


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki
[J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2023, vol. 27, no. 2, pp. 214—240
ISSN: 2310-7081 (online), 1991-8615 (print) d  https://doi.org/10.14498/vsgtu2009

MSC: 26A33, 44A10, 45J05

An efficient method for the analytical study of linear
and nonlinear time-fractional partial differential
equations with variable coefficients

M. I. Liaqat'?, A. Akgiil®>*®, E. Yu. Prosviryakov®789

Government College University, Lahore, 54600, Pakistan.

National College of Business Administration & Economics, Lahore, 54660, Pakistan.
Lebanese American University, Beirut, 1102 2801, Lebanon.

Siirt University, Siirt, 56100, Turkey.

Near East University, Nicosia, 99138, Turkey.

Ural Federal University, Ekaterinburg, 620137, Russian Federation.
Institute of Engineering Science, RAS (Ural Branch),
Ekaterinburg, 620049, Russian Federation.

Urals State University of Railway Transport,

Ekaterinburg, 620034, Russian Federation.

9 Udmurt Federal Research Center, RAS (Ural Branch),

Izhevsk, 426067, Russian Federation.

N OGO W N

oo

Abstract

The residual power series method is effective for obtaining approximate
analytical solutions to fractional-order differential equations. This method,
however, requires the derivative to compute the coefficients of terms in a
series solution. Other well-known methods, such as the homotopy pertur-
bation, the Adomian decomposition, and the variational iteration methods,
need integration. We are all aware of how difficult it is to calculate the frac-
tional derivative and integration of a function. As a result, the use of the
methods mentioned above is somewhat constrained. In this research work,
approximate and exact analytical solutions to time-fractional partial differ-
ential equations with variable coefficients are obtained using the Laplace
residual power series method in the sense of the Gerasimov—Caputo frac-
tional derivative. This method helped us overcome the limitations of the
various methods. The Laplace residual power series method performs excep-
tionally well in computing the coefficients of terms in a series solution by
applying the straightforward limit principle at infinity, and it is also more ef-
fective than various series solution methods due to the avoidance of Adomian
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and He polynomials to solve nonlinear problems. The relative, recurrence,
and absolute errors of the three problems are investigated in order to evalu-
ate the validity of our method. The results show that the proposed method
can be a suitable alternative to the various series solution methods when
solving time-fractional partial differential equations.
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RPSM  residual power series method
HPM homotopy perturbation method
ADM Adomian decomposition method
VIM variational iteration method
TFPDEs time-fractional partial differential equations
LRPSM Laplace residual power series method
GCFD  Gerasimov—Caputo fractional derivative
DEs differential equations
FODEs fractional order differential equations
Rel-E relative error
Abs-E absolute error
Rec-E recurrence error

LRF Laplace residual functions
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1. Introduction. Fractional calculus deals with fractional order derivatives
and integrations. Fractional calculus was founded by two mathematicians, Leib-
niz and I’Hopital, and its official birthday is September 30, 1695. The widespread
usage of fractional calculus in fields including image processing, physics, engineer-
ing, biology, biochemistry, entropy theory, and fluid mechanics has attracted a lot
of researchers in recent years [1-5|. There are numerous definitions for fractional
order derivatives; however, not all of them are regularly applied. The Griinwald—
Letnikov, Hadamard derivative, Riemann-Liouville, conformable, and Gerasimov—
Caputo fractional derivative (GCFD) are the most well known fractional order
derivatives [6-9|.

The GCFD of order > 0 is given by [10]:

1 /w —B—ldr
e w—2q)" —N(q)dq, r—1<pg<r,
F(T_/B> q ( ) dqr ()

d?"

dwTN(w)’ B=reN.

The following are the important properties of GCFD:

(i) DEE=0,¢ R,

(i) Dfuwt = —LEFD
LE+1-75)

(i) DE(E1R) (W) 4 ERo(w)) = E,DER; (W) + EDIN (w).
In some cases, fractional order derivatives are preferable to integer-order deriva-
tives for modeling because they can simulate and examine complex structures with
complicated nonlinear processes and higher-order behaviors. There are two main
causes of this. First, rather than being limited to an integer order, we can choose
any order for the fractional order derivatives. Furthermore, when the mechanism
has long-term memory, fractional order derivatives are advantageously based on
both past and present situations.

In the disciplines of science and engineering, there are natural and physical
phenomena that, when described by mathematical relations, turn into differen-
tial equations (DEs). Examples of phenomena that are characterized by DEs in-
clude equations of motion, simple harmonic motion, beam deflection, and more.
The fractional order differential equations (FODEs) have developed a convenient
means of expressing naturally occurring phenomena in artificial intelligence, en-
gineering, physics, earth sciences, bioinformatics, finance systems, and biological
systems. Consequently, the study of the approximate or exact solution enables
us to recognize the mechanism of these FODESs, and their actual physical inten-
tion can be perceived from the graphical depiction of the solution. Applications
often come with FODESs that are so complex that exact solutions are frequently
impractical. For solving FODEs in the initial circumstances given, methods that
give approximate solutions present a potent alternative tool. In recent times, nu-
merous approximate methods for solving FODEs have been presented [11-19].

The residula power series method (RPSM) is a very powerful approach in
terms of the construction of power series solutions for FODEs. Many FODEs have
been successfully solved by RPSM. Y. Zhang et al. [20] used RPSM to develop
series solutions of the time-fractional Schrédinger equation. A. El-Ajou et al. |21]
studied the KdV-Burgers equation to find approximate solutions. R. Saadeh et
al. [22] discussed the fractional Newell-Whitehead—Segal equation by the RPSM.

DR (w) =

WP r—1<B<r, é>r—1,7€eN, £ €R,
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Approximate analytical solutions of FODEs can be solved effectively using the
RPSM. However, to determine the coefficients of the series solution, the (n — 1)/
derivative of the residual function is required. As we all know, it is difficult to
compute the fractional order derivatives of a function. This limits the application
of the classic RPSM to a certain extent. To overcome this drawback, T. Eriqat et
al. [23] introduced a new approach, known as the Laplace residual power series
method (LRPSM), which is the coupling of the Laplace transforms and the RPSM
for approximate series solutions of linear and nonlinear FODESs. The limit idea is
used to establish the series coefficients in the LRPSM. The set of guidelines for
this novel approach is based on converting the specified equation into the Laplace
transforms space, identifying an expansion solution to the transformed equation,
and then obtaining the original equation’s solution by using the inverse Laplace
transform.

