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Abstract

The paper presents a method for determining the stress-strain state of
transversely isotropic bodies of revolution under the action of non-axisym-
metric stationary volumetric forces. This problem involves the use of bound-
ary state method definitions. The basis of the space of internal states is
formed using fundamental polynomials. The polynomial is placed in any po-
sition of the displacement vector of the plane auxiliary state, and the spatial
state is determined by the transition formulaes. The set of such states forms
a finite-dimensional basis according to which, after orthogonalization, the
desired state is expanded into Fourier series with the same coefficients. Se-
ries coeflicients are scalar products of vectors of given and basic volumetric
forces. Finally, the search for an elastic state is reduced to solving quadra-
tures.

The solutions of problems of the theory of elasticity for a transversely
isotropic circular cylinder from the action of volumetric forces given by var-
ious cyclic laws (sine and cosine) are analyzed. Recommendations are given
for constructing the basis of internal states depending on the form of the
function of given volumetric forces. The analysis of the series convergence
and the estimation of the solution accuracy in graphical form are given.
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forces, state space, non-axisymmetric deformation.

Received: 12" September, 2023 / Revised: 16" February, 2024 /
Accepted: 4" March, 2024 / First online: 20" June, 2024

Mechanics of Solids
Research Article
© Authors, 2024
© Samara State Technical University, 2024 (Compilation, Design, and Layout)

©@@® The content is published under the terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/)
Please cite this article in press as:
Ivanychev D. A, Levina E. Yu. Construction of elastic fields in the problem from the ac-
tion of body forces of a cyclic nature, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki
[J. Samara State Tech. Univ., Ser. Phys. Math. Sci.|, 2024, vol. 28, no. 1, pp. 59-72. EDN: IVANRN.
DOI: 10.14498/vsgtu2064.
Authors’ Details:

Dmitry A. Ivanychev ® © https://orcid.org/0000-0002-7736-9311
Cand. Phys. & Math. Sci.; Associate Professor; Institute of Mechanical Engineering and Trans-
port; e-mail: 1sivdmal@mail.ru

Ekaterina Yu. Levina ® https://orcid.org/0000-0001-6193-9036
Cand. Techn. Sci.; Associate Professor; Faculty of Basic Sciences;
e-mail: hensi-1@yandex.ru@gmail.com

99


http://mi.mathnet.ru/eng/vsgtu2064
http://doi.org/10.14498/vsgtu2064
http://www.mathnet.ru/eng/org1957
http://www.mathnet.ru/eng/org1957
http://www.mathnet.ru/eng/org1019
http://www.mathnet.ru/eng/org1019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://elibrary.ru/IVANRN
http://mi.mathnet.ru/eng/vsgtu2064
http://www.mathnet.ru/eng/person153196
https://orcid.org/0000-0002-7736-9311
https://orcid.org/0000-0002-7736-9311
mailto:lsivdmal@mail.ru
http://www.mathnet.ru/eng/person209459
https://orcid.org/0000-0001-6193-9036
https://orcid.org/0000-0001-6193-9036
mailto:hensi-l@yandex.ru@gmail.com

Ivanychev D. A.,, Levina E. Yu.

1. Introduction. The development of existing and the creation of new meth-
ods for calculating the stress-strain state of bodies made of materials with complex
structure and rheology, for the most part, relies on a general or fundamental solu-
tion of a particular problem of elasticity theory. S.G. Lekhnitsky, A.Ya. Alexan-
drov, Yu.l. Soloviev, A.S. Kosmodamiansky made a fundamental contribution to
the creation of general solutions for an anisotropic medium, etc. However, these
solutions were developed in the last century. Naturally, modern scientists have
obtained solutions to particular problems that can be used to build mathemat-
ical models based on various methods of mechanics. This is especially true of
analytical or numerical-analytical methods, which allow obtaining a solution as a
function of several variables (coordinates, time, temperatures, etc.). The develop-
ment of analytical methods has recently prevailed over numerical methods, where
the result of the solution is a table of values of a particular quantity in the entire
(and sometimes not in the entire) area of the body.

