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Abstract

In this study, we propose a new hybrid numerical method called the
Khalouta differential transform method to solve the nonlinear fractional Lié-
nard equation involving the Caputo fractional derivative. The convergence
theorem of the proposed method is proved under suitable conditions.

The Khalouta differential transform method is a semi-analytical tech-
nique that combines two powerful methods: the Khalouta transform method
and the differential transform method. The main advantage of this approach
is that it provides very fast solutions without requiring linearization, per-
turbation, or any other assumptions. The proposed method is described and
illustrated with two numerical examples. The illustrative examples show
that the numerical results obtained are in very good agreement with the ex-
act solutions. This confirms the accuracy and effectiveness of the proposed
method.
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1. Introduction. Since the development of the fractional calculus, many
mathematicians and physicists have been interested in the theory of nonlinear
fractional differential equations, where many nonlinear phenomena in engineer-
ing, physics, fluid mechanics, viscoelasticity, chemistry, biology and various fields
of applied science can be described using these equations [1-9]. Consequently,
considerable attention has been given to the solutions of nonlinear fractional dif-
ferential equations of physical interest. Since many nonlinear fractional differen-
tial equations do not have exact analytical solutions due to the complexity of the
nonlinear terms included, several numerical and analytical methods have been
devloped to solve nonlinear fractional differential equations, such as: Adomian
decomposition method (ADM) [10], homotopy perturbation method [11], homo-
topy analysis method [12], variational iteration transform method [13], natural
reduced differential transform method (NRDTM) [14], general fractional residual
power series method (GFRPSM) [13].

The Liénard equation is a nonlinear second order differential equation pro-
posed by Alfred—Marie Liénard [15] and is given by

u'(x) + f(u)d(z) + g(u) = h(z), (1)

where f(u)u/(x) is the damping force, g(u) is the restoring force, and h(z) is the
external force.

The Liénard equation (1) is a generalization of the damped pendulum equa-
tion or spring-mass system. Since this equation can be applied to describe the
oscillating circuits, therefore, it is used in the development of radio and vacuum-
tube technology. For different choices of the variable coefficients f(u), g(u), and
h(z), the Liénard equation is used in several phenomena. For example, the choices
f(u) = e(u®—1), g(u) = u, and h(z) = 0, this equation becomes the Van der Pol
equation as a nonlinear model of electronic oscillation, see [16,17]

Several researchers have studied the exact solution of particular cases of Lié-
nard equation. For example, Zhaosheng Feng [18] investigated the exact solution
of

u’ () + au(z) + bu(x) + cu®(z) = 0. (2)

He found that one of the solutions of equation (2), is given by

u(z) = \/—2;(1 + tanh(v/—ax)),

when b?/4 — 4ac/3 =0, b >0, and a < 0.

The objective of the present article is to propose a hybrid numerical method
using Khalouta transform method and differential transform method in order to
solve the nonlinear fractional Liénard equation in the form

Du(z) + au(z) + bud(z) + cu®(z) =0, x>0, (3)
with the initial conditions
u(0) = ug, ¢ (0) = uq, (4)

where D is the fractional derivative operator in the sense of the Caputo of order
a with 1 < a <2, and a, b, ¢, ug, and uq are constants.
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The organization of this article is as follows. In Sect. 2, we present the basic
definitions and several properties of the theory of fractional calculus, Khalouta
transform and differential transform method that will be used throughout our
article. In Sect. 3, we extend the proposed method to solve the nonlinear fractional
Liénard equation (3) with the initial conditions (4). In Sect. 4, we prove the
convergence theorem of this method under suitable conditions. In Sect. 5, two
numerical examples are proposed to illustrate the capability and effectiveness of
proposed method. In Sect. 6, we discuss our obtained results presented by figures
and tables. The conclusion is given in the final part, Sect. 7.

2. Basic definitions and results. This section presents the basic definitions
and several properties of the fractional calculus theory, Khalouta transform and
differential transform method (DTM) which will be needed in this article.

