝑤d(𝑡𝑖) is [26]

𝑄d ,
∫︁ 𝑡𝑖+1

𝑡𝑖

𝜑(𝑡𝑖+1 − 𝜏 )̊Γ𝑄Γ̊T𝜑T(𝑡𝑖+1 − 𝜏)d𝜏. (21)

For the illustrative example (cf. 550), four entries of (21) are calculated directly
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using (10) and (11); the result is in

𝑞11 =
�̊�20𝑄

4𝜁𝜔3
n

[︀
1−

(︀
𝑑2 + 2𝜒

√
𝐷𝜑11(𝑇 )𝜑12(𝑇 )

)︀]︀
,

𝑞12 =
�̊�20𝑄

2
𝜑212(𝑇 ) = 𝑞21,

𝑞22 =
�̊�20𝑄

4𝜁𝜔n

[︀
1−

(︀
𝑑2 − 2𝜒

√
𝐷𝜑12(𝑇 )𝜑22(𝑇 )

)︀]︀
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(22)

Remark 5. Calculations like (22) are technically trivial, so they are omitted
here. They may seem complicated if done manually. Manual work can be avoided
by using Maple to obtain the result quickly, easily and accurately. Additionally,
although dimensionality analysis does not guarantee the correctness of result, it
can be an auxiliary tool as in this case: [𝑞11] = V2, [𝑞12] = V2· s−1, [𝑞22] = V2· s−2.

To finalize formulating DTM, it is worth going from 𝑤d(𝑡𝑖) to a dimensionless
vector quantity 𝜉d(𝑡𝑖) for which 𝑤d(𝑡𝑖) , �̊�d𝜉d(𝑡𝑖) with a matrix �̊�d such that
𝑄d = �̊�d�̊�

T
d by the lower triangular Cholesky decomposition [27, p. 40]. From (22),

𝑙11 =
√
𝑞11, [𝑙11] = V,

𝑙21 = 𝑞12/𝑙11, [𝑙21] = V · s−1,

𝑙22 =

√︁
𝑞22 − 𝑙21

2, [𝑙21] = V · s−1

(23)

being three non-zero real-valued entries of [2× 2]-matrix �̊�d. The model (20) now
takes the final form

𝑥(𝑡𝑖+1) = Φ̊d𝑥(𝑡𝑖) + �̊�d𝜉d(𝑡𝑖), Φ̊d , 𝜑(𝑇 ),

𝑦(𝑡𝑖) = [ 1 0 ]⏟  ⏞  
𝐻

𝑥(𝑡𝑖) + 𝑣d(𝑡𝑖).

⎫⎪⎬⎪⎭ (24)

As a result, the discrete white sequence 𝜉d(𝑡𝑖) in (24) has the unit covariance ma-
trix, and the measurement discrete white sequence 𝑣d(𝑡𝑖) may have some unknown
covariance 𝑅d > 0. Vector �̊� ,

[︀
�̊�1 , �̊�0

⃒⃒
�̊�2 , �̊�0

⃒⃒
�̊�3 , �̊�1

⃒⃒
�̊�4 , 𝑄

⃒⃒
�̊�5 , 𝑅d

]︀T.
Vector 𝜃 ,

[︀
𝜃1 , 𝑐0

⃒⃒
𝜃2 , �̂�0

⃒⃒
𝜃3 , �̂�1

⃒⃒
𝜃4 , �̂�

⃒⃒
𝜃5 , �̂�d

]︀T will be the estimator
for �̊�. The explicit dependence of the in (24) matrices on �̊� can be easily traced
from the above formulas.

4.3. Standard Observable Discrete-time Model (SODM). Turning back
to the general solution of the problem, case B, let us introduce

𝑀 ,
[︀
𝐻T

⃒⃒
(𝐻Φ̊d)

T
⃒⃒
· · ·
⃒⃒
(𝐻Φ̊𝑛−1

d )T
]︀T
,

the observability matrix for a linear 𝑛-dimensional one-way derivable DTM. It is
invertible as the observability index 𝑝 is supposed to equal 𝑛. Performing a nonsin-
gular basis transform in the state space by relation 𝑥⋆ ,𝑀𝑥, we obtain the Stan-
dard Observable Discrete-time Model, SODM, with Φ̊⋆ ,𝑀 Φ̊d𝑀

−1,𝐻⋆ , 𝐻𝑀−1,
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and �̊�⋆ ,𝑀�̊�d. Let us note that we use {⋆} as a superscript or subscript for any
magnitude {·} belonging to the SODM, keeping in mind that the transfer function
does not change when the basis changes nonsingularly. For this general case, notice
Remark 4. For the specific case of (20), (24), we obtain the following SODM:

𝑥⋆(𝑡𝑖+1) = Φ̊⋆𝑥
⋆(𝑡𝑖) + �̊�⋆𝜉d(𝑡𝑖),

𝑦(𝑡𝑖) = 𝐻⋆𝑥
⋆(𝑡𝑖) + 𝑣d(𝑡𝑖),

Φ̊⋆ ,𝑀 Φ̊d𝑀
−1 =

[︂
0 1

𝑑2 2𝑑 cos(𝑇
√
𝐷)

]︂
,

𝐻⋆ , 𝐻𝑀
−1 = [ 1 0 ],

�̊�⋆ ,𝑀�̊�d =

[︂
𝑙11 0

𝑙11𝜑11 + 𝑙21𝜑12 𝑙22𝜑12

]︂
,

𝜑11 , 𝜑11(𝑇 ), 𝜑12 , 𝜑12(𝑇 ), 𝜑22 , 𝜑22(𝑇 ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(25)

Every SODM thus obtained has matrix Φ̊⋆ in the form of the Frobenius companion
matrix, and matrix 𝐻⋆ with its first element equal to 1 and the rest to zeros.

