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N O UL A W N

Abstract

The financial system has become prominent and important in global
economics, because the key to stabilizing the economy is to secure or control
the financial system or market.

The goal of this study is to determine whether or not the approximate
analytical series solutions obtained by the residual power series method and
Elzaki transform decomposition method of the fractional nonlinear financial
model satisfy economic theory. The fractional derivative is used in the sense
of the Caputo derivative.

The results are depicted numerically and in figures that show the behav-
ior of the approximate solutions of the interest rate, investment demand,
and price index. Both methods yielded results in accordance with economic
theory, which established that researchers could apply these two methods to
solve various types of fractional nonlinear problems that arise in financial
systems.
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1. Introduction. Fractional calculus deals with fractional or even complex-
order derivatives and integrations. Fractional calculus was founded by two math-
ematicians, Leibniz and L’Hospital, and its official birthday is September 30,
1695. Due to its broad use in disciplines like image processing, biology, engi-
neering, entropy theory, physics, biochemistry, fluid mechanics, and economic
systems, fractional calculus has attracted the attention of several scientists and
researchers in recent years [1-4|. Despite the numerous approaches to defining
fractional derivatives, not all of them are routinely applied. Atangana—Baleanu,
Riemann—Liouville, Caputo—Fabrizio, and Caputo are the most commonly used
operators [5-8]. The Caputo derivative is the most appropriate fractional operator
to be used in modeling real-world problems. The Caputo derivative is useful for
modeling phenomena that take account of interactions within the past and also
problems with non-local properties. One of the main advantages of the Caputo
operator over the Riemann—Liouville fractional operator is that the Caputo defi-
nition of fractional derivatives is bounded, which means that the derivative of a
constant is equal to zero. The definition also offers initial conditions with a clear
physical interpretation [9-11].

With the help of mathematical models, a wide range of phenomena and pro-
cesses can be described. There are occurrences across economic disciplines that,
when modeled mathematically, are found to be differential equations. Fractional
differential equations can model and analyze complex structures with complex
non-linear processes and higher-order behaviors, making them sometimes a better
choice for modeling than integer-order differential equations. There are primarily
two reasons for this. First, we can choose any order for the fractional derivative
rather than being restricted to an integer order, and secondly, when the mech-
anism has long-term memory, fractional differential equations are advantageous
based on both past and present circumstances.

Several studies of the financial system have been conducted using ordinary
and fractional-order derivatives. Baskonus et al. [12] considered a fractional-order
macroeconomic system with variable household, and foreign capital inflows. For
numerical simulations, the modified Adams—Bashforth algorithm is used. E. Bo-
nyah et al. [13| considered the IS-LM macroeconomic system with Caputo and
Atangana—Baleanu fractional-order derivatives. For the numerical solution, a mod-
ified Asams—Bashforth method has been used. S. David et al. [14] proposed a
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model involving a fractional order system containing the public sector deficit, in-
terest rate, private investment, and price index. In this study, the Adams scheme
has been used for the numerical solution. K. Owolabi et al. [15] discussed a fi-
nancial system and found approximate solutions using the Chebyshev spectral
method. B. Xin and Y. Li [16] investigated a fractional-order financial system
and studied the numerical solution with the Adams—Bashforth-Moulton predictor-
corrector scheme under the Caputo fractional derivative.

The fractional differential equations provide solutions that are important and
practical. As a result, the solutions of the fractional differential equations have
received a lot of attention. Since the majority of nonlinear fractional differential
equations lack exact solutions, approximate analytical techniques have been de-
veloped to locate approximate solutions. In the last few years, several methods
have been developed to establish approximate solutions to fractional differential
equations [17-23]. The residual power series method is a very powerful method
in terms of constructing power series solutions to partial and ordinary fractional
differential equations. The Elzaki transform decomposition method is a combina-
tion of the Adomian decomposition method and the Elzaki transform. The Elzaki
transform decomposition methodalso provides the solution in a series form that
converges to the exact solution. Many fractional differential equations have been
successfully solved by residual power series method and Elzaki transform decom-
position method [24-27].

We consider the following nonlinear financial model [28§]:

DYL(t) = N(t) + L(t)M(t) — aL(t),
DEM(t) = 1— bM(t) — LE)L(E), 1
DN (t) =d— L(t) — eN(t),
with the following initial conditions:
L(0) = Lo, M(0) = Mo, N(0)= No, (2)

where time-dependent variables L(t), M (t), and N(t) represent interest rate, in-
vestment demand, and price index, respectively. Furthermore, the saving coeffi-
cient is represented by a, b stands for the cost per investment, ¢ indicates the
elasticity of market demand or the elasticity of demand with respect to the rate
of change in demand, and d represents the critical minimum interest rate.

The two different systematic methods, residual power series method and Elzaki
transform decomposition method, in the sense of Caputo fractional derivative, are
applied to the above system to discuss and analyze the different behaviors of the
said parameters. The obtained simulated results show the behavior of the interest
rate, investment demand, price index, and inflation rate. The results obtained
by both methods are consistent with economic theory. It is demonstrated that
the proposed methods are reliable, efficient, and simple to apply to all types of
fractional nonlinear problems encountered in science, technology, and economic
systems.

The rest of the paper is organized in such a manner. In Sect. 2, we pro-
vided some fundamental definitions and properties. We used residual power series
method to approximate the solution of the fractional-order nonlinear financial
model in Sect. 3. Furthermore, the graphical and numerical results are studied
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in the same section. In Sect. 4, the same model is solved by Elzaki transform
decomposition method, with graphical and numerical simulations of the results
discussed. The approximate solutions obtained by both methods are compared in
the same section. The last section presented the conclusion of the whole work.