DEeFINITION 1 [3]. The Riemann-Liouville fractional integral of order av > 0 of
a function w in C(R*,R) is defined as

1

= zx—T"‘_lzm- o«
Iu(z) = r(@)/o( ) (t)dr, a>0,

u(x)v a =,

()

where -
INa) = / e % dz,
0

is the Euler gamma function.

DEeFINITION 2 [3]. The Caputo fractional derivative of order a > 0 of a function
u, is defined as

I R _
Do) = I’(n—a)/o(x T) uw(r)dr, n—1<a<n,

u(n)(gj)7 a =n,

(6)

where n = [a] + 1 with [a] being the integer part of a.

Now, we present our results regarding the Khalouta transform of the Riemann—
Liouville fractional integral and the Caputo fractional derivative.

DEFINITION 3 [19]. Let u(x) be a integrable function defined for x > 0. The
Khalouta transform K(s,~,n) of u(x) is defined by

KH [u(z)] = K(s,7,1) = ’7577 /000 exp(—%)u(m)d:c,

where s, v, n > 0 are the Khalouta transform variables.
Some basic properties of the Khalouta transform are given as follows [19].

PROPERTY 1. Let Ki(s,v,m) and Ka(s,7,7n) be the Khalouta transforms of
u1(z) and ug(x), respectively. For each constants of ¢; and cg, then

KH|[ciu1(z) 4 coug()] = et KH [ug (z)] + coKH [ug(z)] =
= ca1Ka(s,7,m) + c2Ka(s,7, 7).
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PROPERTY 2. Let K(s,7,n) be the Khalouta transform of w(z). Then

n n—1

S s \n—k
,Ynnnlc(s777n> - ];(](’}’77) u(k) (0)7 n = 1.

H[u(") (a:)] =

PROPERTY 3. Let Ki(s,v,n) and Ka(s,7,7n) be the Khalouta transforms of
u(x) and wug(x), respectively. Then the Khalouta transform of the convolution of
u1(x) and ug(x) is given by

KH[(ul * u2)(t)] = /OOO up(z)ug(z — 7)dr = ?Kl(s,%n)l@(s,’y,n).

PropPERTY 4. The Khalouta transforms for some basic functions:

KH[1] = 1,
KH[z] = 2,
s
n n,n
KH[;U*}:PY??, n—071>2) ;
n! s™
« A
KH[ v }:’7’7, a> 1,
I'a+1) s

THEOREM 1. If K(s,7,n) is the Khalouta transform of the function u(x), then
the Khalouta transform of Riemann—Liouville fractional integral of order a > 0,
s given by
o 77

KH[I*u(z)] = K(s,7v,m).

Proof. Applying the Khalouta transform to both sides of the equation (5),
we get

KH[I%u(z)] = KH {F(la) /Ox (x—7)* " u(T)dT] = KH[I‘(la)ma_l xu(x)|.

Then, using Properties 3 and 4, we get

n o 1
KH| I KH KH =
[1°u(@)] = ~HRH| 1o [ KA ()
a—1_a—1 a,Q
myTn n
= ?W/C(S,%U) T g K(s,v:m).
The theorem is proved. g

THEOREM 2. If K(s,7,n) is the Khalouta transform of the function u(z), then
the Khalouta transform of the Caputo fractional derivative of ordern—1 < o < n,
n € 7", is given by

KH[D“u(x)]zvj—n (5,7,7 Z( ) 9)(0).
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Proof. First, we take

v(z) = u™(2). (7)
Thus, equation (6), can be written as follows
D%u(z) = 1 /x(:c — 7)oy (7)dr =
I'(n—a) Jy

- wac—T”*o‘*lvT T=1""%(z
= o L @t = ). @)

Applying the Khalouta transform on both sides of equation (8) and using
Theorem 1, we get

KH[Dau(a:)] = KH[I"*QU(QU)] = %V(s,'y,n), 9)
where V(s,~,n) is the Khalouta transform of the function v(x).
Applying the Khalouta transform on both sides of equation (7) and using
Property 2, we get

KH[o(@)] = KH[u®(z)],
n n—1

s s \n—k
s = 322 ) u ) (10)

V(s,v,n) =
=\

Substituting equation (10) into equation (9), we get

KH[Du(x)] = Vn;:”;l_a< k(s 7,m) Z( ) 0)> _

7”17 =
R’ n—1
= 8 ’)/’ ( ) 0)
o = 2
The theorem is proved. O

Now, we consider a function u(z) which is analytic in a domain 7' and let
x = xo represent any point in 7. The function u(x) is then represented by a
power series whose centre is located at xq [20,21].