4.4. OKF as the Target Model (OKF-TM). Using the above technique
culminated in (25) and taking into account Remark 4, one obtains the following
unique Optimal Kalman Filter–Target Model, OKF-TM, in the SODM basis for
the general case arising from (12):

�̂�⋆(𝑡𝑖+1|𝑡𝑖) = Φ̊⋆�̂�
⋆(𝑡𝑖|𝑡𝑖) ,

�̂�⋆(𝑡𝑖|𝑡𝑖) = �̂�⋆(𝑡𝑖|𝑡𝑖−1) +𝐾⋆𝜈(𝑡𝑖|𝑡𝑖−1) ,

}︃
(26)

together with

𝑦(𝑡𝑖) = 𝐻⋆�̂�
⋆(𝑡𝑖|𝑡𝑖−1) + 𝜈(𝑡𝑖|𝑡𝑖−1),

𝜈(𝑡𝑖|𝑡𝑖−1) , 𝑦(𝑡𝑖)−𝐻⋆�̂�
⋆(𝑡𝑖|𝑡𝑖−1) is defined as

Innovation Sequence, IS,

𝐾⋆ = 𝑃−
⋆ 𝐻

T
⋆

(︀
𝐻⋆𝑃

−
⋆ 𝐻

T
⋆ +𝑅d

)︀−1
,

𝑃−
⋆ = Φ̊⋆

[︀
𝑃−
⋆ −𝐾⋆𝐻⋆𝑃

−
⋆

]︀
Φ̊T
⋆ + �̊�⋆�̊�

T
⋆ .

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(27)

We aim for a parametric identification of the steady-state OKF-TM (26)+(27).
In this filter, 𝜈𝑡|𝑡−1 is a white-noise Gaussian sequence (WGS), and the last two
equations in (27) form a Discrete-time Algebraic Riccati Equation, DARE. Note
the IS behaves like an WGS because �̊� in (26)+(27) is assumed to be a true, albeit
unknown, real parameter vector of some dimension 𝑞: �̊� ∈ R𝑞.

Thus, algorithm (26)+(27) is a set of steady-state Kalman filter equations op-
timal for the true parameter �̊�. It is written under the unrealized assumption that
�̊� is known and that steady-state operation of this algorithm has been achieved
by a theoretically assumed numerically stable DARE solution.

Remark 6. The preceding contains the correct characterization of 𝜈(𝑡𝑖|𝑡𝑖−1)
provided that the mathematical model on which the filter (26)+(27) is based accu-
rately represents the real behavior of the system.
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Thus, we can imagine—and consider this representation fair reasonable and
therefore bearable—that the observed output 𝑦(𝑡𝑖) provided in fact by the real sys-
tem is as if were generated, very conventionally, by the target model, that is, by
the optimal Kalman filter, as presended in the first line of (27).

4.5. Concurrent Candidate Models (CCM). Since �̊� is unknown, one
can only use its estimated value 𝜃, which is located in some Θ space. Where the
object of interest exists with no specific constraints, the real-valued space Θ ≡ R𝑞

is formed by all possible values 𝜃[𝑗] of the estimator vector 𝜃. Here and below 𝑗

denotes the order number of value 𝜃 in some scanning trajectory over the space
Θ: 𝜃[𝑗] ∈ Θ, 𝑗 = 0, 1, 2, . . . , 𝐽total, i.e. over an imaginary set of Concurrent Can-
didate Models, CCM. The CCM set plays the role of Machine Learning Models
if one prefers to use Machine Learning terminology. When implementing a nu-
merical iterative filter optimization method capable of sequentially converging to
the OKF-TM (26)+(27), 𝑗 has the meaning of the method step number, since
it is common to test suboptimal models sequentially, their total number 𝐽total,
even if we admit, quite theoretically, the possibility of testing them in parallel
(i.e. synchronously). It is important that in both variants, sequential or parallel,
of the target model (26)+(27) identification, it is possible and even expedient to
base the work on the same observational data 𝑦(𝑡𝑖) supplied (conditionally as said
in Remark 6) by the target model (26)+(27), using processing and analyzing the
responses to these data of the suboptimal models under test as candidates for the
role of the target, that is, optimal, model.

Assuming that 𝜃 has taken a particular 𝜃[𝑗] value in Θ, imagine that instead
of optimal Kalman filter (26)+(27), we have managed to implement a suboptimal
steady-state Kalman filter we refer to as 𝑗th Standard Observable Kalman Filter,
the 𝑗th SOKF, or SOKF(𝜃[𝑗]), for short. The latter is the 𝑗th candidate model

𝑔⋆𝑗 (𝑡𝑖+1|𝑡𝑖) = Φ̂⋆𝑗𝑔
⋆
𝑗 (𝑡𝑖|𝑡𝑖) ,

𝑔⋆𝑗 (𝑡𝑖|𝑡𝑖) = 𝑔⋆𝑗 (𝑡𝑖|𝑡𝑖−1) + �̂�⋆𝑗𝜂𝑗(𝑡𝑖|𝑡𝑖−1) ,

𝑦(𝑡𝑖) = 𝐻⋆𝑔
⋆
𝑗 (𝑡𝑖|𝑡𝑖−1) + 𝜂𝑗(𝑡𝑖|𝑡𝑖−1),

𝜂𝑗(𝑡𝑖|𝑡𝑖−1) , 𝑦(𝑡𝑖)−𝐻⋆𝑔
⋆
𝑗 (𝑡𝑖|𝑡𝑖−1) is defined as

the 𝑗th Residual Sequence, RS𝑗 ,

�̂�⋆𝑗 = 𝑃−
⋆𝑗𝐻

T
⋆

(︀
𝐻⋆𝑃

−
⋆𝑗𝐻

T
⋆ + �̂�d𝑗

)︀−1
,

𝑃−
⋆𝑗 = Φ̂⋆𝑗

[︀
𝑃−
⋆𝑗 − �̂�⋆𝑗𝐻⋆𝑃

−
⋆𝑗

]︀
Φ̂T
⋆𝑗 + �̂�⋆𝑗 �̂�

T
⋆𝑗

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(28)

with Φ̂⋆𝑗 , Φ̂⋆(𝜃[𝑗]), �̂�d𝑗 , �̂�d(𝜃[𝑗]), and �̂�⋆𝑗 , �̂�⋆(𝜃[𝑗]). The model is intended to
participate in testing to come as close as possible to the optimal filter (26)+(27),
provided that the target model is also in the CCM set.