2. Preliminaries. In this section, we go over some basic concepts, definitions,
and theorems of Caputo fractional derivative and Elzaki transform that will be
useful in this paper.

DEerINITION 1. The Caputo fractional derivative of order o > 0 is given by [29]:

1 t dn
/ (t —w)rot —J(w)dw, n—-1<a<n,
DY(t) = L(n—a) /, dw

d
dtnﬂ() a=neN.

The following properties of Caputo fractional derivative are also considered:

(i) DyC =0, C € R;

. I'(g+1)
Dl = ————————

(11) t F(q + 1— O[)

(iii) D?(Cﬂ%(t) -+ 02192(25)) = ClDta191 (t) + CQD?ﬁg(t).

DEFINITION 2. A power series representation of the form [30]:

T n—1<a<s<n g>n—-1,neN, geR;

ch(t — to)na =Cy +C’1(t — to)a + Cg(t — to)za + -

is called a fractional power series about tg, where ¢ is a variable and C), are the
coeflicients of the series.

THEOREM 1. If 9(t) has an fractional power series representation, then the
coefficients Cy, will have the following form [31]:

D™0(t) =t

Cn = [(no + 1)

DEFINITION 3 [32]|. The Elzaki transform over the set of functions
H={0(t):3 M, hi, ha >0, [0(t)] < MelVhi, te(-1)7, X €0, o0)}
is define as

o0
T(s) = E[9(t)] = s/ e V9)dt, t>=0, hy <s<ho.

S

THEOREM 2. The Elzaki transform in the context of Caputo fractional derivative
is defined as follows |33]:

E[D{9(t)) ZQO‘HW , n—1l<a<n

The primary advantages of Elzaki transform are listed below [34, 35].
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(i) The initial value problems can be easily solved with Elzaki transform with
minimal computational effort.

(ii) The Elzaki transform can be used to solve problems without resorting to
the frequency domain because it possesses unit-preserving features.

(iii) It can be used to solve a large number of nonlinear differential equations
with variable coefficients, specifically the time-fractional wavelike equa-
tions.

(iv) It may be used to solve a wide range of challenging issues in engineering,
physics, fluid mechanics, chemistry, and dynamics, including issues with
Maxwell’s equations and fluid flow.

The Elzaki transform of several functions can be seen in the Table 1 [36].

Table 1
Elzaki Transform of Some Functions
J(t) EW@)] =T(s)

1 52

t s

t4 qlsit?
q—1
tF(T)’ q > 0 $q+1

3. Residual power series method for the solution of the nonlinear
financial model. This section provides the algorithms for the suggested method
to solve the nonlinear financial model. First of all, consider the series solutions of
Eq. (1), which have the following form:

> tna
Lt :L Ln 9
®) O+nZ:1 I'(na+1)
o tna
M(t)= Mo+ Y _ M, : (3)
— I a+1)
> tna
N(t) = N, n .
®) 0+; I(na+1)

Using the initial conditions, which are given in Eq. (2), we have the first
coefficients of the series solutions:

Lo=L(0), My=M(0), No=N(0).

As a result, Eq. (3) can be rewritten as follows

tna
L(t) = L(0) + nzl L"F(na ryt
o e
M(t) = M(0) —~ "T'(na+1)’
et tna
N(t) = N(0) +;an(na ey
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The kth truncated series for L(t), M (t), and N(t) are introduced as follows:

t’I’LOé
Li(t) = L(0) —I—;L a1 T
k t?’LO{
Mi(t) = M(0) nz:l F(na+1)
k no
Ni(t) = N(0) + 3 I‘(ntoH—l)

The following are the residual functions for L(t), M (t), and N(¢):

Res L(t) = DL(t) — N(t) — L(t)M(t) + aL(t),
Res M(t) = DSM(t) — 1+ bM(t) + L(t)L(t),
Res N (t) = DIN(t) — d + L(t) + N (t).

Now we define the kth residual function for L(t), M (t), and N () in the following
form:

Resy L(t) = D" Li(t) — Ni(t) — Li(t) My (t) + aLy (1),
Resy, M(t) = DMy (t) — 1+ bMy(t) + Lg(t) Ly (t),
Resk N(t) = D?Nk( ) d—i-Lk( ) CNk(t)

By using the basic features of the residual power series method, we have the
following results [29-31]:

lim Resy L(t) = Res L(t),

k—o00

klim Resy M(t) = Res M (t),
—00

lim Res; N(t) = Res N(t).
k—o0

and

(k—1)«

Dt (k—1) (k—1)

Res, L(t) =0, D, '“Resy M(t)=0, D, ’"“Res; N(t)=0. (4)

The kth truncated series of L(t), M (t), and N(t) are substituted into Eq. (4),
and the resulting algebraic systems are solved to get the coefficients of the series
solutions, which are defined in Eq. (3).

By using the procedure for k = 1, we get the following results:

Ly = L(0) + L(0)M(0) — aL(0),
My =1-0bM(0) — L(0)L(0),
Ny =d— L(0) — cN(0).

When k = 2, the values of the coeflicients Ly, Ms, and No are obtained as follows:
Lo = N1+ M(O)Ll + MlL(O) —alq,
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My = —bM; — L(0)L; — L1 L(0),
N2 = — L1 - CNl.
Likewise, for k = 3, we have
I'2a+1)
(T(2a+1))?