Finding solutions to FODEs with variable coefficients is also an interesting
area for researchers. E. Hesameddini and A. Rahimi [24] used the variational iter-
ative approach to solve FODEs with variable coefficients. Y. Keskin et al. [25] used
the generalized Taylor collection technique to find solutions for higher-order linear
FODEs with variable coefficients. S. Sarwar et al. [26] found approximate solu-
tions to time-fractional wavelike models with variable coefficients using the defi-
nition of the GCFD and with the help of optimal homotopy asymptotic method.
With the operational matrix technique, D. Rostamy and K. Karimi [27]| estab-
lished approximate solutions of fractional-order wave and heat equations with
variable coefficients. H. Bulut et al. [28] used the Sumudu transform method to
obtain approximate solutions for partial differential equations with variable coef-
ficients. M. Nadeem et al. [29] established numerical solutions for the fourth-order
parabolic partial differential equation with variable coefficients using the modified
Laplace variational iteration method. M. Dehghan and J. Manafian [30] used the
homotopy perturbation technique to find a solution for a fourth-order parabolic
problem with variable coefficients. T.M. Elzaki and S.M. Ezaki |31] established
solutions for ordinary DEs with variable coefficients using the Elzaki transform
method. Each of these strategies has particular limitations and drawbacks. These
methods require a lot of work and longer running times.

In this research, the LRPSM was used to solve time-fractional partial diffren-
tial equations (TFPDEs) with variable coefficients in the sense of GCFD. This
method combines the Laplace transforms with the RPSM, which is based on a
revamped version of Taylor’s series and yields a convergent series as a solution.
By employing the simple limit principle at infinity, the LRPSM excels at calcu-
lating the coefficients of terms in a series solution, but other well-known methods
such as the variational iteration method (VIM), Adomian decomposition method
(ADM), and homotopy perturbation method (HPM) need integration, while the
RPSM needs the derivative, both of which are challenging in fractional contexts.
LRPSM is also more effective than various series solution methods due to its small
processing size and avoidance of Adomian and He polynomials to solve nonlinear
problems. Moreover, this method does not require any assumptions about physi-
cal parameters, no matter how big or small, for the problem. Therefore, it can be
used to handle both mildly and severely nonlinear problems and to circumvent
some of the issues that perturbation techniques previously had. To evaluate the
efficiency and consistency of the suggested strategy, the relative error (Rel-E),
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recurrence error (Rec-E), and absolute error (Abs-E) of the three problems are
examined. The findings demonstrate that when solving FODEs, the LRPSM can
be a viable substitute for the RPSM, VIM, ADM, and HPM.

To emphasize the essential ideas of our suggested method, such as its de-
pendability, capability, and application, we selected the most prevalent forms of
TFPDEs with variable coefficients. J. Fourier proposed the heat equation in 1822,
which defines how a certain amount of heat diffuses over a region. Consider the
TFPDE with variable coefficients shown below [27]:

DEPR(9,w) + S(0)(R) — Z(6,) = 0, (1)
subject to the initial condition:
DIR(0,0) = @,

where n = 0,1,2,3...,6 — 1; 0 = (01,02,...,0.) € R%, B € (%], k € N,

and W(R) = W(R, DOR, DR, ..., DUPR, DI, DR, ... DR, ..., D',
DR, DN), with h— 1 < f, <A, h=1,2,....p;u=1,2,....e.
The GCFD of w of order n and 6,, of order ¢y, are represented by Dzﬁ and

Dg’;“, respectively. These kinds of DEs give accurate representations of a wide
range of physical events in the fields of fluid dynamics, elastic mechanics, and
electrodynamics [26-33].

This study is structured as follows. First, in Section 2, we present significant
definitions and findings from FC theory. The LRPSM algorithms for solving TF-
PDEs with variable coefficients are discussed in Section 3. In Section 4, some linear
and nonlinear TFPDE problems are solved to demonstrate the accuracy and reli-
ability of LRPSM. The numerical and graphic results obtained using LRPSM are
evaluated in Section 5. Finally, we conclude the paper in Section 6.

2. Preliminaries. In this section, basic definitions, Laplace transform char-
acteristics, and LRPSM-related theorems that help establish approximate series
solutions are included.

DEFINITION 1 [34]. The Laplace transforms of R(0,w) is defined as follows:

LIN(O,w)] =Q(0,v) = /000 R(0,w)e " dw,

and the inverse Laplace transforms is defined by

b+ioco
L7120, v)] = R(0,w) = / "0, v)dy, b= Re(v) > by,
b—ioco
where 6 = (01,09,...,0.) € R® and e € N and by lies in the right half plane of the
absolute convergence of the Laplace integral.

LeEMMA 1 [23]. Consider that R1(0,w) and Na(6,w) satisfy the axioms of the ex-
istence of Laplace transforms. Suppose that L[Ny (6,w)] = Q1(6,v),, L[R2(0,w)] =
Q2(0,v) and the constants (1, Ca. When this occurs, the following criteria are
met [23,24]:

(i) LIGR1(0,w) + Ra(0,w)] = G (0, v) + (0 (0, v);
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(il) £71¢Q1(0,v) + 920, v)] = (N1 (0, w) + Ry (0, w);
(iii) &o(0) = Vllngo vQ(0,v) = N(0,0);

r—1 ;
, AT
(iv) LIDEN(O,w)] = v7Q(0,v) = % r—1<pg<r,rel;
=0
” r—1 ‘ .
(v) L[DIPR(0,w)] = vBQ(0,v) — S vPUr=D-1pifR(,0), 0<B<1
=0

DEFINITION 2 [35]. The multiple fractional power series is defined as follows:

Z&“ (w —wo) Tﬁ_fO(W—WO) +€1(UJ—WO)B+£2(W—WO)26—|-"',

Where 9 = (61,02,...,0.) € R® and e € N, w represent a variable and &,(0)
represent the coefficients of the multiple fractional power series.