In the field of implementation of various methods for analyzing the stress-
strain state of elastostatic solids, taking into account the influence of body forces,
the following works can be distinguished. In [1], an isotropic elastic body bounded
by concentric spheres and subjected to axisymmetric unsteady body forces was
studied. In |2, 3], using expansions of the displacement vector components into
series in terms of the circumferential and radial coordinates, analytical solutions
were obtained for the equilibrium problems of thick-walled transversally isotropic
composite spheres and those under the action of internal pressure and body forces.
In [4], forced deformations arising from the effects of surface and bulk forces were
studied. In [5], in addition to the two complex Kolosov—Muskhelishvili potentials,
a third potential was proposed that takes into account the influence of body forces.
Analytical solutions of some problems of plane deformation are given. The work [6]
is devoted to the development of the orthogonal projection method. Problems of
the theory of elasticity with the participation of body and surface forces in the
functional energy spaces of stress and strain tensors were studied.

In |7,8], the method for determining the stress-strain state of isotropic elastic
bodies from the action of body forces of a non-potential nature is reduced.

For transversally isotropic bodies bounded by coaxial surfaces of revolution
by means of the method of boundary states, the first main [9] and the second
main [10] problems of the theory of elasticity are solved with simultaneous action
of body forces on the body. By an identical method, the contact problem was
solved [11].

Works [12,13] are devoted to the determination of elastic fields from the action
of axisymmetric body forces on a transtropic bounded body of revolution, together
with the action of surface forces and a steady temperature field.

The purpose of this work is to develop the analytical method for determining
the stress-strain state, proposed in [7|, for the class of transversally isotropic
bodies of revolution and under the action of body forces specified by the cyclic
law. Body forces are non-axisymmetric in nature and depend on three cylindrical
coordinates.

2. Problem Statement. We consider the elastic equilibrium of a transver-
sally isotropic body bounded by one or more coaxial surfaces of revolution (Fig. 1)
under the action of non-axisymmetric body forces X = {R,Q, Z} given by the
cyclic law. The axis of anisotropy of a transtropic body coincides with the geo-
metric axis of rotation z.
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Figure 1. The transversely isotropic body of revolution

The task is to determine the stress-strain state that occurs in the body under
the action of body forces.

3. Constitutive Relations of the Theory of Elasticity. In the general

case of deformation of a transversally isotropic body in a cylindrical coordinate
system, the following relations take place.

Differential equilibrium equation [14]:

0Ty  Oo, 1070 o .
0z or + r 00 + r +R=0,
0o, OTsr 107 Tor

- AT — 1
5z " or Trae T 7270 S
0T, OTrg 1 doy Tro B
0z or + 7% 27 +@=0

where R, Z, () — mass forces.
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The generalized Hooke’s law [14]:
1 1 v
€r = E [Uz - Vz(o'r + 09)]7 Er = E(O'r - Vro'e) - FZUZa
1 v
£ = E(UG - Vrgr) - FZZUZ’ (4)
1 1 1 21+ v,)
Var = EZTZT’ V20 = @Tzea Yro = GTTTTQ = E, Tro-

Here u, v, w are the displacement vector components along the x, y, z axes,
respectively; €., €g, €5, Vrg, Yor, V20 are strain tensor components; o, og, 04, Trg,
T.r, Tog are stress tensor components; R, (), Z are the components of the body
force vector X along the corresponding axes; F, and FE, are the elastic modules in
the z-axis direction and in the isotropy plane, respectively; v, — Poisson’s ratio,
which characterizes compression along the r axis during tension along the z axis;
v, — Poisson’s ratio characterizing the transverse compression in the plane of
isotropy during tension in the same plane; GG, and G, are the shear modules in
the plane of isotropy and perpendicular to it.

4. General Solution of the Elastostatics Problem. In [14], the method
of integral overlays established the dependence between the spatial stress-strain
state of an elastic transversely isotropic body of revolution and some auxiliary
two-dimensional states, the components of which depend on two coordinates z
and y (variables). The axis is perpendicular to the zy plane. As plane auxiliary
states, we use the plane deformation u? = {uzl,ugl,ué’l} that occurs in infinite
cylinders having at each point a plane of elastic symmetry parallel to the zy plane
(direction 7).