(E(fj:ll)))z LiLy + L(O)L2) )

Ly= Ny + (L(O)M2 + LM, + L2M(0)> — aLs,

Mz = —bM — (L(O)L2 +
N3 = — L2 — CNQ,

By using the same steps, the values of the coefficients of L4, My, and N, for
k = 4 are as follows:

Ly = Ny + (L(0)Ms + Li Mo (a Ti’;‘;&& 5+
I'3a + 1)
MNa+ 1)I'(2a+1)
I'Ba+1)
Mo+ 1DHI'(2a+1)

+ L3L(0)),

+ Lo My

+ LgM(O)) —aLs,

My= —bMs — (L(O)Lg + Ly Lo

I'(3a+1)
Mo+ 1DHI'(2a+1)
N4 = — L3 — CN3.

+ Loy

The 4-step approximate solution of L(t) established by using the residual
power series method is given below:

tOé
LW () = L(0) + (L(0) + L(0)M(0) — aL(O))m I
+ (N} + M(0)Ly + MyL(0) — aLl)F(;ZCjH) N
+ <N2 + L(0) M2 + L1]\41(IF((22(3_;_’_11)))2 + LoM(0) — aLg) F(?jjo—[i—l) +
F'Ba+1)
(v o an LD
F(?)Oé + 1) t4a
LM ey T LM 0 - aLg) FarD ©

The 4-step approximate solution of M (t) obtained by using the residual power
series method is shown below:

tOl

M® () = M(0) + (1 — bM(0) — L(0)L(0)) Tat+1)
+ (=bMy — L(0)Ly — LlL(O»F(Qt:O;_l) +
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o 3a
+ (_bM2 — (L(O)LQ + MLlLl + L(O)L2>> F(3Zé—|—1) +
I'(3a+1)
+ (—sz - (L(O)L3 e M Ra ) T

I'(3a+1) tia

(@t )2a+1) " L3L(0))) T(4a+1) (©)

+ Ller

The residual power series method yielded the following 4-step approximate
solution to N (t):

« 2c
NW(#) = N(0) + (d — L(0) — cN(O))F(Oerl) + (=L — cNy) r(27;+1) +
3o 4o
+ (—L2 — CNQ)F(BZ—FI) + (—L3 — CNS)F(ZIZ—{—I). (7)

THEOREM 3. Let w be a Banach space, then the series solution of the system
given in Eqgs. (1) and (2) converges, if there exists h > 0 such that

Lol < Rl Ln-af, Y neN.

Proof. Consider the following series
Up = Lo(t) + Li(t) + La(t) + - - + Ly (t).

We must demonstrate that a series of nth partial sums U,, are Cauchy sequences
in the Banach space w.
For this, we have to consider

101 = Uall < 1 Zusall < BIZall < B2 Luca - < B Lol n=0,1,2,3,....

For each n, m € N and n > m by using triangle inequality, we get

HUH - UmH = HUm—H —Un+ Um+2 - Um+1 +--+ Uy — Un—IH <
< HUm—f—l - UmH + HUm - m—IH +ot HUn - Un—lH <

<A Lol + B2 Lol + -+ - + B* || Lo|| =

=R+ A+ B2 4+ B Lol =

= (R

ﬁ) | Lol|-

Since, we have 0 < h < 1, and hence, 1 — A"~ < 1. Therefore, we can obtain

the following result:
herl

1-nh

Because Lg is bound, we get the following result:

1Un = Unl| <

[ Zoll-

lim [|U, — Uyl =0.

m,n—00
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As aresult, the sequence U, is a Cauchy series in the Banach space @, implying
that the series solutions defined in Eq. (3) are convergent. O

In the following subsection, the approximate solutions derived by residual
power series method to the model are analyzed and evaluated based on their
graphical and numerical results.

3.1. Graphical and numerical results of approximate solutions at-
tained by residual power series method. To illustrate the effectiveness and
efficiency of the residual power series method in handling such fractional-order
financial models, we provide graphical and numerical results for the solution of
the model in Egs. (1) and (2) in this section. By using the following values of
the parameter variables: a = 3, b = 0.1, ¢ = 1, and d = 0.9 and the initial con-
ditions L(0) = 0.1, M(0) = 4.0, and N(0) = 0.5 28] in Egs. (5), (6), and (7)
we obtained the 4th step approximate solutions for the model at various frac-
tional derivative values, such as @ = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Fig. 1 depicts
two-dimensional graphs of the approximate solutions obtained from four residual
power series method iterations at a = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 for ¢ in the
interval [0, 2.0]. Fig. 2 shows two-dimensional graphs of the approximate solutions
extracted from four residual power series method iterations at different d = 0.6,
0.7, 0.8, and 0.9 values for ¢ in the interval [0,2.0]. Tables 24 show how the 4th
step approximate solutions of L(t), M(t), and N (t) obtained by residual power
series method behave at different o = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 fractional
derivative values for ¢ in the interval [0, 2.0].

The interest rate plays a vital role in the economy, and the value of an invest-
ment depends on it. Usually, a higher interest rate causes a reduction in investment
because it increases the cost of borrowing. For this reason, the required invest-
ment must have a higher rate of return to be profitable. Borrowing money from
a source becomes more expensive as interest rates rise. Inflation and investment
rates are typically inversely related. In general, if the interest rate is lower, more
people are able to borrow more money as compared to when interest rates are
high. The result is that consumers have to spend more money, which causes the
economy to grow and inflation to increase. In the opposite case, when interest
rates increase, the inflation rate decreases. The approximate solutions produced
by the residual power series method, as seen in the graphs and numerical data,
are consistent with the financial system’s actual macroeconomic behavior, and it
is proved that the suggested method is suitable for solving the fractional-order
financial models.

The following is the 4th step approximate solutions produced by residual power
series method in terms of interest rate L(t), investment demand M (t), and price
index N(t) at « = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, obtained by using the parametric
values in the in Egs. (5), (6), and (7).