We present a new type of multiple fractional power series in the sense of
Laplace transform space in the following lemma, which is the main pillar for the
LRPSM.

LEMMA 2 [23]. Assume that the multiple fractional power series demonstration
is in Laplace transforms space for the function LIR(0,w)] = Q(0,v) as shown

follows:
Z S v

where, 0 = (01,62,...,0.) € R, e € N.

THEOREM 1 [23|. The coefficients of the multiple fractional power series can be
determined as follows:

&(0) = DIPX(6,0),

where DZ)B = Dg . Dg . -Dg (r times).
The following theorem establishes the prerequisite for the convergence of the
new form of multiple fractional power series.

THEOREM 2 [23|. Let LIN(0,w)] = Q(0,v) can be denoted as the new form of

multiple fractional power series given in Lemma 2. If ]V,C[D(]H)BN( w)l| <P on
0<v<ywith0< B <1, then the remainder R;(0,v) of the multzple fractional
power series satisfies the following inequality:

P
|R;(0,v)] < SGTDAL 0<rv<y.

3. LRPSM for Solving TFPDEs with Variable Coefficients. In this
section, the set of steps for employing the suggested method to acquire approx-
imative analytical solutions to TFPDEs is addressed. First of all, we apply the
Laplace transforms to the TFPDEs with variable coefficients and get an algebraic
expression as a result. Then, we take into account the multiple fractional power
series as the new space solution for the resulting expression obtained in the first
step, which is the fundamental idea behind the LRPSM. The way in which the
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coeflicients of this series are obtained by employing the limit idea is the primary
difference between the LRPSM and the RPSM. The resulting implications are
then translated into actual space using the inverse Laplace transforms. The rules
for using the LRPSM to locate solutions are listed below.

THE LRPSM ALGORITHM FOR LINEAR AND NONLINEAR TFPDES. We describe
the LRPSM’s set of guidelines for solving Eq. (1).

STEP 1. Reformatted Eq. (1):
DIPR(0,w) + I(0)T(R) — Z(4,N) = 0. (2)
StEP 2. Utilize £ on both sides of Eq. (2):
L[DEPR(0,w) + S(0)T(R) — Z(6,R)] = 0. (3)

Using the Lemma 1(v) and the initial condition, we get the following from Eq. (3):

K—1 j
DIR(0,0)  S(0)B(v) A(6,v)
H6,v) = Z;) S T a8 T T (4)
j=
where L[Z(0,R)] = A(0,v), LIV (R)] = B(v).
STEP 3. Assume that the multiple fractional power series solution of Eq. (4)
in Laplace transforms space is below:

STEP 4. As a result of applying the Lemma 1(iii) and Theorem 1 we obtained
the following results:

&o(0) = lim vQ(6,v) = R(6,0),
£1(0) = DIN(6,0),
&(0) = D¥X(9,0),
&,(0) = D'PR(6,0).

STEP 5. Assume that the jth truncated multiple fractional power series solu-
tion of Eq. (4) is below:

r 1’
r=0 v ot
§o(0) | €1(0)
2(0,v) = v + £h+1 T nﬁ+1 + Z ,/r,3+1
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STEP 6. The Laplace residual functions (LRF) and jth truncated LRF for the
Eq. (4) are defined as follows:

Kk—1 j
DIR(6,0)  S(0)B(v) A(0,v
LRes(0,v) = Q(0,0) = Wﬂ(ﬂ)+ (V)J'B() fﬂﬂ),
j=0

and

=y 5% S v v
0,0, ) — Z D{X(0,0) 0)B(v) A0,v)

LRes;(0,v) = eTES] BT (5)

J=0

STEP 7. By inserting the jth truncated multiple fractional power series into
the Eq. (5) we get the following:

So(0) | &i(0)

EResj(Q,y):( + 44 £ (9) + ZJ: fr(e))_

£p+1 pnB+1 B+l
r=n+1
CADIN0,0)  S(0)Br)  A@0,v) ;
_Z ViB+1 JiB B (6)

J=0

STEP 8. Multiplying the resulting expression £ Res;(6,v) by v/%*1 on both
sides of Eq. (6):

841 _ipr(&0) | &(x)
viP LRes;(0,v) = VI8 (T'i‘ [Ea! +-- nﬂ+1 + Z yrﬁ+1
r=n+1
DJN 6,0) %(Q)B(u) A0, v) .
B Z y]5+1 y]ﬂ o y]ﬁ ) ( )
STEP 9. Applying h_}m on both sides of Eq. (7):
+1 _ +1/600)  &(0) &n(6)
VILH;OVJB LRes;(0,v) = ulggoyjﬁ < ” + Al + VnBJrl-i—

T2 DIN0G,0)  S(O)B)  A®,v)
Z yr5+1_z ViB+1 viB B )
r=n+1 7=0

STEP 10. Solve the following expression for £;(6):

lim (V]B—HERGS](H v)) =0,

v—00

where j =n+1,n+2,....
SteP 11. To obtain the jth step approximate solution of Eq. (4), substitute
the obtained values of £;(#) into a jth truncated series of Q(6,v).
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StEP 12. Apply the £7! on Q;(6,v) to attain the jth approximate solution
N;(0,w).

4. Applications to Linear and Nonlinear TFPDEs with Variable Co-
efficients. In this section, to show the applicability and reliability of the novel
algorithm, three linear and nonlinear TFPDEs are solved.

PrOBLEM 1. In our first illustration, we take the nonlinear TFPDE provided
below [33]:

2

0
DiﬂN(ela (U) = N2(617 w)w (Nel (917 W)N9191 (917 w)N919191 (017 UJ)) +
1

2

+ (Ngl(ﬁl,w))Z(;?eQ(Nglgl (01,0))” — 18R%(01,w) + R(01,w), (8)
1

where 0 < 8 < 1, w > 0, #; € R, and with the following initial conditions:

N(01,0) =%, DPR(H,0) = .

