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Abstract

The present paper is devoted to the problem of boundary conditions for-
mulation in the growing micropolar solid mechanics. The static equations
of the micropolar continuum in terms of relative tensors (pseudotensors)
are derived due to virtual work principle for a solid of constant staff. The
constitutive quadratic form of the elastic potential (treated as an absolute
scalar) for a linear hemitropic micropolar solid is presented and discussed.
The constitutive equations for symmetric and antisymmetric parts of force
and couple stress tensors are given. The final forms of the static equations for
the hemitropic micropolar continuum in terms of displacements and micro-
rotations rates are obtained including the case of growing processes. A trans-
formation of the equilibrium equations is proposed to obtain boundary con-
ditions on the propagating growing surface in terms of relative tensors in the
form of differential constraints. Those are valid for a wide range of materials
and metamaterials. The algebra of rational relative invariants is intensively
used for deriving the constitutive relations on the growing surface. Systems
of joint algebraic rational relative invariants for force, couple stress tensors
and also unit normal and tangent vectors to propagating growing surface
are obtained, including systems of invariants sensitive to mirror reflections
and 3D-space inversions.
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Introduction

Modern methods of design and manufacture of products and complex shape
structures are based on various technological processes of material processing
(lamination, photopolymerization, stereolithography, winding, surfacing, freezing,
ablation, segmentation, frontal and layer-by-layer curing) [1,2]. These manufactur-
ing processes of additive technologies are associated with the products synthesis
by sequentially adding material to the surface of an arbitrary (often abnormal)
shape. It should be then noted that considered growth processes do not include
the processes of the so-called volumetric growth [3-11]: the formation of a solid
component in the process of a chemical reaction, the growth of biological tis-
sues [6], bones [8,9], the natural formations of fruits [12]. At the same time, the
procedure for choosing adequate boundary conditions on a propagating growing
surface is an actual fundamental problem of modern continuum mechanics and
applied mathematics. The boundary conditions play the an important role for
the mathematical models of the growing solids. In addition, 3D materials used in
additive manufacturing, as well as final products, have microstructural features
and mechanical properties that are best described by asymmetric theories of con-
tinuum mechanics. Consequently, for the development of mathematical models of
such technological processes for processing 3D materials and manufacturing 3D
products, it is necessary to use the mechanics of growing solids (MGS) and the
formalism of nonequilibrium thermodynamics in combination with the approaches
of asymmetric theories.

The relative tensors is naturally arising in the mathematical models of mi-
cropolar material. In particular, these are: microrotation vector, wryness tensor,
couple stress vector and tensor, microinertia, body couples. A literary search shows
that the application of relative tensors in the theories of continuum mechanics is
not wide spread, despite of the in-depth mathematical studies (algebra, theory of
invariants and differentiation of relative tensors) [13-22]. The equations of the mi-
cropolar theory in terms of relative tensors or pseudotensors allows a deep insight
of the physical and geometric nature of studied physical fields.

A solution of applied problem of growing solids mechanics is sometimes a
sophisticated and time-consuming procedure [2,23-29|. A substantial feature of
the boundary value problems statements in the MGS frameworks is the boundary
conditions formulation on the interface between the source material and the added
part [30-32].

The paper is arranged as follows. The first section of the paper is devoted
to a formulation of the virtual work principle for a micropolar solid of constant
staff. Differential constraints are taking into consideration by means of Lagrange
multipliers rule. These multipliers are the reactions of the imposed kinematic
constraints. The weights of the fundamental relative tensors are estimated and
collected in table 1.
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In Sec. 2, the static equations of the micropolar coninuum in terms of relative
tensors are derived. The final form of static equations in an arbitrary curvilin-
ear coordinate system is obtained. The weights of relative tensors of micropolar
elasticity are verified and given in table 2.

Sec. 3 of the paper is devoted to the constitutive form of the elastic poten-
tial (treated as an absolute scalar) for the hemitropic micropolar continuum. The
weights of the micropolar hemitropic constitutive scalars are determined and then
shown by table 3. The static equations are obtained for displacements and micro-
rotations for a semi-istropic (hemitropic) continuum of constant staff and gener-
alized for a growing solid.

Then, in Sec. 4, the boundary conditions on the propagating growing surface
are obtained by transforming the equilibrium equations of the micropolar contin-
uum from the Sec. 2 of the paper. Boundary conditions are derived in the form
of differential constraints for force and couple stress tensors.