At o = 0.5, the 4th step approximate solutions are as follows:

LW(#) = 0.1 4 0.677027t%° 4 0.959000£"° + 0.144302t'> + 0.874657¢>0,
M@ (#) = 4+ 0.66574t°° — 0.179t10 — 0.475624¢° — 0.505441¢>,
NW(#) = 0.5+ 0.338513t"° — 1.2¢10 4 0.181293¢"° — 0.216413399¢>.
At o = 0.6, the 4th step approximate solutions are as follows:

LW(#) = 0.1 4 0.671505t%5 4 0.870392¢"2 + 0.136979¢'® + 0.660786¢>4,
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Table 2
L(t) behavior in the range ¢ € [0,2.0] at & = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0
t a=0.5 a=0.6 a=0.7 a=0.8 a=09 a=1.0
0.2 0.642469 0.503275 0.404638 0.320780 0.272708 0.240003
0.4 1.088240 0.876979 0.716518 0.552406 0.471411 0.425095
0.6 1.581770 1.314300 1.095890 0.832336 0.716589 0.666932
0.8 2.135790 1.831740 1.562476 1.179275 1.024950 0.982555
1.0 2.754990 2.439660 2.132830 1.611846 1.416110 1.394364
1.2 3.441640 3.146090 2.822345 2.149423 1.912660 1.930140
1.4 4.197040 3.957830 3.645670 2.812123 2.539980 2.623050
1.6 5.021950 4.880850 4.617010 3.620740 3.326040 3.511652
1.8 5.916900 5.920600 5.750156 4.596730 4.301320 4.639834
2.0 6.882240 7.082080 7.058590 5.762100 5.498620 6.056895
Table 3
M (t) behavior in the range t € [0,2.0] at « = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0
t a=0.5 a=0.6 a=0.7 a=0.8 a=0.9 a=1.0
0.2 4.199172 4.1973646 4.180894 4.159291 4.135451 4.113063
0.4 4.148263 4.205674 4.231117 4.240574 4.228614 4.209446
0.6 4.005274 4.121344 4.199727 4.265453 4.280462 4.275915
0.8 3.788453 3.951234 4.083883 4.227631 4.279665 4.295183
1.0 3.505683 3.697482 3.876436 4.117493 4.212061 4.245892
1.2 3.161434 3.358947 3.569064 3.924327 4.061647 4.102654
1.4 2.758584 2.934037 3.153134 3.636665 3.810885 3.836344
1.6 2.299184 2.420867 2.619922 3.242647 3.440891 3.412422
1.8 1.784755 1.817436 1.960761 2.730062 2.931544 2.794341
2.0 1.216475 1.121750 1.167086 2.086464 2.261528 1.940130
Table 4
N(t) behavior in the range ¢ € [0,2.0] at & = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0
t a=05 a=0.6 a=0.7 a=0.8 a=20.9 a=1.0
0.2 0.418947 0.474573 0.508046 0.468397 0.486152 0.536275
0.4 0.245333 0.341173 0.413584 0.370349 0.415209 0.525835
0.6 0.048560 0.168099 0.269677 0.229862 0.299468 0.468949
0.8 | —0.166006 | —0.035799 0.085504 0.053346 0.143062 0.364788
1.0 | —0.396607 | —0.267489 | —0.135871 | —0.156992 | —0.052677 0.211413
1.2 | —0.642496 | —0.525861 | —0.393721 | —0.400998 | —0.288163 0.005783
1.4 | —0.903323 | —0.810637 | —0.688464 | —0.679756 | —0.565099 | —0.256245
1.6 | —1.178922 | —1.121975 | —1.021174 | —0.995194 | —0.886241 | —0.579921
1.8 | —1.469254 | —1.460225 | —1.393291 | —1.349865 | —1.255240 | —0.971598
2.0 | —1.774152 | —1.825914 | —1.806562 | —1.746792 | —1.676565 | —1.438723
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MW(t) = 4+ 0.660313t"6 — 0.162461¢1% — 0400076t — 0.400294¢>4,
N®I(#) = 0.5+ 0.335752t%6 — 1.089124¢"2 + 0.143753t"8 — 0.157870¢>4.

At a = 0.7, the 4th step approximate solutions are as follows:

LW(#) = 0.1 4 0.660328t%7 4 0.772036t"* + 0.124544¢% 1 4 0.475926¢%,
MW(t) = 4 +0.649323t%7 — 0.144103t* — 0.325592t>1 — 0.303201¢>%,
NW(t) = 0.5+ 0.330164t>7 — 0.966052t"* + 0.109664¢> — 0.109647¢>.

At a = 0.8, the 4th step approximate solutions are as follows:

LW(t) = 0.1 4 0.644203t*3 + 0.530909¢"6 + 0.0417623¢>* + 0.294969¢2,
M®(t) = 4+ 0.633466t"° — 0.125208t6 — 0.243925¢>4 — 0.146847¢%2,

at « = 0.5 s at a = 0.6

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0

at a = 0.7 : at a = 0.8

L L L L L L L L
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

at = 0.9 6 at a = 1.0

()/

L L L L N L L
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Figure 1. The graphic behavior of the 4th step approximate solutions obtained by residual
power series method of L(t), M(t), and N(t) at « = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0
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Figure 2. The graphic behavior of the

4th step approximate solutions obtained by

residual power series method of L(t), M(t),
and N(t) for d = 0.6, 0.7, 0.8, and 0.9

NW(#) = 0.5+ 0.107367t"8 — 0.839381¢" + 0.147927t>* — 0.0729051¢32.