By applying £ to Eq. (8),

82
L[DZN(01,w)] = E[NQ(Ql, w) =z (R0: (01, 0)Na16, (61, 00)Ngy 010, (01, 0)) +
1
2 0 3 5
+ (R0, (01,0)) 575 (R0, (01,0))° = 1887 (01, 0) + RO, )| (9)

By following the steps that are established in Section 3, we get the following result
from Eq. (9):

6y, v) = 67+

1
V2B

B

2

+ L[(ﬁl[Q(Ql,u)])za(ZIQ<£1£1[9(01,y)]x
0* 3

X gl 10005 L7 00 ) |+

+ Véﬁc[(aaelc—l[sz(el,w)]f;;(;;%5—1[9@, ) -

— (e[, )] + T;Q(el, V). (10)

Consider the series solutions of Eq. (10), which have the following form:

Qb1,v) =) o >0
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The jth truncated expansion is as

fr 01
Q;(61,v) Z AL > 0.
As a result of applying the Lemma 1(iii) and Theorem 1, we obtained the

following results:

lim (vQ(61,v)) = R(01,0) = &(61) =, &(01) = DER(6;,0) = .

v—00

So, Eq. (10) becomes as follows:

ef1
gr 91
(01, v) = — ,,ﬂ+1 +Z it (11)

The following is the LRF for Eq. (10):

LRes(01,v) = Qb1,v) — . % -
14 14
_ %ﬁc[(c—l[mel, u>])2£i2(£1£—1m<01,u>] x
X 8‘3;51[9(91,;/)]8‘31,)51[9(01#)])} -
- (0 G (g o) -

(e [Q(el,y)])5} - T;Q(el, D).

The following is the jth truncated LRF for Eq. (10):

eal 691
LRes;(01,v) = Q(01,v) = — = —55 =
1 -1 2 82 8
_ T2B£[(£ (61" 555 <891‘C 192 (61, )]

82 63 -
% g2t [Qj(91,’/)]%13£ 1[Qj(01’y)]>] -

| ) 22 92 3
—ﬁﬁ{(aelﬁ [Qj(glvw)D 69%(80%5 [Qj(Ql,V)]) -
1

- 18(&*1[%(91,”)])5] % (61v). (12)

In Eq. (11) and Eq. (12), use j = 1,7 to find the undetermined coefficients
&j(01,62), and then solve the following:

lim (I/JﬁJr L Res;(61,v)) = 0.

V—r00
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The following outcomes obtained:
E(01) =, &a(01) =, &(6) =,

&(0h) =, &(01) =, &(61) = .

In this way, we obtained the following 7th step approximate solution of Eq. (10)
in Laplace transforms space:

11 1 1
__ 0
97(91,u)_e1(;+yﬁ+1 e
1 1 1 1

+ +

—571)- (13)

By applying £~! to Eq. (13), we obtain the approximate 7th step solution in the
original space, which has the following form:

JAB+1 + 5B +1 + 6B +1

8 w28 w38
N7 (61, w) = e (1 + oo - -
(W) =e TB+1]  TRE+1]  TBA+1]
PP R )
r[4p+1] TpBB+1] TEs+1] T[78+1]/
When 8 = 1.0, the Tth step approximate solution is
2 3 4 5 6 7

Rr(01,0) =" (14 b Do D S S (14)

I TR T i) e rr o s
The first eight terms of the series of the exact solution to R(f,w) = e/ are

represented by Eq. (14).

PrOBLEM 2. In our second illustration, we take the linear TFPDE provided
below [32]:

DZR(01, 03, 05,) = L6380,0, (01,05, 03,0) + 303N0y0,(00,6,03,10) +
b 30BN, (00,02, 05,00) + 07+ 03 4 65, (15)
where 0 < 8 < 1, (01,02,03,w) € (R+)4, and with the following initial conditions:
N(1,62,03,0) =0, DPXR(8y,0,,65,0) =607 + 63 — 62
By applying £ to Eq. (15),
LID2PN (61,02, 05,00)] = £ 50380,0, (01,62, 03,) + S 630,0,(61,02, 05, 0) +
+ %932,»29393(91, 02,03, w) + 67 + 63 + 93] , (16)
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By following the steps that are established in Section 3, we get the following result
from Eq. (16):

2
Q(61,02,03,v) = 5+1<92+92 03) + 555 Do, 01, 0, 03,v) +
62 62
+3, 535 D0,0,2(01, 02,03, 0) + 55,28 D030s8(01, 02,03, 0) +
+ e (0T + 05+ 65). (17)

Consider the series solutions of Eq. (17), which have the following form:

(61, 02,05)
Q(01, 05,03, ) Zg LACIAC 2N}

prB+1
The jth truncated series is as
(01,02,03)
Q;(61,02,05,v) Z & Vlrﬁfl ) , v>0. (18)

As a result of applying the Lemma 1(iii) and Theoreml, we obtained the
following results:

VILIEIO(VQ(91,92,93,V)) = £o(61,62,03) = R(01,02,03,0) =0,
£1(01,02,03) = DPX(01, 605, 05,0) = 67 + 62 — 62

So, Eq. (18) becomes as follows:

(92 + 92 57’ 617 027 03
Q;(61,02,03,v) = T Z 0 V> 0. (19)
The following is the LRF for Eq. (17):
LRes(91,92,93,1/) 29(91,92,93, ) 5+1 (92+02 0%)_
0? 02
2 2&D01019(91’02’03’V) - WD92929(017027937V) -

9 1
2 QﬂD95939(01a027937 ) 26+1(9 +9%+9?2))

The following is the jth truncated LRF for Eq. (17):

LRes;(01, 02,03, v) = Q;(01,00,05,v) — BH(@HQQ 03) —

92 62
2 26D91929'(917027037V) - QV%BDGQQQQJ(017927937 V) -
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03 1
2Tf;ﬁz)gag?,sy(el, 02,03,v) — W(G% + 605 +63). (20)

In Eq. (19) and Eq. (20), use j = 1,7 to find the undetermined coefficients
&j(01,02), and then solve the following:

lim (l/‘jﬂ+1£ ReSj(el, 62, 937 V)) = 0.

v—00

The following outcomes obtained:

£2(01,09,03) = 07 + 05+ 63, &3(01,09,03) = 07 + 05 — 03,
54(91702a03) — 9% + 9% + 0%7 55(91702703) = 9% + 0% - 0%7
£6(01,02,03) = 07 + 035 + 63, &7(61,02,05) = 65 + 03 — 65.