DerINITION 4. The differential transform of the function u(x) is defined as
o0

Zl.[@ @) . (11)

T=x0
=0

where u(z) is the original function and U (k) the transformed function.
DEFINITION 5. The inverse differential transform of U (k) is defined as

ZU x—xo . (12)

k=0
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Combining equations (11) and (12), we get
u@) =Y L[ L] (o)t (13)
k" dl’k T=x0 0/

In particular, for 29 = 0, equation (13) becomes

=5[]
k=0

From the above definitions, the fundamental operations of the DTM are given
by the following theorem.

THEOREM 3. Let U(k), V(k) and W (k) be the differential transforms of the

functions u(x), v(z) and w(zx) respectively, then

(1) o
w(z) = Au() + po(a),
then
W(k)=XU(k)+puV(k), X\ peR;
(2) if
w(z) = u(z)v(z),
then i
W(k) = U@V (k—r);
r=0
(3) if
w(z) = ui(@)uz() - up—1(2)un(z)
then

k knl 3

= > > - ZiUlklU2k2_kl)

nlOkn2O k20]€10
X Unfl(knfl - kn72)Un(k‘ - knfl)-

3. Analysis of the Khalouta differential transform method (KHDTM).

THEOREM 4. Consider the following nonlinear fractional Liénard equation (3)
with the initial conditions (4). The KHDTM gives the solution of (3) and (4) in
the form of infinite series that rapidly converge to the exact solution as follows

= U(r)
r=0

where U(r) is the differential transformed function of u(x).

Proof. Consider the nonlinear fractional Liénard equation (3) with the initial
conditions (4).
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Computing the Khalouta transform to equation (1) and the use of the linearity
property of Khalouta transform, we get

KH[DYu(z)] + aKH [u(z)] + bKH [u?(z)] + cKH[u’(z)] = 0.
Using Theorem 2, this gives

_ o i 3 5
KH [u(z)] = u(0) + U (0) — STKH lau(z) + bu’(z) + cu’(z)]. (14)
Substituting the initial conditions of equation (4) into equation (14), we get
(e9¥Ne7
KH [u(z)] = uo + My — %KH [au(z) + bu®(z) + cu®(z)]. (15)
s s

By inverting equation (15), we obtain
(z) = ki (2 gy bu? > 16

u(x) = ug + urx — " [au(z) + bu’(z) + cu’(z)] ). (16)

Now, by applying the differential transforms method to equation (16), we get
U(O) = Uuo,

Ul) =uz,

(17)
U®+2)=—KH4(

Yn®
SOL

KHMU%%HA%%HB%H) k>0,

where A(k) and B(k) are the differential transform of the nonlinear terms u?(x)
and u®(z), respectively.
The first few nonlinear terms are given by

A(0) = U%(0),
A(1) = 3U%(0)U(1),
A(2) = 3U%(0)U(2) + 3U(0)U?(1),

and

B(0) = U%(0),
B(1) =50 (0)U(1),
B(2) =5U0%(0)U(2) + 10U°(0)U*(1).
Note that the recurrence formula (17) to the iterative terms of equations (3)

and (4) is denoted KHDTM, and the &*" order solution for equations (3) and (4)
is given as

k
Sy = Z U(r). (18)
r=0

Thus, in the following theorem, we prove that the series solution (18) which
is obtained by KHDTM converges to the exact solution if kK — oo, that is,

u(z) = kl;rilo Sk = Z U(r). (19)
r=0
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4. Convergence of the KHDTM. The main objective of this section is to
study the convergence of the KHDTM, when it is used in equations (3) and (4).