At o = 0.9, the 4th step approximate solutions is are follows:

LW(t)
M (1)

= 0.1 + 0.623852t%9 + 0.452731¢'® + 0.0438066¢> 7 + 0.195725¢>5,
= 4+ 0.613455t"? — 0.106771¢'8 — 0.18855¢t>7 — 0.106074t>C,

N@(t) = 0.5+ 0.103975t°° — 0.715781¢"% + 0.105739¢>7 — 0.04661¢>.

At o = 1.0, the 4th step approximate solutions are as follows:

LW(t) = 0.1 + 0.6t + 0.4795¢% + 0.07485¢> + 0.140006¢*,
M®(t) = 4+ 0.59¢ — 0.0895¢% — 0.148983¢> — 0.105625¢*,
NW(t) = 0.5 + 0.300001¢ — 0.6t> + 0.040167¢> — 0.0287555¢*.

Following are the two-dimensional graphs of 4th step approximate solutions
obtained by residual power series method for the L (¢), M@ (), and N*(¢) at
a=0.5,0.6,0.7, 0.8, 0.9, and 1.0
In the following section, we solved the nonlinear financial model by using the
Elzaki transform and Adomian decomposition method.

4. Elzaki transform decomposition method for the solution of the
nonlinear financial model. The primary goal of this section is to provide series
solutions for the nonlinear financial model using Elzaki transform decomposition
method. The main algorithms of Elzaki transform decomposition method are as
follows:
— to do so, first apply the Elzaki transform to both sides of the Eq. (1) to

convert the given model into algebraic expressions, and then use the in-

verse Elzaki transform to convert the obtained algebraic expression into the

model’s real domain;
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— in the next step, we provided the series solutions of the model by using
the Adomian decomposition method on the algebraic expressions that were
attained with the help of Elzaki transform and inverse Elzaki transform.

Following the first step yields the following:

E[DFL(t)] = E[N(t) + L(t)M(t) — aL(t)],
E[DIM(t)] = E[1 - bM(t) — L()L(t)], (8)
E[DIN(t]) = E[d - L(t) - eN(t)],
Eq. (8) can be represented as follows by using Theorem 2 and the initial conditions:
E[L(t)] = 0.1+ u*E[N(t) + L(t)M(t) — aL(t)],
E[M(t)] = 4.0 + uE[1 — bM(t) — L(t)L(t)], (9)
E[N(t)] = 0.5+ u“E[d— L(t) — cN(t)].

After performing the inverse Elzaki transform on the Eq. (9) and making some
simple calculations, the final results are given below:

L(t) =01+ E ' [u*E[N(t) + L(t)L(t) — aL(t)]],
M(t)= 4.0+ E[u*E[1 - bM(t) — L(t)L(t)]], (10)
N(t) =05+ E"'[u*E[d— L(t) — eN(t)]].

Then, using the expansion form shown below, we can obtain solutions of L(t),
M(t), and N(t) according to Adomian decomposition method:

=3 Ln(t), M()=> M(t), Nt = Na(t). (11)
n=0 n=0 n=0

By putting Eq. (11) into Eq. (10), we attained the following result:

Y Ln(t)=01+E"|u"E _Z Na(t) + > Ln(t) Y M(t) — aZLn(t)H,
n=0 n=0 n=0 n=0

- “n=0
f: M, (t) = 4.0 + B! weE|1 - bi M, (t) — f: Ln(t) i Ln(t)H ; (12)
n=0 L L n=0 n=0 n=0

i No(t) =05+ E~ uE -d - i Ly (t) — ci Nn(t)” .
n=0 - n=0 n=0

The model’s nonlinear terms are as follows:

D Mu(t)Y La(t) and Y Lu(t) Y La(t)
n=>0 n=0 n=0 n=0

which can be represented by using Adomian decomposition method as follows:

Z Xn(t) = Z Ln(t) Z Mn(t)
n=0 n=0 n=0

Z Yn(t) = Z Ln(t) Z Ln(t)
n=0 n=0 n=0

(13)
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o0
where Z X, (t) and Z Y, (t) are the nonlinear Adomian polynomials. By the
=0
substltutlon of Eq. (13) 1nto Eq. (12), we have

i Lo(t)=014+E"! -uo‘E i Ny (t) + i X,(t)—a i Ln(t)” :
n=0 n=0 n=0

- “n=0

iMn(t) =40+ E ' uFE -1 —biMn(t) - iYn(t)”, (14)
n=0 - n=0 n=0

i No(t) =05+ E~HuE _d - i L (t) — ci Nn(t)” .
n=0 - n=0 n=0

The Adomian polynomial can be determined with the help of the following for-
mulaes:

1
Xn = 'L; "M, here 1 =0,1,2,... 1
" ) v [Z)\ Zx\ ] , where i =0,1,2,...,  (15)

1 i i .
Yo= 5 T d)\n[Z)\ ZA }A:O,Wherez=0,1,2,~~ (16)

Eq. (15) is used to calculate a few terms of the decomposed first nonlinear terms,
and these are as follows:

Xo = LoMo,
X1 = LoM(t) + L1 Mo,
Xy = LOM2<t) + 14 (t)Ml(t) + Lg(t)Mo.

Eq. (16) is used to calculate a few terms of the decomposed second nonlinear
term, and these are as follows:

Yo = LoLo,
Y1 = LoLa(t) + L1(t) Lo,
Yo = LoLo (t) + 14 (t)Ll(t) + Lg(t)Lo.

The following approximations are obtained by equating Eq. (14) and using
the same parametric values that are used in the previous section.