However, what does it mean: ‘we have managed to implement (28) ?’ In the real
case scenario, this means that when trying to test candidate models sequentially,
i.e. SOKF(𝜃[𝑗]) after SOKF(𝜃[𝑗 − 1]), SOKF(𝜃[𝑗 + 1]) after SOKF(𝜃[𝑗]), and so
on, we must solve DARE, i.e. the last two equations in (28) at each such step.
Doing this job iteratively for each SOKF(𝜃[𝑗]), we introduce the local notation
(𝑖) for the iteration number, (𝑖) = (0), (1), . . . , (𝐼DARE), where 𝐼DARE denotes the
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final iteration number, and compute as follows, labeling the computed quantities
with 𝑗:

𝑃−
⋆𝑗(0)

= 𝑃−
⋆𝑗−1(𝐼DARE+1) (29)

and then
�̂�⋆𝑗(𝑖) = 𝑃−

⋆𝑗(𝑖)
𝐻T

⋆

(︀
𝐻⋆𝑃

−
⋆𝑗(𝑖)

𝐻T
⋆ + �̂�d𝑗

)︀−1
,

𝑃−
⋆𝑗(𝑖+1) = Φ̂⋆𝑗

[︀
𝑃−
⋆𝑗(𝑖)

− �̂�⋆𝑗(𝑖)𝐻⋆𝑃
−
⋆𝑗(𝑖)

]︀
Φ̂T
⋆𝑗 +

�̂�⋆𝑗 �̂�
T
⋆𝑗 , (𝑖) = (0), (1), . . . , (𝐼DARE).

(30)

The final value �̂�⋆𝑗(𝐼DARE) should be used as �̂�⋆𝑗 in the second equation of (28),
that is, �̂�⋆𝑗 := �̂�⋆𝑗(𝐼DARE), and the final value 𝑃−

⋆𝑗(𝐼DARE+1) as the starting point

𝑃−
⋆𝑗+1(0)

= 𝑃−
⋆𝑗(𝐼DARE+1) by the (29) type but now for the SOKF(𝜃[𝑗 + 1]) at

the (𝑗 + 1)th optimization step if any, over the CCM set. ‘Real-case scenario’
means that these Riccati iterations should be stopped at 𝐼DARE when a reasonable
convergence criterion is satisfied. It also means that by the time of the final
iteration (𝑖) = (𝐼DARE) we assume that the so iterated filter (28) has reached the
desired steady-state operation defined by equations (28).

Iterations (30) may and should be performed on an accelerated time scale in
the form of known numerically robust algorithms, e.g. [28], for each value 𝑗, in
other words, at each 𝑗th step of the numerical approximation to the optimum,
that is to the target algorithm (26)+(27). This numerical optimization should be
performed by a single AKF scanning sequentially the elements of the theoretically
unbounded CCM set.

4.6. Predictors to form the AKF. We supplement the 𝑗th candidate model
(28) with the predictors and make them operate as follows:

𝑔⋆𝑗 (𝑡𝑖+ℎ|𝑡𝑖) , Φ̂⋆𝑗𝑔
⋆
𝑗 (𝑡𝑖+ℎ−1|𝑡𝑖)

𝑦𝑗(𝑡𝑖+ℎ|𝑡𝑖) , 𝐻⋆𝑔
⋆
𝑗 (𝑡𝑖+ℎ|𝑡𝑖)

}︃
ℎ = 1, 2, . . . , 𝑝 (31)

where 𝑝 is the total observability index of the system.
Remark 7. In an 𝑛-dimensional system with 𝑚 outputs, any ‘𝑖’th output of

𝑚 outputs can be assigned a partial observability index 𝑝𝑖. The sum of partial
observability indices is always equal to the dimensionality 𝑛 of the system if only
the system has the property of complete observability. The total observability index
𝑝 of the system is defined as the greatest of the partial indices. The case 𝑝 < 𝑛 is
possible if only 𝑚 > 1. In the problem under consideration,𝑚 = 1, therefore 𝑝 = 𝑛
elsewhere in what follows. Nevertheless, we distinguish between the notations 𝑝 and
𝑛, intending further work to extend the solution to the case where the number 𝑚
of system outputs exceeds one. Only then 𝑝 may occur less than 𝑛.

The fact that 𝑦𝑗(𝑡𝑖+ℎ|𝑡𝑖) in (31) and beyond depends on 𝜃[𝑗] can also be de-
noted by the subscript 𝜃[𝑗], bearing in mind the equivalence of the two possible
notations: 𝑦𝑗(𝑡𝑖+ℎ|𝑡𝑖) ≡ 𝑦𝜃[𝑗](𝑡𝑖+ℎ|𝑡𝑖), ℎ = 1, 2, . . . , 𝑝. In (32) that follows for the
case of (20)+(25) when 𝑝 = 2, the first line comes from (31) while the second equa-
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tion in (32) comes from the first three lines of the target expressions (26)+(27):[︂
𝑦𝑗(𝑡𝑖+1|𝑡𝑖)
𝑦𝑗(𝑡𝑖+2|𝑡𝑖)

]︂
=

[︂
𝐻⋆

𝐻⋆Φ̂⋆𝑗

]︂
𝑔⋆𝑗 (𝑡𝑖+1|𝑡𝑖),[︂

𝑦(𝑡𝑖+1)
𝑦(𝑡𝑖+2)

]︂
=

[︂
𝐻⋆

𝐻⋆Φ̊⋆

]︂
�̂�⋆(𝑡𝑖+1|𝑡𝑖) +

[︂
1 0

𝐻⋆Φ̊⋆𝐾⋆ 1

]︂ [︂
𝜈(𝑡𝑖+1|𝑡𝑖)
𝜈(𝑡𝑖+2|𝑡𝑖+1)

]︂
.

(32)

The composite (stackable) vectors opening expressions (32) in the specific case
𝑝 = 2 are to be redefined when turning to the general case. Their definitions
follow using notation 𝑝 for the total observability index:

𝑦𝜃[𝑗]

(︁
𝑡𝑖+𝑝
𝑖+1|𝑡𝑖

)︁
,
[︀
𝑦𝑗(𝑡𝑖+1|𝑡𝑖)

⃒⃒
· · ·
⃒⃒
𝑦𝑗(𝑡𝑖+𝑝|𝑡𝑖)

]︀T
,

𝑦
(︁
𝑡𝑖+𝑝
𝑖+1

)︁
,
[︀
𝑦(𝑡𝑖+1)

⃒⃒
· · ·
⃒⃒
𝑦(𝑡𝑖+𝑝)

]︀T
,

𝑡𝑖+𝑝
𝑖+1 , (𝑡𝑖+1, 𝑡𝑖+2, . . . , 𝑡𝑖+𝑝) .