The transition to the spatial state in cylindrical coordinates is carried out
according to the dependencies:

™

Up = 217T</0”(u51 +ul!) cos[(n — 1)ﬁ]d6+/0 (ul! — ') cos[(n + 1)B]d,6’>,

1

Up = —
21

(/Oﬂ(ugl +ul) cos[(n — 1)B]dB — /Oﬂ(uﬁl uycos{(n + 1)5]%)’ -

Wy = 71T/07r uP! cos(nB)dp, y = rcos(p);

b
u= Z[un cos(nf) + uy, sin(nb)],
v = Z[—vn sin(nf) + vy, cos(nd)], (6)

b
w= Z[wn cos(nf) + wysin(nd)], a=0, b= oc.

n=a
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Deformations are calculated through the Cauchy relations (2) and are checked
for consistency by relations (3). Stresses are determined through Hooke’s law (4),
and body forces from equilibrium equations (1).

5. Solution Method. The determination of the elastic state of an anisotropic
body is carried out by means similar to the means of the boundary state method [16].
The following sets are accepted as a basis in the space of internal states =:

=E= {51)52763” ce 7£k‘7 o '}7 gk = {uz(k)aggf)vaz(]k)sz(k)}

The papers [12,13] are devoted to a method for determining the stress-strain
state of isotropic bodies from the action of non-conservative continuous body
forces. Here we use the same approach.

To construct the displacement field for the body from the action of body forces
for planar auxiliary states, the fundamental system of polynomials y®z? is used,
which can be placed in any position of the displacement vector u”!(y, z), forming
some admissible elastic state:

pl

Uy ya sz 0 0

u?! = ugl € 0 ye? 0
B

ul! 0 0 Yz

Further, according to (5) and (6), the components of the displacement vector
u(r, 0, z) of the spatial state are determined, and the corresponding tensors of
strains, stresses, and body forces are determined along the chain (2), (4), (1).

By enumeration of all possible options within o + 8 < n, (n = 1,2,3,...),
one can obtain a set of states and form a finite-dimensional basis that allows one
to expand an arbitrary vector of continuous body forces in a Fourier series in its
elements as the number n increases to infinity.

After constructing the basis of states, its orthonormalization is carried out
using the recursive-matrix orthogonalization algorithm [17|. The algorithm uses
the Gram—Schmidt orthogonalization process in which cross dot products are
calculated by the formula (for example, for the 1st and 2nd states):

(X<1>,X<2>):/X<1>-X<2>dv;
1%

X = X = (R®)(r,0,2), Q"W (r,0,2), 2" (r,0,2)}.

Any continuous vector of body forces can be represented as a Fourier series of
an orthonormal basis decomposed into elements:

X=> agx® ¢=(XXx"), (7)
k=1

where X = {R,Q, Z} are given body forces.

Each basis vector X ¥ corresponds to the displacement vector and strain and
stress tensors, which together form an internal state from the action of body forces

o= ik
k=1
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or in expanded form:
00 N 0o N 00 . . .
ui:chug ), €ij :chgz(j)7 gijzzckaz(j), Xi:ZCkXZ-( ) (8)

6. Solving Problem. Let us study the elastic equilibrium of a transversally
isotropic circular cylinder made of large dark gray siltstone rock [18]. After the
procedure of non-dimensionalization of the parameters of the problem, the ana-
logy of which is presented in [19], the elastic characteristics of the material were
E,=6.21,E, =5.68, G, =229, G, =2.55, v, =0.22, v, = 0.24 and the cylinder
occupies area V = {(z,7) |0 <r <1, -1 <z <1}

To solve the problem, when all three components of a given vector of body
forces are not equal to zero, a rather large “segment” of the basis of internal states
is required. In this case, it is advisable to use the principle of independence of
the action of forces and solve three separate problems, each of which is given
X ={R,0,0}, X ={0,Q,0}, X ={0,0,7}, and add the resulting elastic fields.