By corresponding at both ends of Eq. (14), we were able to extract the first
term of the expansion solution to Eq. (11):

0.6t 0.59t 0.3t~

in = ——— = —.
""Tla+1) TV Tla+1) T T(a+1)

By corresponding at both ends of Eq. (14), we were able to extract the second
term of the expansion solution to Eq. (11):

0.959¢2* ot 01798
T2a+1) 2 T(a+1) T(a+1)

Ly =
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_ 09t 098
T Tla+1) TRa+1)

In the same way, we determined the values of L3, M3 and N3 as follows:

I t2a N 0.0411¢3 N 0.354t3°T (2 + 1)
T T@a+1) TBa+1)  T@Ba+1)(a+1)%
e 0.1¢%  0.17396%*  0.36t°°T'(2a + 1)
T Ta+1) TRa+1) TIBa-+1) I'Ba+ )l (a+1)?’
0.9t 0.9¢% 0.059t3«
N3 = — —

MNa+1) TRa+1) TBa+1)

In the same way, the following four terms of the series solution to Eq. (1) were
established:

Ly — #0098 016759941 N 0.6t39T (2 + 1)
F'2a+1) TBa+1) Tda+1) TBa+1)N(a+1)?
0.318t4°T (2 + 1) 0.45841t4°T (3a + 1)
Fda+ DI (a+1)? T(a+DI'a+ 1I'(4a+1)’
t 0.3t2 0.03t3*  0.05217t%
My = - + +
Ia+1) TRa+1) TBa+1) T(4a+1)
0.108t4°T (2 + 1) 1.1508t4°T (3a + 1)
T(da+ D0(a+1)2  T(a+ 1)I'(2a+ )T(4a+ 1)
L 0ot 0.9¢% 0.1¢3 N 0.0179¢%

MNa+1) TRa+1) TI'Ba+1) TI'(da+1)
0.354t4°T (20 + 1)
IMda+ 1) (a+1)2°

Finally, the 4th step approximate solutions obtained by employing the Elzaki
transform decomposition method of the L(t), M(t), and N(t) are as follows.
The 4th step approximate solution of L(t) is as below:

0.6t 0.959¢2
LAt) = 0.1 ( ) ( )
O =01+ {0 51) T (Fa+ 1)
N ( £ 0.096%  0.167599t N 0.6t3°T' (2 + 1)
F'2a+1) TBa+1) Tda+1) TBa+1)N(a+1)?

0.318t49T (2 + 1) 0.45841t*T'(3a + 1) ) (17)
Fda+ 1)l(a+1)2  T(a+1HI2a+ 1)I(4a+1)/"

The 4th step approximate solution of M(t) is as below:

0.59t te 0.179¢%
M) = 40+ (220 4 ( - )
®) * INa+1) MNa+1) T'(a+1)
( t 0.1£2 0.1739t3 0.36t3°T'(2a + 1) )
MNa+1) T2a+1) TBa+1) TBa+1)T(a+1)2
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te 0.3t% 0.03t3*  0.05217t*
+ <F(a +1) I(2a+1) * T(3a+1) + [(4a +1)
0.108tT (20 +1) 1.1508t4°T (3a + 1) ) (1)
Mo+ 1IN (a+1)?2 T(a+DI'Qa+1DI'(da+1)/

The 4th step approximate solution of N(t) is as below:

0.3t ) ( 0.9t 0.9¢2 0.059¢3 )
INa+1) IMNa+1) TR2a+1) TI'Ba+1)

( 0.9t~ 0.9¢2 0.1¢3
r

N4(t) = 0.5(

(a+1) TQR2a+1) TI'Ba+1l)
0.0179¢*  0.354¢*T' (2o + 1) "
T(4a+1) T(4a+1)0(a+ 1)2>' (19)

Based on their graphical and numerical outcomes, the approximations estab-
lished by Elzaki transform decomposition method for the nonlinear financial model
are reviewed and evaluated in the next subsection.

4.1. Graphical and numerical results of approximate solutions at-
tained by Elzaki transform decomposition method. In this subsection, we
give graphical and numerical results for the approximate solutions of the system
of fractional differential equations presented in Egs. (1) and (2) to demonstrate
the usefulness and efficiency of the Elzaki transform decomposition method in
handling nonlinear models. By using the following values of the parameter vari-
ables: a = 3, b= 0.1, c = 1, and d = 0.9 and the initial conditions L(0) = 0.1,
M(0) = 4.0, and N(0) = 0.5 [28] we derived the 4th step approximate solutions
for the model at various fractional derivative values: o = 0.5, 0.6, 0.7, 0.8, 0.9,
and 1.0.

Fig. 3 shows two-dimensional graphs of the 4th step approximate solutions
obtained by Elzaki transform decomposition method at o = 0.5, 0.6, 0.7, 0.8, 0.9,
and 1.0 for ¢ in the interval [0, 2.0].

Fig. 4 shows a comparison of the two-dimensional graphs of the 4th step ap-
proximate solutions obtained by residual power series method and Elzaki trans-
form decomposition method at o = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 for ¢ in the
interval [0, 2.0].

Tables 5—7 show how the 4th step approximate solutions of L(t), M (t), and
N(t) obtained by Elzaki transform decomposition method behave at different
a=0.5,0.6,0.7, 0.8, 0.9, and 1.0 fractional derivative values for ¢ in the interval
[0,2.0].