Suppose that B = (C(R™), || .||) is the Banach space of all continuous functions
on R* with the norm

Ju(z)||g = sup |u(x)].
zERT

THEOREM 5. Let U(r) and u(x) be defined in Banach space B, then the series
solution Z U(r) stated in equation (19) converges uniquely to the exact solution

u(zx) of the nonlinear fractional Liénard equation (3), if there exists 0 < 6 < 1
such that ||U ()| < 0||U(r — 1), Vr € NU{0}.

Proof. Let S; be the sequence of partial sums of the series given by the
recurrence formula (17), as
k
Se=>Y_U(r)
r=0

We need to show that {S;}7°, is a Cauchy sequence in Banach space B.
For this purpose, we consider

1Sk+1 = Sell < NU(r+ DI <OIU ) < U = D] < --- < O™THT(0)]]. (20)

For every, n, m € N, n > m, by using (20) and triangle inequality successively,
we have

HS S ||_”S n1+Sn1 Snf2‘1""“‘Sm+1—SmH<
< HSn - n—l” + HSn—l - n—2H + -+ HSm—i-l - Sm” <
< OMUO)]| + 6" MU )| +- -+ 6 U(0)]| =
:9m+1(1+9+"'—i-en_m_l)HU(O)H <
gn—m

<o (S5 o)l

Since 0 < # < 1, we have 1 — ™™™ < 1, then

9m+1
150 = Smll < 7= IU(O)]] (21)

So ||Sn, — S|l = 0 as n, m — oo as U(0) is bounded.
Thus {Sk}72, is a Cauchy sequence in Banach space and consequently it is
converges to u(z) € B such that

lim Sy =Y U(r) =
r=0

k—o00

Now, suppose that the sequence {Sk}x>0 converges to two functions of u;(z),
ug(x) € B, that is,

lim S; =wi(x) and  lim Sk = ua(z). (22)

k—o0 k—oo
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Using the triangle inequality with (22), we get
l[ur(z) —ua(@)|| < [lua(z) — Skll + 1Sk — uz(2)]| = 0 as k — oc.

Hence we conclude that uj(x) = ug(x).
The theorem is proved. O

THEOREM 6. The mazimum absolute truncation error of the series solution
given by the recurrence formula (17) is estimated to be

9N+1

N
o) - Y00 < T 0.
=0

Proof From Theorem 5 and (21), we have

9N+1

15k = Snll < T4 IU(O)]] (23)
k
But we assume that Sy = > U(l) and since k — +o0, we obtain S, — u(z),
1=0
so (23) can be rewritten as
N 0N+1
futo) = 5xll = [uta) = S v < 5100
1=0
The theorem is proved. O

o
COROLLARY 1. If the series > U(r) converges then it is an exact solution of
r=0
the nonlinear fractional Liénard equation (3) with the initial conditions (4).

5. Illustrative examples. This section provides two numerical examples of
nonlinear fractional Liénard equations to assess the applicability, accuracy and
efficiency of the KHDTM. MATLAB R2016a is utilized to generate the numerical
results.

ExaMmPLE 1. Consider the nonlinear fractional Liénard equation
Du(x) — u(x) + 4ud(z) —3u’(x) =0, 1<a<2, x>0, (24)
with the initial conditions
u(0) = 1/v2, '(0) =1/V8. (25)

If @ = 2, equation (24) becomes the classical Liénard equation and its exact

solution is of the form
1 4+ tanh
u(z) =/ +%;n<w>

According the description of the KHDTM presented in Sect. 3, we have

u(z) = S U,
r=0
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and
U©)= .
mn:%%
1 z®
U(2) = —mm,
) rott
U@B) = —mm,
and so on.