In this way, we obtained the following 7th step approximate solution of Eq. (17)
in Laplace transforms space:

07+ 03-05 07+03+605 607+05—063

Q7(01,02,03,v) = B+ + 2B+1 + 36+1 +
G R S S T S S B SN Gl Ak S
AB+1 5B +1 L66+1 JTB+1

By applying £~! to Eq. (21), we obtain the approximate 7th step solution in the
original space, which has the following form:

N7 (61, 62,03,w) =

= (07 +63 -0 (5

WP WP W8 W78

EEmV RSN e R Rt Ry
wQﬂ OJ4’B WG’B

26+1 TB+1] T+ 1])‘

2 2 2
+ (63 + 03+ 03)

When 8 = 1.0, the 7th step approximate solution is

3 5 7

Re(61,02,05,0) = (0 + 08 ~ 00 (5 + 17y * 7 + 1)

+ (62 + 62 + 95)(;E3] gt F[ﬂ)' (22)

The first seven terms of the series of the exact solution to
N(01,02,03,w) = (07 + 63 — 62) sinhw + (67 + 02 + 62)(coshw — 1)

are represented by Eq. (22).
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ProBLEM 3. In our third illustration, we take the nonlinear TFPDE provided
below [33]:

82
DiBN(QMG%W) = W(Nglgl ((91,(92,(,‘))?‘%292(01,927“))) _
62
891892 (0192N91 (917 927 )N92 (017 02>W)) — N(91, 92,0)), (23)

where 0 < 8 < 1, (61, 02,w) € (RT)3, and with the following initial conditions:
N(601,02,0) =M% DBN(),0,,0) = 102,
By applying £ to Eq. (23),

82
0601004

9192N91 (91, 92, w)N92 ((91, 92, w)) — N((gl, 92, w)i| . (24)

LID2PR (01, 0, w) = z:[

82
B 391392(

(N9191 (ela 027 w)NQQQQ (ela 027 U))) -

By following the steps that are established in Section 3, we get the following result
from Eq. (24):

691 02 e0192

9(01,02,1/):7+m+
1 0’ -1 -1
+ 35L  55 ga (Doror £7 1261, 02,)] Doy, £ (001, 02.)]) | -
—15[62(9191) L7YQ(61, 05, )] Do, £71[2(61, 0 y)])} _
255 | ag, 00, 102 Pe: 1,02, 0 1,02,

1
?BQ(01792,V). (25)

Consider the series solutions of Eq. (25), which have the following form:

é.'r 91702
017927 Z l/rﬁ+1 5 v>0.

The jth truncated expansion is as

67’ 01792
91,92, Z Bl v > 0.

As a result of applying the Lemma 1(iii) and Theorem 1, we obtained the
following results:

lim (vQ(61,02,v)) = R(61,02,0) = &o(61) = "%, £,(01) = DIR(61, 02,0) = 2.

vV—r00
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So, Eq. (26) becomes

9192 efb2 (01, 02)
Q;(01,62,v) = + 5 Z S E V>0 (26)

The following is the LRF for Eq. (25):

LRes(61,09,v) = 6,05, 0) — —— — _
L e e D o, L7161, 02,1)]Dg,o, L71Q(0:, 60
2B [601392( 6101 [€2(61, 02, v)] Do,e, (64, 2)1/)]):| +

1 0? _ _
+ﬁ£[391392 (601659, L9261, 02, 1)) Dy, £ 1[9(91,92,@])} +

1
+ wg(el, 92, I/).

The following is the jth truncated LRF for Eq. (25):

69192 e9192
‘CReSJ(ela027 ) - Q](01a027y) - T - m —
1 0? . .
_ Wﬁ[m(pmlﬁ [9(61, 03, )| Dgyo, L [Qj(el,eg,u)])} +

1 0? _
+ﬁ£[ae 5, (016200, £7 (0261, 62, 1)) Dy, L 1[9]-(91,92,1/)])] v
1
+ ﬁﬂj(el,eg,y). (27)

In Eq. (26) and Eq. (27), use j = 1,7 to find the undetermined coefficients
&j(01,02), and then solve the following:

lim (u]ﬁHERes](Hl,Hg, )) =0.

V—00

The following outcomes obtained:

&a(01,02) = —e02 £5(0,0,) = —e02, £4(01,0,) = 02,
&5(01,05) = b2, 6(01,02) = —eP1%2 £1(0y,0) = —e102,

In this way, we obtained the following 7th step approximate solution of Eq. (25)
in Laplace transforms space:

1 1 1 1
_ 010
(61,05, v) = 2(; T BT T 2B 3B T
1 1 1 1
+ pA6+1 + UBBHL 6B+ V7ﬂ+1>' (28)

By applying £~! to Eq. (28), we obtain the approximate 7th step solution in the
original space, which has the following form:
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8 283 38 4P
_ L0102 w — w — d >
R7(01,00,w) = e (1+pw+¢] TRA+1 TBA+1 TEB+1]
WwoB w8 WwB
+ T[53+1] T[66+1] T[78+ 1])'

When 8 = 1.0, the Tth step approximate solution is

w CL)G (.U7
M@ﬂW”:J%O+rm_rm_rm+rm+rm_rm_rm)<”)

The first eight terms of the series of the exact solution to e?1%2(cosw + sinw) are
represented by Eq. (29).

5. Numerical Simulation and Discussion. In this section, the results of
the approximate and exact solutions to the problems are examined graphically
and numerically. Error functions can be used to evaluate the accuracy of the
approximate analytical approach, so it is necessary to specify the errors in the
approximate solutions provided by the LRPSM. We used the Abs-E, Rel-E, and
Rec-E functions to demonstrate the accuracy and efficiency of LRPSM.