We concluded from a graphical and numerical analysis of L™ (t), M®*)(t), and
N®(t) that these variables exhibit the same behavior as described in macroe-
conomic theory. Generally, a lower interest rate makes an investment relatively
more attractive. If the interest rate is six percent, firms will need an expected
rate of return on investment of at least six percent to justify the investment. If
the marginal efficiency of capital is lower than the interest rate, the firm will be
better off not investing but saving money. A cut in interest rates from six percent
to two percent will increase investment demand. Thus, the result indicates that
they satisfy the actual behavior of macroeconomic theory.
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Figure 3. The graphic behavior of the 4th step approximate solutions obtained by Elzaki trans-

form decomposition method of L(t), M(t), and N(¢) at « = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0

The Elzaki transform decomposition method produced the following 4th step
approximate solutions by using the Egs. (17), (18), and (19) in terms of interest
rate L(t), investment demand M (t), and price index N(t) at o = 0.5, 0.6, 0.7,
0.8, 0.9, 1.0.
At a = 0.5, the 4th step approximate solutions are as follows:

LW () = 0.1 4 0.677028t°° + 2.059t"° + 0.876954¢'° + 0.462453t>,
M@ () = 4+ 4.05088t°° — 0.379t"Y — 0.618552¢° — 0.880404¢>,
NW(#) = 0.5 4 3.38514¢%° — 2.7¢10 — 0.119608¢° — 0.216413t>.

At a = 0.6, the 4th step approximate solutions are as follows:

LW(t) = 0.1 + 0.671505¢%5 + 1.86876¢"2 + 0.756152t"° + 0.352844¢%*,
MW(t) = 4+ 4.01784t%5 — 0.343982t'2 — 0.513408¢% — 0.670216>4,
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at a = 0.7 e r at o =0.8 4

|
0.5 1.0

Figure 4. Dashed graphs of L™ (t), M™® (¢), and N®(t) that were achieved by using Elzaki
transform decomposition method, and non-dashed graphs were achieved by residual power series
method at a = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0

NW(t) = 0.5+ 3.35752t%6 — 2.45053t"2 — 0.094841¢"8 — 0.142729¢>4.
At a = 0.7, the 4th step approximate solutions are as follows:

LW(t) = 0.1 4 0.660328t%7 + 1.65758t"4 + 0.63087¢>! + 0.256359¢>,
MW(t) = 4+ 3.95097¢%7 — 0.305111¢"4 — 0.412049¢>" — 0.48642¢>%,
N@W(t) = 0.5+ 3.301641%7 — 2.17362t"* — 0.072351¢>1 — 0.0875269¢>5,

At a = 0.8, the 4th step approximate solutions are as follows:

LW(t) = 0.1 + 0.644203t%8 + 1.44024¢"5 + 0.510974¢>* + 0.178275¢>2,
M® (1) = 4 + 3.85448t"% — 0.265105¢' ¢ — 0.321075¢>* — 0.338317¢32,
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Table 5
L(t) behavior in the range ¢ € [0,2.0] at & = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0
t a=0.5 a=0.6 a=0.7 a=0.8 a=09 a=1.0
0.2 0.911511 0.675695 0.512493 0.399204 0.319925 0.263782
0.4 1.647647 1.294323 1.019084 0.808128 0.647855 0.526517
0.6 2.433889 2.011651 1.649691 1.348859 1.104736 0.907503
0.8 3.276222 2.829670 2.409768 2.033095 1.706159 1.428990
1.0 4.175437 3.749264 3.305140 2.873690 2.474020 2.116176
1.2 5.131171 4.771320 4.342097 3.884412 3.884413 2.997190
1.4 6.142759 5.896912 5.527124 5.079623 4.594440 4.103157
1.6 7.209498 7.127167 6.866855 6.474257 5.994522 5.468198
1.8 8.330680 8.463277 8.367948 8.083407 7.655154 7.129036
2.0 9.505671 9.906486 10.037112 9.922820 9.603488 9.125898
Table 6
M (t) behavior in the range t € [0,2.0] at « = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0
t a=10.5 a=10.6 a=0.7 a=0.-8 a=0.9 a=1.0
0.2 5.645279 5.437448 5.229187 5.034739 4.860584 4.708748
0.4 6.113050 6.031069 5.898250 5.737050 5.564026 5.390375
0.6 6.305984 6.369486 6.356636 6.284186 6.169529 6.027792
0.8 6.313966 6.515323 6.638068 6.685215 6.667450 6.598287
1.0 6.172924 6.490237 6.747398 6.929980 7.036521 7.073512
1.2 5.901833 6.303248 6.680274 7.001256 7.249243 7.419496
1.4 5.512247 5.957896 6.428452 6.877977 7.273794 7.596670
1.6 5.011917 5.455127 5.981812 6.537229 7.074769 7.559851
1.8 4.406343 4.794429 5.329239 5.954370 6.613620 7.258192
2.0 3.699669 3.974430 4.459067 5.103751 5.848991 6.635270
Table 7
N(t) behavior in the range ¢ € [0,2.0] at & = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0
t a=0.5 a=0.6 a=0.7 a=0.28 a=09 a=1.0
0.2 1.454524 1.414861 1.338370 1.243656 1.143330 1.045771
0.4 1.496060 1.587433 1.618546 1.602990 | 1.553771 1.481951
0.6 1.368620 1.563990 1.700226 1.780992 | 1.813560 1.806460
0.8 1.143678 1.414922 1.641633 1.817568 | 1.940878 2.016709
1.0 0.849116 1.169439 1.468147 1.728768 1.943360 2.109501
1.2 0.499368 0.843055 1.193479 1.525727 1.824471 2.081172
1.4 0.103047 0.445222 0.825814 1.213167 1.585199 1.927490
1.6 | —0.334190 | —0.017914 0.370298 0.793907 | 1.225764 1.643681
1.8 | —0.808389 | —0.542117 | —0.169802 0.269198 0.742221 1.224441
2.0 | —1.316651 | —1.124370 | —0.792436 | —0.360849 | 0.134321 0.663933
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NW(@#) = 0.5+ 3.221016%% — 1.88861¢"0 — 0.0533341¢>* — 0.0503025¢%2.