Hence, the approximate series solution of equations (24) and (25), is given as

u(xz) =U0)+U1)+UQR)+U@B)+ =
_1<11 1 z° 5 gotl

V2

When a = 2, the equation (26) becomes

1 1 145 5 4 /1 + tanh(x)
“(‘%)_\/§<1+2$_8I_48x+ >_\/ 2

which is the same exact solution as obtained using MFTSM [22].
ExaMPLE 2. Consider the nonlinear fractional Liénard equation

T T AT(at1)  8T(a+2)

+) (26)

D%u(z) — u(x) +4u’(2) + 3u’(x) =0, 1<a<2, x>0, (27)

with the initial conditions

w(0) = ——— . W/(0) =0 (28)

1++2

If o = 2, equation (27) becomes the classical Liénard equation and its exact
solution is of the form

sech?(z)

u(w) = \/2\/5—1— (1-— ﬁ) sechQ(x).

According the description of the KHDTM presented in Sect. 3, we have

u(x) =Y U(r),
r=0

and
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U(1) =0,

L 44 2v/2 T
V0=~ avmyi ve T T
UB)=0, ...

and so on.
Hence, the approximate series solution of equations (27) and (28) is given as

u(z) =U0)+U1)+UQ2)+UB)+ - =
1 (1 _ 4422
1+v2 34+2v2T(a+1)
When « = 2, the equation (29) becomes

+) (29)

1 24+vV2 sech?(z)
V1+42 34+2v2 2v/2 + (1 — v/2) sech?(z)
which is the same exact solution as obtained using MFTSM [22].

6. Numerical results and discussion. Figures 1 and 2 presents the graphs
of the exact solutions and approximate solutions obtained by the KHDTM with
different values of a (v = 1.7,1.8,1.9, 2) for Examples 1 and 2, respectively. From
these figures, we see that when «a approaches to 1, the solutions obtained by
the proposed method approaches to the exact solutions. Therefore, the KHDTM
produces a convergent series with few terms. If we increase the number of terms,
we will get more accurate solutions. Tables 1 and 2 presents the numerical values
of the approximate solutions by the KHDTM at a = 1 and exact solutions for
Examples 1 and 2, respectively. From these tables, it can be seen that the solutions
obtained by the proposed method are nearly identical to the exact solutions.

0.25

= Fxact solution /'

smmn 0 =2 4

a=19 /

0.20 - a=18 /' 1

- =17 4

/'/
0.15 4 1
'/
O 7/
3 G
’/
0.10 R
’/
'/
0.05 7 l
¢/
R
R
-
0 g‘_ I I I
0 0.05 0.10 0.15 0.20 0.25

x
Figure 1. The graph of the exact solution and approximate solu-
tions for Example 1

217



Chetioui L., Khalouta A.

0.644 T

0.642
0.640

B
= 0.638

0.636
m Fxact solution ‘\
nmnm 0 =2 .
0.634 - a=1.9 \
a=1.8
—_—- =17

0.632 . . . . . . . . .
0 0.01 0.02 0.03 004 0.05 0.06 0.07 008 0.09 0.10

T
Figure 2. The graph of the exact solution and approximate solu-
tions for Example 2

Table 1

Numerical values of the approximate solution and exact solu-
tion for Example 1

a=2 Absolute error
x Uexact
UKHDTM |texact — UKHDTM|
0.00 | 0.70711 | 0.70711 0

0.02 | 0.71414 | 0.71414 5.0793 - 1079
0.04 | 0.72110 | 0.72110 8.2374-10°8
0.06 | 0.72799 | 0.72799 4.2249 -1077
0.08 | 0.73479 | 0.73479 1.3522-10~6
0.1 | 0.74151 | 0.74151 3.3415- 1076

Table 2

Numerical values of the approximate solution and exact solu-
tion for Example 2

a=2 Absolute error
xr Uexact
UKHDTM |tUexact — UKHDTM]|
0.00 | 0.64359 | 0.64359 0

0.02 | 0.64344 | 0.64344 3.2888 - 1078
0.04 | 0.64299 | 0.64299 5.2585 - 107
0.06 | 0.64224 | 0.64224 2.6590 - 106
0.08 | 0.64118 | 0.64119 8.3902 - 1076
0.1 | 0.63982 | 0.63984 2.0441-107°