(33)

For the case of a single-output completely observable linear 𝑛-dimensional DTM,
we have 𝑝 = 𝑛. Thus, we obtain the advantages of changing to the SOF, viz.,[︀

𝐻⋆ (𝐻⋆Φ̂⋆𝑗 ) · · · (𝐻⋆Φ̂
𝑛−1
⋆𝑗 )

]︀T
= 𝐼,[︀

𝐻⋆ (𝐻⋆Φ̊⋆) · · · (𝐻⋆Φ̊
𝑛−1
⋆ )

]︀T
= 𝐼.

(34)

Equations (34) are true regardless of 𝑗 and the non-trivial entries in the Frobenius
matrices Φ̊⋆ as defined in (25) for (26) and Φ̂⋆𝑗 as commented for (28).

4.7. The generalized residual (GR). What follows is the general case of
using 𝑝 = 𝑛 in the key relations (34) as a result of computing these composite
(stackable) vectors:

𝑦𝜃[𝑗]
(︀
𝑡𝑖+𝑝
𝑖+1|𝑡𝑖

)︀
= 𝐼 · 𝑔⋆𝑗 (𝑡𝑖+1|𝑡𝑖),

𝑦
(︀
𝑡𝑖+𝑝
𝑖+1

)︀
= 𝐼 · �̂�⋆(𝑡𝑖+1|𝑡𝑖) +⎡⎢⎢⎢⎣

1 0 · · · 0

𝐻⋆Φ̊⋆𝐾⋆ 1 · · · 0
...

...
. . .

...
𝐻⋆Φ̊

𝑝−1
⋆ 𝐾⋆ 𝐻⋆Φ̊

𝑝−2
⋆ 𝐾⋆ · · · 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

𝜈(𝑡𝑖+1|𝑡𝑖)
𝜈(𝑡𝑖+2|𝑡𝑖+1)

...
𝜈(𝑡𝑖+𝑝|𝑡𝑖+𝑝−1)

⎤⎥⎥⎦ .
⏟  ⏞  

, 𝛿
[︁
𝜈
(𝑡𝑖+𝑝|𝑡𝑖+𝑝−1)

(𝑡𝑖+1|𝑡𝑖)

]︁
(�̊�)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(35)

Expressions (35), obtained at intervals equal to the system’s observability in-
dex 𝑝, show that the discrepancy between the system outputs 𝑦

(︀
𝑡𝑖+𝑝
𝑖+1

)︀
and the

corresponding predicted data 𝑦𝜃[𝑗]
(︀
𝑡𝑖+𝑝
𝑖+1|𝑡𝑖

)︀
both expressed in SODM terms, con-

tain a valuable but explicitly unavailable mismatch between the states �̂�⋆(𝑡𝑖+1|𝑡𝑖)
of the optimal filter (26)+(27), which is latently present in the discretely observed
system output in response to the learning excitation 𝑤(𝑡), and 𝑔⋆𝑗 (𝑡𝑖+1|𝑡𝑖) being
computed at the 𝑗th iteration of SOKF(𝜃[𝑗]) (28)+(31).
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Remark 8. The mismatch of the optimal filter (26)+(27) compared to the
suboptimal filter (28)+(31) is the difference between the object state estimates
given by the optimal and suboptimal filters.

Naming the difference between the second and first lines in (33), or equally in
(35), the Generalized Residual, GR, calculated to be the (𝑛× 1) vector process

GR: 𝜀⋆
𝜃[𝑗]

(︀
𝑡𝑖+𝑝
𝑖+1|𝑡𝑖

)︀
, 𝑦
(︀
𝑡𝑖+𝑝
𝑖+1

)︀
− 𝑦𝜃[𝑗]

(︀
𝑡𝑖+𝑝
𝑖+1|𝑡𝑖

)︀
∈ R𝑛 (36)

and introducing the notion of adaptive filter state estimation error, or better to
say, the concept of Adaptive vs. Optimal Filter State Estimation Mismatch,

AOFSEM: 𝑒⋆
𝜃[𝑗]

(𝑡𝑖+1|𝑡𝑖) , �̂�⋆(𝑡𝑖+1|𝑡𝑖)− 𝑔⋆𝑗 (𝑡𝑖+1|𝑡𝑖) ∈ R𝑛 (37)

yields the key result:
Theorem 1. Let GR be calculated as (36) and AOFSEM, which does not have a

computer-manipulable representation, defined as (37). Based on the fact that the
Direct Performance Index

DPI , 𝒥 DPI
𝑡𝑖+1

(𝜃) , E
{︁⃦⃦
𝑒⋆
𝜃[𝑗]

(𝑡𝑖+1|𝑡𝑖)
⃦⃦2}︁ ∈ R1, (38)

or in other words, Expected Direct Cost Function, EDCF, is not explicitly available
to optimize the suboptimal filter (28)+(31), we introduce the Indirect Performance
Index

IPI , 𝒥 IPI
𝑡𝑖+𝑝

(𝜃) , E
{︁⃦⃦
𝜀⋆
𝜃[𝑗]

(︀
𝑡𝑖+𝑝
𝑖+1|𝑡𝑖

)︀⃦⃦2}︁ ∈ R1, (39)

or in formal words, the Expected Indirect Cost Function, EICF. Then minimizing
the IPI (39) by any numerical optimization method in 𝜃 ≡ 𝜃[𝑗] ∈ Θ at each discrete
time 𝑡𝑖+𝑝 is equivalent to minimizing the DPI (38) in 𝜃 ≡ 𝜃[𝑗] ∈ Θ at time 𝑡𝑖+1:{︀

min𝜃 𝒥
IPI
𝑡𝑖+𝑝

(𝜃)
}︀

⇐⇒
{︀
min𝜃 𝒥

DPI
𝑡𝑖+1

(𝜃) = 0
}︀
. (40)

Proof. Given definitions (36) and (37), relations (35) show that

𝜀⋆
𝜃[𝑗]

(︀
𝑡𝑖+𝑝
𝑖+1|𝑡𝑖

)︀
= 𝑒⋆

𝜃[𝑗]
(𝑡𝑖+1|𝑡𝑖) + 𝛿

[︁
𝜈
(𝑡𝑖+𝑝|𝑡𝑖+𝑝−1)

(𝑡𝑖+1|𝑡𝑖)

]︁
(�̊�)

with 𝛿
[︁
𝜈
(𝑡𝑖+𝑝|𝑡𝑖+𝑝−1)

(𝑡𝑖+1|𝑡𝑖)