In Sec. 5, systems of joint algebraic rational relative invariants of force stress
tensor, couple stress tensor and the unit normal and tangent vectors to the prop-
agating growing surface are presented in tables 4-6. The system of joint algebraic
relative invariants insensitive to a coordinate frame rotation around the unit nor-
mal vector to the propagating growing surface is proposed and discussed.

The Sec. 6 deals with a system of invariants sensitive to mirror reflections and
3D-space inversions of local coordinate frame related to a propagating growing
surface.

The final section contains concluding remarks and discussion of the paper.

1. Variational principle for a micropolar continuum
of constant staff

Relative tensors naturally arise in the mechanics of elastic micropolar media.
Throughout the paper in square brackets above the root symbol we will indicate
the relative tensor weight. Hereafter, we will not denote zero weight of the relative
tensor. Note that, the discussions and considerations in Secs. 1-3 are provided in
the frameworks of virtual displacements principle formulated for a constant staff
solid in Eulerian coordinate net. The form of static equations is held in case of
micropolar growing solids. Following this way a derivation of static equations can
by realized for non-growing solids and then generalized on a case of growing solids.

Virtual work due to force factors on virtual displacements duj and microro-
[+1]
tations 0 ¢ *, can be furnished as an absolute scalar in following form [33]:

. (-1 [+1]. : (1] [+1].
0A = /|:XJ(S’LL]'+ Y6 ¢ ]}dV—F]{[tjéuj—i— m;0 ¢ 7|dS.
d

Hereafter, we will use invariant volume element dV and invariant surface ele-
ment dS' of the zero weight.

Small “rigid” displacement and “rigid” rotation close to the equilibrium state
are equivalent the following differential constraints
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[+1], | -
5w:5¢1—§el Vidu =0, (2)
[+1] [+1]
Here € are the fundamental permutation symbols. Note that the permutation

symbols is a pseudotensor of weight +1 in contravariant case and have weight —1
in covariant case. Hereafter, we will not denote the weight of these pseudotensors.
In case of constraints (3), according to the principle of virtual displacements,
such “rigid” motions can be performed without “cost” of work, i.e. virtual work is

vanished:
0A =0, (4)

The most important distinguishing feature in the variational equation (4) is
the absence contributions of the work of “internal” force factors. In this case the
principle of virtual displacements is derived in a very simple analytical form.

Thus, the principle of virtual displacements is a variational equation (4), with
differential constraints imposed on variations (1)—(3). Therefore, further discus-
sions will be based on the Lagrange multiplier rule [33]. Variational equation (4) we

Table 1
Fundamental relative tensors of continuum mechanics
. . . Transformation
Standard terminology Root notation Weight to absolute tensor
determinant defined by Jacobian A = det(9;x%) — gA?2 =7
. g 101
contravariant permutation symbol €k +1 ek = — ¢ ik
e
(—1]
covariant permutation symbol €ijk -1 €ijk =€ €51
metric tensor 9ij 0
fundamental tensor g% 0
(+2]
metric tensor determinant g +2 g =eé?
metric tensor determinant sign sgn g 0
(—2]
fundamental tensor determinant gt -2 g 1=e2
[+1]
fundamental orienting scalar in 3D e +1 e =e
inverse fundamental 1 |
L . Z -1 e B
orienting scalar in 3D e e
invariant volume element dav 0
-1
natural volume element dr -1 dV =ed
Hamilton nabla Vi 0
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will replace with a new one, with Lagrange multipliers by eliminating constraints
(1)=(3). For this purpose, the multipliers of different types are introduced:
(1) () is first (symmetric) absolute tensor multiplier;
[—1]
(i) 7 j is second pseudovector multiplier;
(1]
(ili) g/ is third pseudotensor multiplier.
As a result, instead of the variational equation (4) one can obtain a new
variational equation with independent variations duy and d¢":

N 1] 1
/[Xﬂauj + Y667 — 0V buy — 2 7, (5 b S ou) -

U, 1] [+1]
A ]dV+7{[t96uJ+m6¢ ]dSzO. (5)

Introducing following notation

A (1]
t[zk] zkj 5

the equation (5) can be transformed into

. . . S R
/[X + Vil 4 v,0l }}5ukdv+/[yk—2 T+ Vi uk}é & *dV+

. . (1] (-1 7 [+1]
+ % {tk —n; (o) —i—U[’k])}éude—i- jé[ —n; uk]d ¢ *dS =0, (6)
f)

where n; are the unit vector components of the external normal to the outer
surface 0 of the solid.