Fig. 1 depicts the 2D graphs of the comparative study of the exact and approx-
imate solutions obtained by the proposed method in Problems 1-3. These figures
show the 2D plots of the exact and 7th step approximate solutions attained by
LRPSM for Problems 1-3, when 5 = 0.6, 0.7, 0.8, 0.9, and 1.0 in the range

£=0.6 B=0.7 6=0.8 £=0.6 B=0.7 3=0.8
£=0.9 =10 -==--- Exact £=0.9 p=1.0 —==--- Exact
a b

Figure 1. The approximate and exact re-
sults of N(61,w) (a), N(61,02,03,w) (b), and
N(01,02,w) (c) for various amounts of § in
the range w € [0,1.0], when 61 = 0.5 (b),
3=0.6 B=0.7 5=0.8 61 =62 =03 =0.5 (b), and 6, =02 = 0.5 (c)
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w € [0,1.0]. These graphs indicate that when 8 — 1.0 is applied, the approx-
imative solution converges to the exact solution. The exact and approximation
solutions overlap at 8 = 1.0, demonstrating the accuracy and reliability of the
proposed method.

Fig. 2 shows the Abs-E of the proposed method’s 7th step approximate and
exact solutions to Problems 1-3 in the range w € [0,0.5] for 5 = 1.0.

Fig. 3 depicts a comparison of the Rel-E of the exact and 7th step approximate
solutions to problems 1 — 3 with 5 = 1.0 in the range w € [0,1.0]. The graphical
analysis of the approximate and exact findings in the form of Abs-E and Rel-E
demonstrates the reliability and precision of LRPSM.

Fig. 4 depicts the comparison study using the 3D plots in terms of the Abs-E
of the approximate finding from the seven iterations and the exact result found
using the suggested method to Problems 1-3, respectively, at 8 = 1.0 in the ranges
w € [0,0.5] and € € [0,0.5].

Fig. 5 depicts the comparison study using the 3D curve in terms of the Rel-E
of the approximate finding from the seven iterations and the exact result found
using the suggested method to Problems 1-3, respectively, at 5 = 1.0 in the range
w € [0,0.5] and 6 € [0,0.5].

The study has revealed that the 7th step approximate solutions of the proposed
method are very similar to the exact solution. The reliability and accuracy of
LRPSM is demonstrated by graphical analysis of approximate and exact results
in the form of Abs-E and Rel-E.

Tables 1-3 show Abs-E and Rel-E in the range w € [0, 1.0] between the approx-
imate solution obtained from the seven iterations and the exact solution obtained
by LRPSM at 8 = 1.0 for appropriately chosen values. The amplitudes of Abs-E
and Rel-E are shown in Table 1 which range from 2.29781-107!! to 3.04568 - 10~
and from 2.07914 - 107! to 4.55539 - 10~%, respectively, for Problem 1. The inter-

[N — N7 X — N7
7-1078} 1-1078}
e i )
6-10-8F / s.10-0F /
5-1078F / /
/ 1091 /
J10-8F 6-10
4-10 / /
3-1078F / 4.10-9F /
10-8 L / /
2-10 , )00l ,
1-1078F 4 4
- - - -
- — el L L - e - L L
0.1 0.2 0.3 0.4 0.5 w 0.1 0.2 0.3 04 05 w
a b

N — 7]

6-107%

5 -8 /

5-10 /

4.10-8 | /
Figure 2. The 2D curves of the Abs-E 410 ’ /
graph of N(@l,w) (a), N(91,02,93,w) (b), and 3.1078F /
N(01,02,w) (c) for the approximate finding ob- /
tained through seven iterations and the ex- 27107 //
act result in the range w € [0,0.5], when 1.10-8} ,
91 = 0.25 (a), 91 = 92 = (93 = 0.25 (b), and . ;. ﬂ// ) )

01 =02 =0.25 (¢) 0.1 0.2 0.3 0.4 05 w
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IR — x|
[R]

2.5-10-8} /

2.1078} )

1-1078F

-9l
510 P

0.1 0.2 0.3 0.4 05 w

0.5 w

6-108
4-1078
2.107%

a

[ — N7
N
!
15-1077F /
/
/
1-1077¢ /
/
/
5.1078} ,
’
e
— i =7 . .
0.1 0.2 0.3 0.4 05 w
Figure 3. The 2D curves of the Rel-E

graph of R(61,w) (a), N(01,602,605,w) (b), and

R(01,02,w) (c) for the approximate finding ob-

tained through seven iterations and the ex-

act result in the range w € [0,0.5], when

91 = 0.25 (a), 91 = 92 = 93 = 0.25 (b), and
61 =0, = 0.25 (c)

Figure 4. The 3D plots of the Abs-E
of N(Gl,w) (a), N(91,02,93,w) (b), and
R(61,02,w) (c) for the approximate finding ob-
tained through seven iterations and exact re-
sult in the ranges w € [0, 0.5] and 6; € [0,0.5],
when 6 = 63 = 0.25 (b), and 6> = 0.25 (c)
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Figure 5. The 3D plots of the Rel-E
of N(b1,w) (a), N(01,02,03,w) (b), and
N(601,02,w) (c) for the approximate finding ob-
tained through seven iterations and exact re-
sult in the ranges w € [0,0.5] and 6; € [0,0.5],
when 62 = 03 = 0.25 (b), and 6 = 0.25 (c)

vals of Abs-E and Rel-E are shown in Table 2 which are from 1.63156 - 10~13 to
2.93588-1072 and from 1.21370-10* for 1.27164-1073, respectively, to Problem 2.
Table 3 shows the intervals of Abs-E and Rel-E which are from 2.19100- 107! to
2.81468 - 1073 and 2.08398 - 10~ for 8.18227 - 10~*, respectively, to Problem 3.
Tables 1-3 demonstrate that the 7th step approximate solutions to all numerical
equations have remarkably minimal Abs-E and Rel-E. So, the suggested method
is very useful for the analysis of different FODEs with a physical interest in the
areas of applied mathematics and engineering. As shown in Tables 46, Rec-E
has been used to numerically demonstrate the process by which the approximate
solutions of the Problems 1-3 converge to the exact solution for selected values in
the range w € [0, 1]. As the order of the fractional derivative is increased, the ap-
proximate solution of the seven iterations produced using the suggested method
quickly converges to the exact solution. The graphical and numerical findings
show the accuracy and reliability of the LRPSM.

Table 1 displays the Abs-E and Rel-E at appropriate grid locations in the
ranges w € [0, 1.0] and #; € [0, 1.0] of the approximate solution attained from
the seven iterations and the exact solution to Problem 1 at 5 = 1.0 using the
LRPSM.