]︁
(�̊�) defined in (35) being, first, independent of the estimated

value 𝜃 ≡ 𝜃[𝑗] ∈ Θ and, second, uncorrelated with error 𝑒⋆
𝜃[𝑗]

(𝑡𝑖+1|𝑡𝑖) (37) since

the stackable vector
[︁
𝜈
(𝑡𝑖+𝑝|𝑡𝑖+𝑝−1)

(𝑡𝑖+1|𝑡𝑖)

]︁
formed by the white-noise IS in (26)+(27) is

separated by one sample time interval 𝑇 from all preceding IS values that deter-
mine error 𝑒⋆

𝜃[𝑗]
(𝑡𝑖+1|𝑡𝑖) (37). It is this circumstance, together with the theoretical

fact that IS has the properties of a white-noise sequence, that entails statement

IPI = DPI +Const𝜃 , where Const𝜃 equals E

{︂⃦⃦⃦
𝛿
[︁
𝜈
(𝑡𝑖+𝑝|𝑡𝑖+𝑝−1)

(𝑡𝑖+1|𝑡𝑖)

]︁
(�̊�)
⃦⃦⃦2}︂

, a value
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independent of 𝜃 ≡ 𝜃[𝑗] ∈ Θ, which definitively proves statement (40). It is also
easy to verify that

𝑦𝜃[𝑗]
(︀
𝑡𝑖+𝑝
𝑖+1|𝑡𝑖

)︀
= 𝑔⋆𝑗 (𝑡𝑖+1|𝑡𝑖) (41)

by virtue of the predictors (31) and first line in (34). 2

Remark 9. The data 𝑦
(︀
𝑡𝑖+𝑝
𝑖+1

)︀
defined in (33) and used in (36) does not de-

pend on 𝜃[𝑗], so only these measurement data can be collected and stored in com-
puter memory before running the method’s algorithm aimed at analyzing any
SOKF(𝜃[𝑗]) in terms of its state (behavior) closeness to that of the target optimal
filter and ability of further diminishing the mean square discrepancy between these
states.

5. Method implementation challenges. An attempt to implement the
given solution with its advantages poses several challenges concerning the organi-
zation of computation time, calculation sequence, and numerical stability. Let us
briefly discuss these challenges.

5.1. Computation time organization. As noted above, it is possible and
even expedient to calculate parameter estimates in the accelerated off-line mode,
that is, after the accumulation of measurement data in a database. We come to the
contents of the database having defined the function to be minimized as follows.

By shifting IPI (39) back by 𝑝 time points, we determine the Expected Indirect
Objective Function, EIOF,

𝑓(𝜃) , E
{︁⃦⃦
𝜀⋆
𝜃[𝑗]

(𝑡𝑖𝑖−𝑝+1|𝑡𝑖−𝑝)
⃦⃦2}︁ (42)

to be minimized in 𝜃 ∈ R𝑞. For practical work, we have to turn to the Averaged
Indirect Objective Function, AIOF (43)

𝐼𝑃𝐼 , 𝒥 IPI
𝑡𝑖≡𝑡𝑐𝑖

(𝜃[𝑗]) ,
1

𝑀 + 1

𝑀∑︁
𝑘=0

⃦⃦
𝜀
⋆(𝑘)

𝜃[𝑗]
(𝑡𝑖𝑖−𝑝+1|𝑡𝑖−𝑝)

⃦⃦2
, 𝑓𝑀 (𝜃 = 𝜃[𝑗]) (43)

considered as a real-valued function 𝑓𝑀 (𝜃 = 𝜃[𝑗]) to be minimized in parameter
𝜃 ∈ R𝑞 instead of (42), the latter being the shifted back EICF (39).

Remark 10. The use of the upper index (𝑘), 𝑘 = 0,𝑀 , 0, 1, . . . ,𝑀, from
(43) on as the sample number is especially justified when averaging 𝑀 +1 sample
paths of the process, if necessary. Otherwise, it is sufficient to let 𝑀 = 0 and so
release of using (𝑘). 𝑀 may be as large as desired positive integer number for better
averaging. We relate 𝑡𝑐𝑖 , the time the computer starts up to process the data, to the
real time 𝑡𝑖 by which the data is ready.

As seen from (43), each (𝑘)th 𝜀⋆(𝑘)
𝜃[𝑗]

(︀
𝑡𝑖𝑖−𝑝+1|𝑡𝑖−𝑝

)︀
-path must result from a one-to-

one time-mapping—no more than in the algorithmic computations computer-time
formal representation—of interval 𝑡𝑖𝑖−𝑝+1|𝑡𝑖−𝑝 to the real-time (𝑘)th segment

𝑡
𝑖(𝑘)
𝑖−𝑝+1 , {𝑡𝑖−(𝑘+1)𝑝+1, 𝑡𝑖−(𝑘+1)𝑝+2, . . . , 𝑡𝑖−(𝑘+1)𝑝+𝑝} , 𝑡𝑖−𝑘𝑝

𝑖−(𝑘+1)𝑝+1 ,

𝑘 = 0, 1, . . . ,𝑀

}︃
(44)
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of a set of points. We imagine an entire record (𝑀 + 1)𝑝-length of all data

𝑦(𝑡𝑖𝑖−(𝑀+1)𝑝+1) ,
{︀
𝑦(𝑡𝑖−(𝑀+1)𝑝+1), 𝑦(𝑡𝑖−(𝑀+1)𝑝+2), · · · , 𝑦(𝑡𝑖−1), 𝑦(𝑡𝑖)

}︀
in the Measurement Data Base, MDB, as composed of (𝑀 + 1) portions (45)

𝑦(𝑘)
(︀
𝑡𝑖𝑖−𝑝+1

)︀
, 𝑦
(︀
𝑡𝑖−𝑘𝑝
𝑖−(𝑘+1)𝑝+1

)︀
, 𝑘 = 0, 1, . . . ,𝑀 (45)

obtained in real time but referenced to the computer-time stackable 𝑝-vectors

𝑦(𝑘)
(︀
𝑡𝑖𝑖−𝑝+1

)︀
,
[︀
𝑦(𝑘) (𝑡𝑖−𝑝+1)

⃒⃒
𝑦(𝑘) (𝑡𝑖−𝑝+2)

⃒⃒
· · ·
⃒⃒
𝑦(𝑘)(𝑡𝑖)

]︀T
,

𝑘 = 0, 1, . . . ,𝑀 .