2. Static equations of growing micropolar continuum

The differential equations of equilibrium are derived from the equation (6) by

considering those in Eulerian (spatial) coordinate net due to the arbitrariness of
[+1].
the variations dug and § ¢ *. These equations read

Vioc* = —x*
e e N (7)
Vi ,u,,g' -2 T = — ka
where the asymmetric Lagrange multiplier is introduced according to the equation

otk — @R 4 k],
[+1]

Note that variations dug and § ¢ * remain their sense for growing solids while

considering in Eulerian coordinates. The formulation of variational principle for

varied domain is discussed in [29].
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Table 2
Relative tensors of the micropolar elasticity

- . : Transformation
Standard terminology Root notation Weight to absolute tensor
displacements vector uk 0
asymmetric strain tensor €ij 0
small strain tensor €(i5) = €ij 0
force traction vector th = n,otk 0
force stress tensor o'k 0
body forces Xk 0
elastic potential v 0
mass density P 0
) ) [-1]
couple traction vector my = ni,u?’,'c —1 my = e my
. _ =11
couple stress tensor 75 -1 H=e g
associated couple stress vector K 0
) (—1]
associated couple stress vector Tk —1 T =€ Tk
(—1]
body couples Y, -1 Y.,=eY,
(—2]
microinertia Q3 -2 I=e2 3
microrotation tensor Qik 0
. o1
microrotation vector @ +1 Pr=-¢"
e
1[+1]
wryness tensor K +1 K = p K;.°
associated wryness vector Ki 0

The following equations are additionally derived from variational equation (6)
on the boundary surface 1] 1]

n; ,u,g = my. (8)

The above results allow us to conclude that the Lagrange multipliers oU*),
(-1 [-1],

T K. » represent the reactions of the imposed constraints, respectively, by the
constraints characterising the “rigid” displacements and “rigid” rotations

TLZO'Zk — tk7

[+1] [+,
e(jk) = O, %) J = 0, Hi-' =0.
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: (-1].
It is also clear that in the physical sense the second-rank tensors ¢7* and gy
are force stress tensor and couple stress tensor respectively. It is obvious that the

force stress tensor o'* is an absolute second-rank tensor, and the couple stress
-1

tensor g is a relative tensor of weight —1.

In the further considerations, the following antisymmetric tensors and their
associated vectors will be used

-1 1 . A
— TJ — §€j2kt[2k]7 —'I_,UIZ — §€st M[ks].

Let us derived the covariant derivatives in accordance with the rules of covari-

ant differentiation of relative tensors [13,14,18,22|. Thus, the static equations (7)

are furnished by

9,0 4 JSkl"ii + oIk = —Xx*, 9)
P e ) -1, ) [—1] (1]

where 0; denotes a partial derivative on the spatial coordinate x’.

To formulate boundary value problems in the frameworks of the theory of
asymmetric elasticity, it is necessary to specify the forces t* and the couples my,
acting on the outer surface of the solids.

The final form of the equations (9), (10) in combination with the boundary
conditions (8) give a general statement of the boundary value problem in the
micropolar elasticity frameworks in an arbitrary curvilinear coordinate net.

3. Hemitropic micropolar media

Let’s apply the formalism of relative tensors [17-19, 22| to the model of the
linear hemitropic micropolar continuum of constant staff. The static equations
derived for a constant staff solid by the virtual work principle with special consti-
tutive form of elastic potential in terms of rates will be held true for the growing
solids. For a micropolar continuum with one director, the elastic potential' %
with appropriate arguments can be taken in the form [33,37,3§]

[+ ]
U = %(E(U)’ K (U)’ 2 Zami))

[+
) is small strain tensor (absolute tensor), & (i) is the symmetric part
(+1].
of the wryness tensor (the relative tensor of weight +1), ¢ * is vector of relative
microrotation (relative vector of weight +1), k; is the associated wryness vector
(absolute vector).
First variation of % is obtained according to equation

where €(;;

5 -1 1 =1 [ .
0U = 0 Déeyy + pupd v D42 7,8 0+ 20tk

IThe elastic potential % is an absolute scalar of the zero weight.
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In the case of a continuum exhibiting semi-isotropic (hemitropic) properties,
i.e. one are insensible for a rotation and sensible with respect to mirror reflections
and 3D-space inversion, potential % can be presented in the quadratic form by