In the practical implementation of the technique for solving problems and
testing it for various types of functions of given body forces, it turned out that
not for any type of functions of body forces there is a solution. The possibility of
obtaining a rigorous or approximate solution depends on the method of forming
the basis.

When constructing the basis of internal states, it is necessary to strive for the
greatest simplicity of the form of functions that describe the components of the
elastic field. Therefore, let us first consider the basis formed from the left parts of
expressions (6) and summation thresholds a =0, b = 1:

b b b

u= Z[un cos(nb)], v= Z[—vn sin(nf)], w = Z[wn cos(nf)].  (9)

n=a n=a n=a

In this case, the problem will be solved if the given body forces R, ), Z contain
trigonometric functions cos 8, sin @, cos 0, respectively, for example:

R=r"zF(1—-pcosh), m,keN;pel (10)

Otherwise, the scalar products and Fourier coefficients (7) will be equal to zero.
If we form a basis from the right parts of expressions (6) and summation
thresholds a =0, b = 1:

b b b

u= Z[un sin(nf)], v= Z[vn cos(nf)], w = Z[wn sin(n#)], (11)

n=a n=a n=a

then an approximate solution can be obtained if the body forces R, @), Z contain
the trigonometric functions sin @, cos 6, sin 0, respectively.

If the summation thresholds @ = 1 and b = 1 are used in expressions (9) and
(10), then the body forces of the form (10) cannot be restored; in this case, an ap-
proximate solution of the problem is sought for a function of the form r™z*p cos 6
or ™ z¥psin 6.
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In the case when body forces have the form 72 (cos @ + sin ), it is already
necessary to use expressions (6) in full with summation thresholds a = 0,b = 1. In
this case, it is possible to obtain not only approximate, but also rigorous solutions.

For the latter case, we will give an example of solving the problem when the
model volumetric forces are generated, for example, by the magnetic induction of
the stator winding of an asynchronous machine [20]:

X = {r*2%(sinf + cos0),0,0}. (12)

After constructing a basis according to relations (6), excluding the basis ele-
ments for which X = 0, as well as linearly dependent elements in the process of
orthogonalization, the basis components of body forces are presented in Table 1
(showing 7 items).

Table 1
Components of the body force of an orthonormal basis
n R Q
& —0.2(cos 8 + sin 6) —0.2(cosf — sin 6) 0
& 0 0 —0.282
&3 —0.172z(cos 8 + sin 6) —0.172z(cos 8 — sin 6) 0
&4 0 0 —0.244~
& —0.399r 0 0
&6 0 —0.399r 0
&r 0 0 —0.3997(cos 6 + sin 0)

We use a basis of internal states of 50 elements. Non-zero Fourier coefficients:
c1 = —1.3368, cg = —1.1957, ¢13 = —1.8712, c14 = 0.4678, c32 = —1.6736,
c33 = 0.4184, c3g = —0.2684, c39 = 0.0671. As a result of the solution for R
and @, approximate solutions are obtained, for Z — strict (Zy = 0).

The solution is formed by relations (8). The accuracy is estimated by com-
paring the given body forces (dashed line) with those restored as a result of the
solution (solid line) (Fig. 2).

According to the first graph of Fig. 2, the maximum error is at points 7/4
and 57 /4, therefore, to assess the accuracy of the restored force R depending on
r and z, it is advisable to carry out for a section with an angular coordinate of
7/4 (plots 3, 5 in Fig. 2). In the second graph of Fig. 2, the maximum error is at
point 37 /4, so the verification of the force @ depending on r and z is considered
in a section with an angular coordinate of 37/4 (plots 4, 6 in Fig. 2).

The maximum error of the problem was 25% and was determined at point
(1,7/4,0) (plot 5 in Fig. 2). The error is overcome by increasing the number of
basis elements used. When using a basis of 70 elements, two non-zero Fourier
coefficients are added: cg9 = —0.24, ¢79 = 0.06 and the accuracy of the solution
is greatly improved. On Fig. 3 shows plots 5 and 6 of Fig. 2 with 70 elements of
the basis retained.