Table 2 displays the Abs-E and Rel-E at appropriate grid locations in the
ranges w € [0,1.0], 6; € [0,1.0], 2 € [0,1.0] as well as 5 € [0,1.0] of the ap-
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Table 1
The Abs-E and Rel-E for Problem 1
(601,w) Abs. Errors Rel. Errors
(0.05,0.05) 2.29781 - 10~ 1! 2.07914 - 10~ 11
(0.15,0.15) 1.87820- 1078 1.39140 - 1078
(0.25,0.25) 4.51442-1077 2.73814- 1077
(0.35,0.35) 3.81249 - 1076 1.89322 - 106
(0.45,0.45) 1.93189 -107° 7.85450 - 1076
(0.55,0.55) 7.22544 - 107° 2.40514 - 10~®
(0.65,0.65) 2.20912 - 104 6.02057 - 10~°
(0.75,0.75) 5.85105 - 104 1.30554 - 104
(0.85,0.85) 1.39181 - 1073 2.54261 - 10~
(0.95,0.95) 3.04568 - 1073 4.55539 - 104
Table 2
The Abs-E and Rel-E for Problem 2
(61,62, 03,w) Abs. Errors Rel. Errors
(0.05,0.05,0.05,0.05) 1.63156 - 10713 1.21370 - 1079
(0.15,0.15,0.15,0.15) 1.07593 - 1079 2.59356 - 10~
(0.25,0.25,0.25,0.25) 6.44068 - 108 2.97104 - 106
(0.35,0.35,0.35,0.35) 9.56001 - 10~ 7 1.43769 - 107°
(0.45,0.45,0.45,0.45) 7.18225-10°¢ 4.58092 - 10~°
(0.55,0.55,0.55,0.55) 3.59959 - 10~° 1.14039 - 10~*
(0.65, 0.65, 0.65, 0.65) 1.37909 - 10~* 2.41227-10~4
(0.75,0.75,0.75,0.75) 4.36368 - 104 4.54630- 104
(0.85,0.85,0.85,0.85) 1.19656 - 1073 7.86128-107%
(0.95,0.95,0.95,0.95) 2.93588 - 1073 1.27164 - 1073
Table 3
The Abs-E and Rel-E for Problem 3
(61, 602,w) Abs. Errors Rel. Errors
(0.05,0.05,0.05) 2.19100 - 10~ 1! 2.08398 - 10~ 11
(0.15,0.05,0.15) 1.65204 - 1078 1.41915-1078
(0.25,0.05,0.25) 3.73431-1077 2.88416 - 10~7
(0.35,0.05,0.35) 3.02361-1076 2.08615 - 1076
(0.45,0.05,0.45) 1.49760 - 1075 9.15876 - 10~
(0.55,0.05,0.55) 5.58162 - 10 2.99928 - 10~°
(0.65,0.05, 0.65) 1.73376 - 104 8.10919 - 10—°
(0.75,0.05,0.75) 4.75627 - 1074 1.91749 - 10~*
(0.85,0.05,0.85) 1.19473 - 1073 4.11041-10~4
(0.95,0.05,0.95) 2.81468 - 1073 8.18227-10~4
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Table 4
The Rec-E for N(6;,w) at different values of g for Problem 1

(01,w) B =07 B=038 B8 =09 B=10

(0.02,0.02)  9.92308-10"%  6.80134-1072  4.41026-101°  2.72054 - 101!
(0.12,0.12)  5.80237-10"°  9.74157-107%  1.54730-10=¢  2.33798 -10~7
(0. ) 5.35032-107%  1.21625-10"%*  2.61571-107° 5.35152 - 10~°
(0. 32 0. 32) 2.19460-10~%  6.01676-10~*  1.56060-10~*  3.85073-107°
(0.42,0.42)  6.28249-1073  1.97328-10"2  5.86366-10~* 1.65756 - 10~*
(0.52,0.52)  1.46622-10"2  5.12431-10®  1.69430-10—%  7.39038-10~*
(0. )
( )
( )
( )

2.99909 - 102 1.14451 - 102 4.13208 - 103 1.80237 - 1073
5.59386 - 1072 2.30044 - 10~2 8.95017 - 1073 3.90397 - 10~3
9.74598 - 1072 4.27726 - 1072 1.77593 - 1072 7.74645 - 1073
1.61125-1071  7.49016 - 102 3.29412 - 1072 1.43686 - 10~2

072 072
0.82,0.82
0.92,0.92

proximate solution obtained from the seven iterations and the exact solution to
Problem 2 at § = 1.0 using the LRPSM.

Table 3 displays the Abs-E and Rel-E at appropriate grid locations in the
ranges w € [0, 1.0], 61 € [0,1.0] as well as 02 € [0, 1.0] of the approximate solution
obtained from the seven iterations and the exact solution to Problem 3 at § = 1.0
using the LRPSM.

Table 4 shows the Rec-E between the approximate solution attained from
the seven iterations and exact solutions of Problem 1 acquired by LRPSM at
appropriate grid locations in the ranges w € [0, 1.0], and 6; € [0, 1.0].

Table 5 shows the Rec-E between the approximate solution obtained from
the seven iterations and exact solutions of Problem 2 acquired by LRPSM at
appropriate grid locations in the ranges w € [0, 1.0], 67 € [0, 1.0], 62 € [0, 1.0], and
03 € [0, 1.0].

Table 6 shows the Rec-E between the approximate solution from the 5th ite-
ration and exact solutions of Problem 3 acquired by LRPSM at appropriate grid
locations in the ranges w € [0,1.0], ¢; € [0,1.0], and 65 € [0, 1.0].

6. Conclusion. We used the Laplace transform with the residual power se-
ries method to solve time-fractional partial differential equations with variable
coefficients in the sense of the Gerasimov—Caputo fractional derivative. Graphics
and tables show that the 7th step approximate and exact solutions are in per-
fect agreement, which demonstrated the efficiency and reliability of the Laplace
residual power series method.