, (-1][-1] [+1] . [+1]
U = Gy(l — QV)_lgzsglmE(is)E(lm) +G L L c3Gisgim K ()" g (lm)+
o (—1][-1] [+1] ” [+1] (2] [+ [+1]
+ ngsg me(il)e(sm) +GL L Gisdim K (if) K (sm) +2G Clgis(s ¥ K ¥ '+
(—1=1[+2] -1 [+1] ;
+G L L c2g”kiks + G L cag” qume(is) K (tm)
(1] [+1] (1] [+1]

+G L C5€(is) Y (is) +G L Cﬁﬁi(s %) Z,

-1
where G is the shear modulus of elasticity; v is the Poisson ratio; [L] is the char-
—2] [+2

acteristic length of micropolar theory; | cl}, | 02], cs3, ¢4, C5, g are the dimensionless
constitutive pseudoscalars. The weights of the micropolar hemitropic constitutive
scalars are shown in table 3.

Then the constitutive equations of a hemitropic micropolar growing medium
can be furnished by in the form

(is) -1 _is, Im il _sm =1 is [+1}(lm) [+1](is)
o"=2G (w1 -2v)" "¢+ """V emy+ G L (cag®gim r "™+ c5 5 1)),
(1] [=1][-1] [+1] (im) (1] I

tiiis) = 2G L L (c3gisgim + girgsm) & "™ + G L (cagisg " €(tm) + C5€(is))
(1] (2] 1 1 [-1]

7i=2G cigis p ° + QG L cgki,

. (—1][=1][+2] 1 =10 [+,
wW=GL L czg“fis+§GLcﬁ 0"

2

Consider the fundamental orienting scalar powers® e and take account of
equation

Vie™ =0 (m=41,+2,--.). (11)

The equation (11) can be easily proved. Note, that a tensor equation involving
relative tensors when true in one coordinate system is valid in all coordinate sys-
tems [18]. Let’s consider the equation (11) in a right-handed Cartesian coordinate
net. Actually, in this case a covariant derivative in (11) is a partial one. Then, in a
right-handed Cartesian coordinate net e = 1. Thus, the equation (11) is trivially
fulfilled which proves it actuality in any curvilinear coordinate net.

2Orienting pseudoscalar of weight +1 in a three-dimensional space is determined by the
equation

e=" = (zx 1)

- BT R

? (k = 1,2,3) are the local coordinate frame base vectors. This definition holds true only in

three-dimensional space. For the case of multidimensions see [39,40].
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Table 3
The weights of the micropolar hemitropic constitutive scalars
. : . Transformation
Standard terminology Root notation Weight to absolute tensor
shear modulus of elasticity G 0
the Poisson ratio v 0
characteristic length . (=1
of the micropolar theory L -1 L=elL
dimensionless _9 o — 62[762]
micropolar modulus i 1 L= !
dimensionless 4o . 1 [+C2]
micropolar modulus ii €2 27 2 72
dimensionless
. C3 0
micropolar modulus iii
dimensionless
. . Cq 0
micropolar modulus iv
dimensionless
. Cs 0
micropolar modulus v
dimensionless
. . Cg 0
micropolar modulus vi
constitutive pseudoscalar i zil 0
o N [=2]
constitutive pseudoscalar ii él -2 él =¢? 1;4
constitutive pseudoscalar iii 1?4)1 0
o . N
constitutive pseudoscalar iv ﬁl -2 ﬁl =e ﬁl
o 12
constitutive pseudoscalar v 154)1 -2 1;1 =e 1;1
constitutive pseudoscalar vi jgl 0
o N (=1
constitutive pseudoscalar vii 1;1 -1 1;1 =e 1;1
o (=1
constitutive pseudoscalar viii jgl -1 zgl =e zgl
o . (=1
constitutive pseudoscalar ix 1;1 -1 1;1 =e 1;1
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Introducing the following notations

di=c +1c —i-}c c’—lc 1c = —c
4 — ¢4 25 467 5_25 467 6 — 65

and in view of equation (11) we derive the prefinal static equations for the
hemitropic micropolar continuum in terms of displacements and microrotations

(—2] . (—2] ‘
G{(l + é? cl)VsVsuZ + (1 —e? 1+ 2v(1 — 21/)_1)V2Vkuk—l-

-2 e S | I ) .
12 eV, ¢+ L ViV ¢ F+ L VRV, ¢] _xi

[=1i-1] 2 1] [+2) R
GL L|(1+e™2 o) ViV, g+ (1- 72 a4 203) ViV 6“4 (12)

U = S 1)
+ LYV VR + L VRV + L e Ve 6 }—
2] [+1] X . [-1]
—2G ¢1(2 ¢i — g™ Vsu') = — Yy,

where “+4” corresponds to the right-handed coordinate net, and the sign “—”

corresponds to the left-handed one.