}︃
(46)

Remark 11. The idea of notation (46) explained as regards the (𝑘)th sample
path 𝜀⋆(𝑘)

𝜃[𝑗]
(𝑡𝑖𝑖−𝑝+1|𝑡𝑖−𝑝) notation by relating the 𝑡𝑖𝑖−𝑝+1|𝑡𝑖−𝑝 interval—for the algo-

rithmic computations in computer-time—to the real-time segment (44) should be
clear below when applied to other quantities as well. One can always see how real-
time data, such as (45), relates to the same data, such as (46), when the latter
is stored in the MDB for further computer processing. Additionally, the upper in-
dex (𝑘) indicates that the (𝑘)th sample data is considered as being in the MDB.

Given (35), (36), and (37), let us write down all (𝑘)-sampled time-shifted
values

𝜀
⋆(𝑘)

𝜃[𝑗]

(︀
𝑡𝑖𝑖−𝑝+1|𝑡𝑖−𝑝

)︀
, 𝑦(𝑘)

(︀
𝑡𝑖𝑖−𝑝+1

)︀
− 𝑦

(𝑘)

𝜃[𝑗]

(︀
𝑡𝑖𝑖−𝑝+1|𝑡𝑖−𝑝

)︀
𝑘= 0, 1, . . . ,𝑀

(47)

of the GR, (36), stored in the MDB to compute 𝑓𝑀 (𝜃) and, respectively, all

𝑒
⋆(𝑘)

𝜃[𝑗]
(𝑡𝑖−𝑝+1|𝑡𝑖−𝑝) , �̂�

⋆(𝑘)(𝑡𝑖−𝑝+1|𝑡𝑖−𝑝)− 𝑔
⋆(𝑘)
𝑗 (𝑡𝑖−𝑝+1|𝑡𝑖−𝑝)

𝑘 = 0, 1, . . . ,𝑀
(48)

AOFSEM, (37), to go from (43) to optimization algorithms.
According to Theorem 1, the (𝑘)th sample value (47) of the random vector

(36) varies, if we consider it in the Mean Square, MS, sense, by Const𝜃 remain-
ing constant during the numerical scanning—does not matter sequentially or in
parallel—of the parameter space Θ, from the (𝑘)th sample value (48) of the 𝑝-
points delayed random discrepancy (37) between (A) state �̂�⋆(𝑘)(𝑡𝑖−𝑝+1|𝑡𝑖−𝑝) of
the target optimal filter (26)+(27) and (B) state 𝑔⋆(𝑘)𝑗 (𝑡𝑖−𝑝+1|𝑡𝑖−𝑝) of the sub-
optimal filter (28), that is from the error committed by (B) if used as the 𝑗th
estimator of (A) based on the (𝑘)th sample data (45)≡(46). The theorem also
proves equation (41), which we use hereafter as the 𝑝-point delay for any (𝑘)th
sampling path thus obtaining (49)

𝑦𝜃[𝑗]
(︀
𝑡𝑖𝑖−𝑝+1|𝑡𝑖−𝑝

)︀
= 𝑔⋆𝑗 (𝑡𝑖−𝑝+1|𝑡𝑖−𝑝). (49)

Remark 12. The delay by (𝑘 + 1)𝑝 points of discrete time from the current
moment 𝑡𝑖 ≡ 𝑡𝑐𝑖 in (45), and in (47), (48) as well, if we relate (47), (48) to the
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real time, is irrelevant because of the stationarity assumption of the system under
study and the MS sense used.

Note in passing that, by virtue of Remark 7, vectors in the (𝑘)th sample defined
by expressions (45), (47), and (48) have dimension 𝑛, due to equality 𝑝 = 𝑛 in the
situation of scalar system output, 𝑚 = 1.

Assuming that the 𝜃 parameter has no explicit constraints, the unconstrained
optimization is applicable. The most straightforward way of doing this gives rise
to what is known as Newton’s method (50) [29, pp. 44–79]:

(a) solve 𝐺(𝜃[𝑗])Δ = −∇𝜃𝑓𝑀
(︀
𝜃 = 𝜃[𝑗]

)︀
for vector Δ ;

(b) set 𝜃[𝑗 + 1] = 𝜃[𝑗] + Δ
(︀
𝜃 = 𝜃[𝑗]

)︀
with Δ

(︀
𝜃 = 𝜃[𝑗]

)︀
, Δ .

}︃
(50)

Hereafter, gradient operator is used as

∇𝜃(◇) ,
[︁

𝜕
𝜕𝜃1

(◇)
⃒⃒⃒
· · ·
⃒⃒⃒

𝜕
𝜕𝜃𝑟

(◇)
⃒⃒⃒
· · ·
⃒⃒⃒

𝜕
𝜕𝜃𝑞

(◇)
]︁T

≡
[︁
· · · 𝜕

𝜕𝜃𝑟
(◇) · · ·

]︁T
𝑟=1,𝑞

(51)

to be applied to each scalar element of vector or matrix (◇); if (◇) = 𝑓𝑀
(︀
𝜃 = 𝜃[𝑗]

)︀
,

we have (50) with the matrix of second partial variables 𝐺(𝜃[𝑗]) known as Hessian
matrix and defined by ∇2

𝜃
𝑓T𝑀
(︀
𝜃 = 𝜃[𝑗]

)︀
, ∇𝜃

(︀
∇𝜃𝑓𝑀

(︀
𝜃 = 𝜃[𝑗]

)︀T)︀. When 𝑀 = 0,
(50) is treated as a pure stochastic approximation of Newton’s method.