Finally, in conclusion, the main features of our recommended method are
the following. The residual power series method is useful for obtaining approxi-
mate analytical solutions to fractional order problems, but it requires the residual
function’s (n — 1)/ derivative to determine the coefficients of the series solution,
whereas more widely used methods such as the homotopy perturbation, varia-
tional iterational, and Adomian decomposition methods require integration. We
are all aware of how challenging it is to find the fractional derivatives and the
integration, but our method only requires the concept of an infinite limit, which
is relatively simple. Therefore, the problem can be solved using our recommended
method, which provides a quick and simple way to figure out the coefficients of the
series solution. It is not essential to make any significant physical or parametric
assumptions related to the problem. Therefore, our method overcomes some of
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the inherent limitations of conventional perturbation approaches and works with
both weak and strongly nonlinear systems. The He and Adomian polynomials do
not need our method, so nonlinear problems can be solved with a relatively small
number of calculations. As a result, it performs noticeably better than various
series solution methods based on Adomian decomposition and homotopy pertur-
bation methods. In contrast to various analytic approximate methods, the Laplace
residual power series method may give analytical expansion solutions for both lin-
ear and nonlinear problems without the need for perturbation, linearization, or
discretization.

Therefore, our method is simple to apply, accurate and reliable in its results.
In the future, as new fractional-order problems emerge in various situations, we
plan to solve them using the Laplace residual power series method.
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AHHOTaNNsA

MeTo/1 0OCTATOUHBIX CTEIEHHDBIX PSI0B 3 MEKTUBEH [T IOy IeHUS TTPU-
OIMKEHHDBIX aHAJUTHIECKUX pertennit nuddepeHImaabubIX YypaBHeHuit 1po0-
HOTO TOpsijiKa. BbIumcjieHrne ApoOHON ITPOU3BOIHON i KOI(DDUIUEHTOB
CTEIEHHOTO Psijia, AlllPOKCUMUPYIONIEr0 TOYHOE pererne quddepeHimaib-
HOTO YPaBHEHUsI, SBJISIETCS HEIOCTATKOM 3TOro MeToja. Jlpyrue nsBecTHbBIE
MEeTObI TPUOJIMAKEHHOTO HHTETPUPOBAHNSA, TAKAE KAK TOMOTOIIHIECKOE BO3-
MyIIIeHne, pa3jiokenne AOMIaHA U METOJ/bl BADUAIIMOHHBIX UTEPAIUi, OC-
HOBBIBAIOTCA Ha HMHTErpUPOBaHUUN JIJIsA IIOJIYYIE€HHsA CTEIIEHHOT'O pd/ia. I/I3—
BECTHA CJIOXKHOCTh BBIYUCJIEHHS JPOOHBIX ITPOU3BOIHBIX U MHTEIPUPOBAHUST
byHKIMIT TPU TOCTPOEHUU CTEIEHHOTO PsIa JJisi PElIeHus yPAaBHEHU Ma-
TeMaTUIeCKOU (DU3UKHU JPOOHOTO TOPSIIKA, TOITOMY HUCIIOIH30BAHUE YIIOMSI-
HYTBIX BBIIIE METOJOB OIpaHUYEHO CrenunduKoil permaemoii 3amadn. B Ha-
CTOSIIIEN CTATHE [TOJIYIEHBI TPUOJINKEHHBIE U TOYHBIE AHAJUTUYIECKHE Perle-
HUs ypPaBHEHMI B YaCTHBIX [IPOM3BO/IHBIX II€PEMEHHBbIME KOoddduimenTamu
[IPU UCIIOJIb30BAHUY METO/a PsIJIOB OCTATOYHBIX crerneHeil Jlamiaca B cMbIc-
Jte 1pobuoit pomssojHOil ['epacumoa—KarmyTo mjst BpeMeHH. DTOT METOZ

dunddepennuanibabie ypaBHEHUsI 1 MaTeMaTu4ueckasi pusuka
Hayuynast crarbs
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Liaqat M. I., Akgiil A., Prosviryakov E. Yu.

ITOMOT IIPEOI0JIETh OTPAHNYEHUS YIOMSAHYTHIX BBIIIE CIIOCOOOB HHTEIPUPOBA-
HUsI ypaBHEHU JpOOHOrO Topsiika. MeToji OCTaTOYHBIX CTEINEeHHBIX PsIIOB
Jlammaca Jydine MCHO/Ib30BATH IPU BBIYUCIEHUN KOI(PDDUIMEHTOB HJIEHOB
B peIlleHnH psijia, IPUMEHsIS IPUHITUIT IIPSIMOT'O TIpejiesia Ha OEeCKOHEYHOCTH.
On Takxke 6osiee 3heKTUBEH, YeM PA3JIMIHbIE METO/bI PEIIeHHUs], eCIT He
HCIIOJIb30BaTh MOJTMHOMBI Ajjomuana u He Jijist penerust HeJIMHEHHbIX 38104
JIPOOHOTO TOpsAKa. B cTarhbe MCCaeayroTcs OTHOCUTEIbHBIE, TIOBTOPSIONIH-
ecst 1 abCOTIOTHBIE OMMOKM I TPEX 3a7ad MaTeMaTUIeCKON (hU3UKM JIIst
OIIEHKH JIOCTOBEPHOCTH IIPEIJIOXKEHHOI'O MeTO/a. Pe3yJibraThl 1MOKa3bIBAIOT,
YTO CKOHCTPYHUPOBAHHBIN METOJ sIBJISIETCsI AJIbTEPHATUBON PA3INIHBIM METO-
JIaM JIJTsi IOCTPOEHUsI PEIleHUs PSIIaMU [P PENIEHUN yPABHEHU B YACTHBIX
MIPOUBBOJHBIX C JPOOHBIM BPEMEHEM.

KimoueBbie ciioBa: npeobpasosanue Jlamaca, MeTO/I OCTATOYHBIX CTEIIEH-
HBIX PsIJIOB, YPaBHEHNE B YACTHBIX IIPOU3BO/IHBIX, TPON3BoIHas ['epacumoBa—
KamyTo.

IMony4uenue: 18 mapra 2023 r. / Vcnpasienune: 12 uions 2023 1. /
IMpunsitue: 19 urons 2023 r. / Iy6nukanus onnafin: 27 urons 2023 r.

Koukypupyroriue uHTEpPEChl. ABTOPHI 3asBJISIOT, 9YTO Y HUX HET KOHKYPHUPYIOIIUX
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