The static equations in mechanics of growing solids are often conveniently
furnished by the rate equations. Thus, taking account of the independence of
body forces and couples on time after simple transformations equations (12) read
by

72 o2

G[(l + €2 c1)VeV' + (1 — e? 1+ 2v(1—2v)” )Vivkvk—l—
[ }kl (+1]  [-1] [+ ] (1] L [+1].
+2 1V O+ L EVIVEQF 4+ L ViV, }
[—1][-1] 2[+2] [+1] [+2] HH (13)
GL L1+ co)VV0i+ (1- 2 24 26) ViV40 Mt
[-1] (1] (1] [+1]
+ LV VR + L VR + L e Ve Q l} —
(-2  [+1] . .
—2G ¢1(2 U — " gipgreging " Vsv') = 0,
(+1]
where vF are the velocities components, (), are the angular velocities of microro-

tations.
Note, that the rate form of static equations (13) furnishing in a Eulerian
coordinate net hold true in a case of micropolar growing solid.

4. Differential constraints on a micropolar growing surface

The considerations in the section are provided by the transformation of the
static equations obtaining in Sec. 2. The equation in Eulerian coordinates can
be applied for describing behavior of growing solids. The similar method is in-
depth discussed for a Cartesian coordinate net in the book [32, pp. 288-292]
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by G.I. Bykovtsev. Here we use notation and terminology introducing in the
studies [41-43|, where the differential constraints for the force stress tensor are
derived and discussed. Let’s analytically define a propagating growing surface >
in three-dimensional space by the equation

t= I(xi). (14)

Then the unit normal vector n; on the propagating growing surface > directed
towards its propagation is related to the spatial gradient (14) by the equation

n; = co;T, c:]VT]_l (t=r), (15)

where c is the linear velocity of propagating growing surface in the normal direc-
tion ng.

As previously shown (see for example, [41-43]), the transformation of equa-
tions of equilibrium (7) using a formula for the actual components of the force
stress tensor g%/

o = / (0.0 (x5, ¢)|dt + 7" + oV (2°), (16)
740 ¥
. 7+0 .
S — / 0.0 (25, )] dt, (17)
7—0

allows us to derive the equation on the propagating growing surface in the form
of the following differential constraints

C[ngji(xs) +V,; 7+ )*(l(acs)] —n;0.07(2%,t) =0 (t= T+ 0). (18)

In equations (16)-(18) we use the notation adopted in [41-43]: .7 is the stress

jump related integral, o*/(z°) = 0™ (2°,t)|;—r(2s)—0 are the stress tensor compo-
* *
nents, respectively, at the moment ¢t = 7(z°%) — 0 right before when the element
*
is included in the main solid, X*(z®) = X*(x*, t)|t_ o1 - Moment ¢ = 7(2*) + 0
* —I(x )40 %

corresponds to the moment right after attaching the element to the growing sur-
face.

Formulas for the components of the couple stress tensor, by analogy with the
equations (16) can be assume in the following form

= ot e T P
. :/ O[a pi (2, )] dt + A5+ (2f), (19)
T+ *
[-1]. T+0  [-1].
i= [ k),
7—0
1] = -1

where . % is the couples jump related integral, u/ (z%) = u.,ﬁ'(azs,t)\t:T(ms)_o
* *

are the components of the couple stress tensor at time ¢ = 7(z°) — 0.
*
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After substitution of the actual couple stresses components (19) into equations
of equilibrium (7) one can obtain

N | T o | 2 1) -1 =]
VZ»{/ (0. i (2, )] dt + A + u,g‘(xS)} =27,—Y, (t=7+0). (20)
740 * *

The next transformations of equation (20) is performed by derivative calcula-
tion according to the parametric integral differentiation rule. Note that the lower
limit of integration depends on spatial coordinates z® which play a role of the
parameters. Following with way one can derive

C =) =
/ Vi[0. p @ OY + Vitly = (T [0 10 )]yt
T+ *

*

1], IS
V@) =2 = Y, (E=T40). (21)

*

Upon substituting the equation (15) in (21) we can write

t (-1 (-1 (-1
[ 900w @ a4 Vit~ [ 0. 0] eyt
7+0 *

*

-1, I
V(@) =27 = Y, (E=T+0). (22)

The following equation can be obtained by integrating (22) and taking account
of (7), then reordering the covariant derivatives

[712. -1 [71¥- s [
Vi, — [C ni0. g (v ,t)h:T(xs)Jro

(-1 [-1] -1 =1 (-1 =1

—1].
+V; ,u,],j(xs)—i-

=1 -1 (1] 1]
where }*/k(g;S) = Yk($87t)’t=T(xs)+0’ Te(z®) = Tk($57t)’t:T(xs)+o.