The following gradient descent optimization

𝜃[𝑗 + 1] = 𝜃[𝑗]− 𝛾𝑗∇𝜃𝑓𝑀
(︀
𝜃 = 𝜃[𝑗]

)︀
(52)

can be a reasonable alternative to (50) with a lower computational burden. It uses
a small enough step size 𝛾𝑗 ∈ R+ to guarantee 𝑓𝑀

(︀
𝜃 = 𝜃[𝑗 + 1]

)︀
< 𝑓𝑀

(︀
𝜃 = 𝜃[𝑗]

)︀
and thereby performs the transition to the next SOKF(𝜃[𝑗 + 1]), as shown in
Fig. 4 and mentioned in Subsec. 4.5 to test candidate models sequentially. In
this figure, the arcs directed by arrows from points 𝑡𝑖−𝑝+1, 𝑡𝑖−𝑝+2, and 𝑡𝑖 to 𝑡𝑖−𝑝

on the horizontal line tell us, cf. (31), that all predictors 𝑔⋆(𝑘)𝑗 (𝑡𝑖−𝑝+ℎ|𝑡𝑖−𝑝), their

numbers ℎ = 1, 2, . . . , 𝑝, involved in obtaining the estimates 𝑦(𝑘)
𝜃[𝑗]

(𝑡𝑖−𝑝+ℎ|𝑡𝑖−𝑝) =

𝐻⋆𝑔
⋆(𝑘)
𝑗 (𝑡𝑖−𝑝+ℎ|𝑡𝑖−𝑝) are conditioned, in the probabilistic sense, on the entire mea-

surement history 𝑦
(︀
𝑡𝑖−𝑝
𝑖−𝑝−𝑙

)︀
,
{︀
𝑦(𝑡𝑖−𝑝−𝑙), 𝑦(𝑡𝑖−𝑝−(𝑙−1)), . . . , 𝑦(𝑡𝑖−𝑝−1), 𝑦(𝑡𝑖−𝑝)

}︀
,

(theoretically, 𝑙 → ∞) which is incorporated in the predictors and precedes their
calculation immediately after time 𝑡𝑖−𝑝.

Thus, upon a closer look at what the theory requires, we realize that it requires
the cost of time intervals (44) depicted in Fig. 4 by boxes as 𝑡𝑖(𝑘)𝑖−𝑝+1(𝜃[𝑗]), then

𝑡
𝑖(𝑘)
𝑖−𝑝+1(𝜃[𝑗 + 1]), and so on, as related to SOKF(𝜃[𝑗]), then SOKF(𝜃[𝑗 + 1]), and

so on during the AKF step-by-step accelerated optimization.
5.2. Computation scheme and numerical robustness challenge. Let us

perform the necessary calculations for the above algorithm (52).
Using (49) to obtain

∇𝜃

(︁[︀
𝜀
⋆(𝑘)

𝜃[𝑗]
(𝑡𝑖𝑖−𝑝+1|𝑡𝑖−𝑝)

]︀T)︁
= −∇𝜃

(︁[︀
𝑔
⋆(𝑘)
𝑗 (𝑡𝑖−𝑝+1|𝑡𝑖−𝑝)

]︀T)︁ (53)
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Figure 4. A timing diagram for minimizing the average (43) of the indirect performance index
(39) by a gradient sequential method (52) using the AIOF as defined in (43)

and further (43) as (◇) in (51) yields (54), the Objective Function Gradient, OFG:

∇𝜃𝑓𝑀
(︀
𝜃 = 𝜃[𝑗]

)︀
=

2

𝑀 + 1

𝑀∑︁
𝑘=0

∇𝜃

(︁[︀
𝜀
⋆(𝑘)

𝜃[𝑗]
(𝑡𝑖𝑖−𝑝+1|𝑡𝑖−𝑝)

]︀T)︁× [︁𝜀⋆(𝑘)
𝜃[𝑗]

(𝑡𝑖𝑖−𝑝+1|𝑡𝑖−𝑝)
]︁

=
−2

𝑀 + 1

𝑀∑︁
𝑘=0

∇𝜃

(︁[︀
𝑔
⋆(𝑘)
𝑗 (𝑡𝑖−𝑝+1|𝑡𝑖−𝑝)

]︀T)︁× [︁𝜀⋆(𝑘)
𝜃[𝑗]

(𝑡𝑖𝑖−𝑝+1|𝑡𝑖−𝑝)
]︁

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(54)

Controlling whether the OFG norm reaches a neighborhood of zero, that is check-
ing it for values ‘greater than/equal to’ (>) or ‘less than’ (<) a small threshold 𝛿
is a convenient criterion for continuing or terminating the procedure:⃒⃒⃒⃦⃦

∇𝜃𝑓𝑀
(︀
𝜃 = 𝜃[𝑗]

)︀⃦⃦⃒⃒⃒ continue
>
<

stop
𝛿 . (55)

The identification procedure will continue repeating operations numbered (Fig. 5)
by blocks , ®, ¯, °, ±, and ² with the same data stored in block ¬ after
updating the parameter estimate in block ³:

𝜃[𝑗 + 1] := 𝜃[𝑗] (56)

or will stop with capturing the result in block ´:

𝜃FINAL := 𝜃[𝑗] . (57)
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The most important thing about these repeatable operations (cf. Fig. 5) is
that the calculations in block  – the AKF, and in block ° – the AKF Sensitivity
Model being an algorithm to compute values of partial derivatives of state vector
estimates and covariance matrix elements relative to the 𝑞-vector parameter esti-
mates 𝜃[𝑗], must be numerically stable and robust with respect to ill-conditioned
models. In this regard, it should be noted that practical projects using Kalman
filtering, KF, since the very first one [30], have opened a wide field for research and
development on giving KF algorithms, including Riccati equations, required nu-
merical stability and robustness properties. The fundamental ideas of Bierman [27]
about matrix factorization served as a powerful impetus.

For the method of Active System Identification developed in this article and
earlier works by the author, the greatest contribution from Russian scientists was
made by Julia Tsyganova and Maria Kulikova in their dissertations [31, 32] and
numerous publications, partly co-authored [33, 34] with the author of this syn-
thesis paper. More references on the pioneering titles can be found in a recent
survey [35]. In there, one can find discussions and current developments for the
efficient and robust computation of derivatives on the parameters of discrete filter
equations, including a set of vector-valued filter sensitivity equations and a set
of matrix-valued Riccati-type sensitivity equations arising in implementing the
(steepest) gradient descent method (52); the necessary experimental proofs are
there also available. In promising software projects, it is strongly recommended
to create modern implementations of  and ¯ blocks (in Fig. 5) based on orthog-
onalized array methods for parametric identification of discrete linear stochastic
systems [31].