7. Conclusions. In this article, a new hybrid method called Khalouta differ-
ential transform method (KHDTM) has been proposed to find the solution of the
nonlinear fractional Liénard equation involving the Caputo fractional derivative.
The method is described and illustrated by two numerical examples. The results
were compared with those available in the literature. The obtained results reveal
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that the proposed method is a very effective and simple tool to solve this type
of equations. Therefore, we can conclude that this method can be used to ob-
tain fast convergent series solutions for the different types of nonlinear fractional
differential equations.
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HoBoe nnpumenenne meroaa auddepeHImaabHOTro
nmpeodOpa3oBaHus XaJIyThl M aHAJIU3 CXOAUMOCTHU IS
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L. Chetioui, A. Khalouta
Université Ferhat Abbas de Sétif 1, Sétif, 19000, Algeria.

AnHOTaMSA

IIpemraraercss HOBBIM TUOPUIHDLINA YUCIECHHBIA METOM C HCIIOJb30BAHM-
eM npou3BoaHO KamyTo jurs perieHust HeJIMHEHHOTO JIPOOHOTO ypaBHEHUsT
JIsenapa — meron nuddepenmanbHoro npeodbpaszosanus XaayTsl. Jlokaza-
Ha TeopeMa CXOJUMOCTH JIAHHOT'O MEeTOJa IPHU OIPEIE/IEHHBIX YCIOBUIX.

Meton nuddepennnaabHOro Mpeodpa3oBaHust XaJIyThl IPEICTABISIET CO-
00il TOJIyaHAJIMTUIECKYI0 TEXHUKY, OObEIUHSIIONLYIO JIBAa MOIIHBIX IIOIXO0/A;
MeToJ Ipeobpa3oBaHus XayThl U MeTO. JTudOepeHInaIbHOro Ipeobpas3o-
Bauusi. OCHOBHOE ITPEUMYIIIECTBO STOTO METOJA 3aKJII0YaeTCs B TOM, 9TO OH
ITO3BOJISIET OYeHb OBICTPO HAXOIUTH PEIeHUsl U HE TPeOyeT JIMHeapU3alun,
BO3MYIIIEHNS WA KAKAX-IH00 npyrux npeamnosoxkenuii. [Ipeamokennnrit me-
TOJT TIOPOOHO OIKCAH, a ero 3MMEKTUBHOCTH TPOIEMOHCTPUPOBAHA HA JIBYX
YUCJIOBBIX IIPUMepPax. Pe3ysibTarsl BHIYUCIEHHI XOPOIIO CONIACYOTCS C TOY-
HBIMU PEIIeHUsIMA, YTO ITOATBEPKIAET HAJIEXKHOCTD U 3(P(PEKTUBHOCTS IIPEI-
JIOZKEHHOT'O TTOJIXOIA.

KuroueBbie cioBa: napobnoe ypasuenue JIbenapa, npobnast mpon3BoIHAsT
KarmyTo, MeTos ipeodbpazoBanust XaIyThl, MeTOJT JudHepeHIInaIbHOro mpe-
obpa3oBaHust, IPUOJINIKEHHOE PEIeHIE.
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Koukypupyroriue nHTEPECHI. 3asBJIsieM, YTO B OTHOIIIEHUN aBTOPCTBA U Iy OITHKAIN
9TOM CTAaThbU KOH(MDJINKTA HHTEPECOB HE UMEEM.

ABTOpCKasi OTBETCTBEHHOCTh. Bce aBTOPBI pUHUMAJIN ydYacThe B pa3pabOTKe KOH-
[ENIUKA CTATbU ¥ B HATMCAHUU PYKONUCHA. ABTOPBI HECYT TOJHYIO OTBETCTBEHHOCTH 32
[peIOCTaBJIeHIe OKOHYATEIbHON PYKOMUCH B TedaTh. OKOHYATEIbHASI BEPCUS PYKOIUCH
ObL1a 0T00pEeHa BCEMU aBTOPAMI.

DunaHcupoBanue. llccieioBanre BBITOJTHEHO Oe3 (PUHAHCOBOI MOIIEPIKKIA.
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