At a = 0.9, the 4th step approximate solutions are as follows:

LW(t) = 0.1 4 0.623852t"9 + 1.22816t"® + 0.4028541*7 4 0.119158t>C,
M@ (1) = 4+ 3.73272t%9 — 0.226067t'® — 0.243697¢>7 — 0.22644¢>6
NW(@#) = 0.5 4 3.11926t" — 1.61051¢" — 0.0381235¢>7 — 0.0272624¢>5.

At a = 1.0, the 4th step approximate solutions are as follows:

LW(#) = 0.1 4 0.6t + 1.0295¢ + 0.30985t° + 0.076818t*,
M® () = 4 + 3.59 — 0.1895¢% — 0.18065¢> — 0.146346¢*,
NW(#) = 0.5+ 3t — 1.35¢2 — 0.0265¢> — 0.0140042¢*.

5. Conclusions. In this study, we investigate a fractional-order financial
model using two capable approximate analytical methods. From the figures and ta-
bles, we observed that the solutions obtained by the residual power series method
and Elzaki transform decomposition method agree with the actual macroeconomic
behavior of the financial system, and both methods are compatible and useful for
solving the fractional order nonlinear financial model. It demonstrated that re-
searchers may use these two techniques to solve the fractional nonlinear problem
that occurs in financial systems. The impact of the critical minimum interest rate
has been observed graphically, which shows different results with different values
of the critical minimum interest rate but exhibits the same behavior. The results
show that interest rates are rising at the same time that investment demand is
falling because borrowing money for investment purposes becomes more expensive
as interest rates rise. It is also guaranteed that the relationship between invest-
ment demand and the price level is inverse, with lower investment demand leading
to deflation. As a result, the obtained results are consistent with economic theory
and are extremely useful in understanding the macroeconomic behavior of the
financial system.
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N OOk W

AnHHOTaNNsA

QuHaHCOBAsl CUCTEMA SIBJISIETCS BaXKHOM COCTABJISIIOIIENl B peryJjimpoBa-
HUU IVI00AJIBHBIX SKOHOMUYECKUX IIPOIIECCOB, MOCKOJIBKY obecredeHue Oe3-
OITACHOCTH WJIM KOHTPOJIb (DUHAHCOBO CHCTEMBI MU PBIHKA SIBJISIETCS KJIIIO-
YOM K CTAOMJIM3AIINN SKOHOMUKHU.

Iesbio qaHHOTO NCCIIE/IOBAHUS SIBIISIETCSI BBISICHEHUE, HACKOJIHKO ITPUOJIH-
JKEHHbIE aHAJUTUYECKUE PEINeHNs], H0JydYeHHble C IIOMOINbI0O METO/[a OCTa-
TOYHOI'O CTEIEHHOTO Dsfa U METONA DA3JIOKEHHS DJIb3AKN JJIS JIPOOHOMN
HeJIMHEeTHOW (DUHAHCOBOI MOJIEJTH, COOTBETCTBYIOT SKOHOMUYECKON TEOPHH.
31ech HOHSTHE JIPOOHO TPOU3BO/IHON UCIIOIB3YETCs B CMBICJIE TPOU3BO/THOMN
KamyTo.

ITosyuenuble anc/ieHHbIE PE3YIBTATHI IIOKA3BIBAIOT, KAK IPUOJINKEHHbIE
pellleHusI pearupyiorT Ha U3MEeHEHUsI IIPOIEHTHON CTaBKU, MHBECTUIIMOHHOTO
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copoca u uHjekca red. Oba MeTo/1a MoKa3au pe3yabTaThl, COTIACY OITHeCs
¢ HKOHOMHUYECKOI Teopueil. DTO 03HAYAET, UTO WCCJIEIOBATE]N MOTYT HUC-
[I0JIb30BaTh ITU JIBA METO/a JJIsl PelleHns] PA3JINYHbIX 33184, CBA3aHHBIX C
JIPOOHBIMU HEJIMHEHHBIMU MOJEJISIMEU B (DUHAHCOBBIX CHCTEMAX.

Kuaro4deBble ciioBa: mpub/InKEeHHbIE PEIeHns, IPOOHO-HeInHeHasT (pUHAH-
coBasi MOJIeJIb, METOJ OCTATOYHOIO CTEHEHHOTO PsiJia, METO PA3JIOXKEHUS
IpeobpPa30BaHus DJIb3aKMU.

Iouyuenue: 10 asrycra 2023 r. / Ucnpasienue: 27 mapra 2024 1. /
[punsarue: 26 mas 2024 1. / [y6nukanus onsaiin: 11 cenrsbps 2024 1.

Konkypupymomime nHTepechbl. ABTOPbI 3asiBJISIOT, YTO Y HUX HET KOH(MJIUKTOB UHTe-
pecoB.

ABTOpCKUIi BKJIA 1 OTBETCTBEHHOCTh. ABTODPBI 3asBJISIIOT, YTO UCCIEI0BAHNIE OBLIO
[IPOBEJIEHO B COTPYIHUYECTBE C PABHON OTBETCTBEHHOCTHIO. Bce aBTOPBI MpOYUTAINA U
0OI00PUJIN OKOHYATEILHYIO BEPCHIO PYKOIUCH.

JocTynmHOCTh JAaHHBIX U MATEPUAJIOB. B X0/e TEKyIero ucciaeoBaHus JaHHbIE He
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