Figure 5. Generalized Parametric Identification Scheme by the Active Principle. Legend:
¬ = (45)≡(46);  = (31)→(29)→(30)→(31)→(49); ® = (47); ¯ = (53); ° = (54); ± = (55);

² = (52); ³ = (56); ´ = (57)
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5.3. Sequence of work for a software project. If there is an object of
interest in the application domain, an appropriate mathematical model must first
be written for parametric identification of the TF, considered to be an adequate
description based on the laws of Physics. An example of such preprocessing op-
erations is given in Sect. 2. It is highly expedient to perform further actions on
the application of this method not manually, but in the automated mode on the
Maple software, according to the guidelines in Remark 5. The calculation proce-
dure recommended for identifying the TF of an object according to the method
outlined above is shown graphically in Fig. 6. This diagram can be useful when
creating a specialized software tool to solve similar problems if such a project
arises. Application-specific (𝐴𝑆) calculations for the problem taken in this article
as an illustrative example are dictated by the following intermediate quantities:

À parameters 𝜔n, 𝜁, 𝐷, and 𝜒 in (11);
Á matrix 𝜑(𝑡) in (17) with its entries in (18);
Â parameter 𝑑 in (19);
Ã matrix 𝑄d in (21) with its entries in (22);
Ä matrix �̊�d with its three non-zero entries in (23);
Å matrix Φ̊d in (24); and
Æ matrices Φ̊⋆ and �̊�⋆ in (25).

These quantities are all continuous and differentiable functions of elements �̊�𝑖
of vector �̊� introduced after (24) for this application problem. Following the form
of these functions, we apply not the true parameter value �̊�, but its estimated
value 𝜃 to have continuous and differentiable, over 𝜃, functions. These properties
make it possible to compute the gradient ∇𝜃𝒥

IPI
𝑡𝑖≡𝑡𝑐𝑖

(𝜃 = 𝜃[𝑗]) in algorithm (52)
tuning the parameter 𝜃.

Figure 6. Flow-diagram of works for a software project to implement the Active Principle of
parametric system identification in the class of linear, time-invariant, completely observable
models. 𝐴𝑆 = application-specific and 𝑆𝑀 = standard matrix calculations. The paper section

numbers and equation numbers (within parentheses) are shown
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6. Conclusions. Returning to the problem issues posed at the beginning, we
believe the goals have been achieved.

The incompatibility of the theoretical (direct) criterion of optimality of the
system model and practical methods of optimization has shown itself to be the
most difficult or even impossible obstacle to overcome under conditions of un-
certainty directly. In this article, incongruity between theoretic perception of the
system optimality and practical on-computer optimization is overcome through
the construction of an indirect proximity criterion of the adaptive and optimal
system models to each other, which can become a practical tool for parametric
system identification. This is done here for a class of linear time-invariant models
characterized by a transfer function, relying on Kalman filter theory. As proven
here, it is necessary and sufficient to modify a physically specified structure into
the discrete-time standard observable model in both the observed data and the
adaptive Kalman filter to implement this idea.

The advantage of this modification is twofold. First, the restrictions on the
permissible size of a’priori parametric uncertainty are removed because the mea-
surement channel parameters are transfered formally into the modified state equa-
tion. Second, and most importantly, we replace the direct, but unattainable for
identification, objective function with the indirect objective function, which is
equivalent to the original direct function, but—to our satisfaction—attainable
and suitable for conventional optimization methods. The work of this preliminary
modification is difficult to perform manually. Fortunately, it is greatly facilitated
and accurately performed using well-known symbolic computation tools (Maple).

We prefer to denote the above-used concept of ‘equivalence’ of the two objec-
tive functions by the new term ‘equimodality,’ which simply means the coincidence
of their minimizers in the argument space. This coincidence is important because
ensures that minimization of the constructed practical indirect cost function does
lead to the unbiased state estimates along with the unbiased parameter estimates,
as it should be in the optimal filter.

The inclusion of a new illustrative example from modern digital communica-
tion technology increases the visibility of the approach and thereby encourages
its extension to broad real-world applications.

Theoretical questions should not overshadow the practical side of the case.
Therefore, this paper also includes practical critical issues: the organization of
calculations in the computer time-scale, the structural algorithmic construction
of the identification procedure, and the planning of the corresponding design work.

As a limitation of the work, it could be pointed out that underlying its results
are the assumptions that the system to be modeled is linear and time-invariant.
There is nothing to argue against this, except for the famous aphorism by George
E. P. Box [36, p. 2]: “Models, of course, are never true, but fortunately it is only
necessary that they be useful.”1 Accordingly, if the system output measurement
shows the presence of nonlinear distortions, it may mean that the suitability
of the proposed method to identify a nonlinear model with a dominant linear
kernel defined by the Best Linear Approximation concept, BLA, based on [2]
propositions, should be considered and recommended for extended study.

1https://www.tandfonline.com/doi/epdf/10.1080/01621459.1979.10481600?
needAccess=true&role=button
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Идентификация передаточной функции посредством
минимизации рассогласования оценок состояния
адаптивного и оптимального фильтров

И. В. Семушин
Ульяновский государственный университет,
Россия, 432017, Ульяновск, ул. Л. Толстого, 42.

Аннотация

Статья посвящена дальнейшему развитию активного принципа па-
раметрической идентификации системы в классе линейных, инвариант-
ных во времени, полностью наблюдаемых моделей. В качестве целевой
модели идентификации выбран оптимальный фильтр Калмана (ОФК),
который не более чем концептуально присутствует в дискретно наблю-
даемом отклике системы на обучающее возбуждение типа белого шума.
Путем модификации физически заданной структуры в стандартную на-
блюдаемую модель как в наблюдаемом отклике, так и в адаптивном
фильтре Калмана (АФК), строится так называемый обобщенный оста-
ток (ОО), равный рассогласованию между оценками состояния адаптив-
ного и оптимального фильтров плюс независимая от АФК шумовая со-
ставляющая. В силу этой модификации средний квадрат ОО становится
новым критерием близости модели для этих фильтров. Минимизация
этого критерия с помощью обычных практических методов оптимиза-
ции дает точно такой же результат (АФК = ОФК), как и минимизация
теоретического критерия, который, к сожалению, недостижим для лю-
бых методов численной оптимизации АФК. В статье представлена по-
дробная пошаговая процедура, объясняющая вышеуказанное решение
в терминах параметризованной передаточной функции. Для наглядно-
сти и стимулирования применения подхода в реальном мире в статье
используется модель передаточной функции линии витой пары в типич-
ной системе xDSL. Обсуждаются проблемы реализации теоретических
положений метода. Вопрос о распространении предложенного подхода
на проблемы идентификации линейных моделей для нелинейных систем
обозначен в направлениях дальнейших исследований.
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