The final internal state &g is built on 70 basic elements and looks like:

up = (31.1232" — 1369.44r°2* — 1971.16r"2" + 165.5572° +
+1390.77r22° — 74.4172%) (cos 0 + sin ) - 107°,
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Figure 3. Verification of volumetric forces with 70 retention elements of the basis
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vo = (31.1232" — 124.4947%2* + 103.745r" 2" 4 165.5572° +
+ 264.805r°2% — 74.4172%) (cos 6 — sin6) - 107°,

wo = (500.01672° 4 1250.04r°2° — 436.69r2" ) (cos 0 + sin §) - 107
Ry = (—952.3812% + 4190.8r°2% + 60317.5r2%) (cos § + sin §) - 1077,
Qo = (—952.3812% + 3809.5r*2% — 3174.6r"2?)(cos § — sin ) - 107°.

The isolines of the obtained characteristics of the elastic field are shown in
Fig. 4. The isolines on the plots are shown to scale. The true value of the displayed
value is equal to the value on the graph, multiplied by the coefficient x.

An approximate solution can also be obtained for a body force of the form
(2 + p)¥ cosf or r™(z 4 p)¥sin 6, and for m = k = 2 is a strict solution.

If for sin and cos in expression (12) there are different coefficients, for example
2% (psin @ + [ cos 0), then the solution cannot be obtained. This is due to the
same coefficients (one) for the corresponding functions in the basic expressions (6).

In the case when body forces depend on sin(nf) or cos(nf), n = 2,3,..., in
expressions (6), (9), (11) it is necessary to use summation thresholds a = n, b = n.

Consider a function that describes, for example, the body force R of the follow-
ing form R = r™2"pcos(n). The peculiarity of the solution at n > 1 is that the
restored body forces differ in amplitude from those given by a certain constant —
a correction factor k, which is calculated through the given R and restored Ry
component of the body forces for fixed coordinates r and z: k =

R
Rolr,z®

Then all other characteristics of the resulting elastic field are multiplied by a
factor of k.

Let the body force X = {0,722 cos(36),0} be given. The basis is formed using
expressions (11) and 76 elements of the basis are used to solve this problem (we
will not give Fourier coefficients). The result is presented graphically in Fig. 5
(values of body forces R, @) are shown on the surface r =1, z = 1).

Restored expressions for body forces:

Ry = (0.25r*z — 2rty 4+ 5.4r%2 — 6182 + 2.357r102) sin(36);

Qo = (0.25r%2 + 2r'z — 5.47%2 + 6r%2 — 2.357r'%2) cos(30);  Zy = 0.

Correction factor k = r2/(0.25r% 4214 —5.476 +6r® —2.357r10). In this problem
x depends only on r.

Finally, the solution looks like £ = k&y. At r = 1, z = 1, the coefficient
k = 2.029 and the error for R increased, but the result is still satisfactory (the
maximum error was 1.5 %).

7. Conclusion. In this paper, the solution of the problem of the theory of
elasticity from the action of body forces is constructed as follows. The depen-
dence of the displacement vector of the planar auxiliary state on coordinates
y©2P is specified, and on its basis the displacement vector of the spatial state,
which depends on coordinates 7, 6, z, is determined. For such a vector, the strain
tensor is determined by the Cauchy relation, the stress tensor is determined from
Hooke’s law, and the body forces are determined from the equilibrium equation.
This constructs a strict particular solution of the problem corresponding to the
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0=n/4, k=1

EEmas

—7r/4 k—lO 3
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“12)f [12 2] 24
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2400 T4l 72

d e f

Figure 4. Characteristics of the elastic field: a — component of the stress tensor g9, b —

component of the stress tensor o,,, c — component of the stress tensor o.,, d — component of

the displacement vector u, e — component of the displacement vector w, f — deformed state
contour
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Figure 5. Verification of bulk forces in the problem with the coefficient

displacement function given at each point of the body. Going through a4+ 8 < n
(n=1,2,3,...), a set of strict particular solutions of the problem of linear elas-
ticity theory is constructed: displacement vectors wuyg, strain tensors ey, stress
tensors o, body force vectors X . Leaving among these solutions only linearly
independent ones and implementing them orthogonalization in accordance with
relation (7), we obtain a basis according to which the corresponding vectors or
tensors are expanded into series with the same coefficients (7). Therefore, the pre-
sented approach allows us to immediately construct a solution the problem with
given body forces.
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IlocTtpoenmne ynpyrux moJieit B 3a/iade OT JAeiiCTBUS
00bEMHBIX CHUJI IIUKJIMIECKOTO XapakKTepa

. A. Heanwviues', E. F0. Jlesuna?

L JIumenkmit roCyapCTBEHHbIH TEXHUUECKHI YHUBEPCUTET,

Poccus, 398055, Jlunenk, yia. Mockosckas, 30.

MockoBCKuil ToCcyapCTBEHHBIH TexHuueckuil yuusepcurer uMenu H.D. Baymana
(HanMOHAILHBIN MCCIIEI0BATEILCKHUI YHUBEPCUTET ),

Poccus, 105005, Mocksa, yi. 2-a Baymanckasi, 5.

2

AnHOTaNMs

IIpencrasiien MeTos onpejieieHns HaPsS2KeHHO-1e(POPMUPOBAHHOTO CO-
CTOSIHUST TPAHCBEPCATBLHO-M30TPOIHBIX TEJI BPAIEHUs, BO3HUKAIOIIETO IO/
JIefiCTBIEM HEOCECHMMETPUYIHBIX CTAIMOHAPHBIX 00beMHBIX cuil. [locTaBien-
Hasl 3aJa9a [IPeJIoJiaraeT UCIOJb30BAHNE TOHATUI METO1a IPAHUIHBIX CO-
crostauit. Basuc nmpocrpaHCcTBAa BHYTPEHHUX COCTOSIHUM (DOPMUPYETCsT € TI0-
MOITHIO (PYHIAMEHTAJIBHBIX MOJMHOMOB. MHOrOWIeH cTaBuTcs B Jioboe 1mo-
JIOXKEHUE BEKTOPA CMEIIEHUs TIJIOCKOrO BCIIOMOIaTe/IbHOIO COCTOSIHUSI U TI0
dopmyraMm epexo/ia pOPMUPYETCsT ITPOCTPAHCTBEHHOE cocTostHue. Muoxke-
CTBO TAKUX COCTOSIHUIT 0Opa3yeT KOHETHOMEPHBIN H6a31C, 10 KOTOPOMY IIOCJIE
OPTOrOHAJIA3AIMH UCKOMOE COCTOSTHIE Pa3jiaraercs B psiibl Dypbe ¢ TemMu xKe
ko3 purtmentamu. KodsbdurmenTs psi/ioB MpeCTaBSIIOT COO0M CKATAPHBIE
[IPOM3BEEHNsT BEKTOPOB 33JaHHON 1 Oa3ucHot 00beMubIX cuil. Hakowerr, mo-
UCK YIPYTOrO COCTOSIHUSI CBOJIMTCS K PEIIEHUI0 KBAJIPaTyp.

AHamM3UPyIOTCs peleHus 3a1a4 TeOPUHU yIIPYTOCTH JIJIsl TPAHCBEPCATBHO-
M30TPOITHOI'O KPYTOBOI'O IUJINHJPA OT JIEHCTBUSI OOBEMHBIX CHJI, 38J@HHBIX
Pa3JINYHBIMU [UKJIMYECKUMH 3aKOHaMU (CHHyca U KocuHyca). JlaHbl peko-
MEHIAINH 110 TOCTPOEHUIO 0a3UCa BHYTPEHHUX COCTOSIHUI B 3aBUCUMOCTH OT
BUIa (DYHKIMHU 33/[aHHBIX O0bEMHBIX CHJI. JlaHbl aHAIU3 CXOIUMOCTHU PsiJIOB
U OIEHKA TOYHOCTH PeIleHusi B TpapUIECKOM BHJIE.
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