Rearrangement of the terms in equation (23) leads to the final form of diffe-
rential constraint on the propagating growing surface for the couple stress tensor

(1], (1] -1 =1 (1],
c[Vipp (@) + Vil =2 T+ Yi] =m0 p i (2%,6) =0 (t= T+ 0).

g —1],
In the general case, the forces stresses ¢/ and couples ones [u,]g' are to be
* *

expressed in terms of the actual stresses and couples on propagating growing
surface by a tensor constitutive equations as follows

iy N =1 a0 =1
gz] — 3”(0’”, M‘;’ni’.“)’ /J,,g _ 3.]3‘(0_1
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(1]
The functions §;; and 3 can be defined by black box approach characteriz-
ing evaluation parameters in time interval 7—0 < ¢ < 740 right before attaching
* *
(—1].
elements on a growing solid. In particular, the functions §;; and 3/ may depend

on the microstructural directors and the thermophysical hidden variables associ-
[—1].

ated with propagating growing surface. The functions §;; and 3./, in fact, should

depend on combinations of arguments which are invariant under coordinate frame

rotations around the unit normal vector ny.

5. System of joint algebraic relative invariants

As we can see from the discussion in Sec. 4, the relative tensors associated
with a growing solid and the propagating growing surface are the unit normal
and tangent vectors, force and couples stress tensors. It is the tensor objects
that define stress—strain state in micropolar material built up on the propagating
growing surface. It is reasonable in further considerations to take account of n; unit
normal vector that determines local geometry of the propagating growing surface
and to introduce a local orthonormal coordinate frame base vectors involving the
unit normal vector n; and two independent tangent vectors Ti and Ti in a tangent

plane to the propagating growing surface.

Throughout the paper we deal with the second-rank tensors and vectors. The
completeness problem of invariants system is in-depth studied in [19]. A complete
system of those invariants of the second-rank tensor T, mutually orthogonal vec-
tors p and q which have the same power in the components of both vectors in
n-dimensional space consist of 2n invariants:

Ila I27 RN Inv qua q'Tz'pv RN an_lp (24)
Here I is the absolute invariant of T defined by

Iy = T TG - T%, (25)

where the alternation denotes by the square brackets around those indices to
which it apply. The alterination in (25) is the operation prior to the contractions.
In case of 3D-space the complete system of invariant (24) is reduced to

L, I I, q-T-p, q -T? p. (26)

The complete system of joint algebraic relative invariants (24) can be obtained
by the well-known Cayley—Hamilton theorem [44,45|. The theorem can be easily
proved for relative tensors. Actually, the Cayley—Hamilton theorem for an absolute
second-rank (in general, asymmetric) tensor T in n-dimensional space [19] can be
formulated by equation

™ - LT 4+ LT ? — - (-1)"[,I =0, (27)
where I is the unit tensor.
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[w]
The relative tensor T can be transformed to an absolute one according to

T=e"T. (28)

[kw] [w]
For the invariants (25) of tensor T and relative invariants I of tensor T
defined similarly to (25) and in view of (28) one can obtain

_ 7kw[kw]
Ik =€ Ik . (29)

After substituting representation of tensor T (28) and its invariants I (29)
in equation (27) we obtain

Lol ] Rulle) ]
e ’“”(T"— LT " 4 [,Tm 2 — g (—1)" InI> = 0. (30)

A product of multipliers (30) is zero if and only if one or more of the multipliers
is zero, which proves the Cayley—Hamilton theorem for the relative tensors.
Thus, the invariants system (26) in case of a growing micropolar solid can
(1]
apply by replacing tensor T by o and then g and vectors p and q by 3; (k=1
)
or 2) and n respectively. The invariants of tensors ¢*/ and " will not involved
in considerations due to their independence on a geometry of propagating growing
surface.
A complete system of joint algebraic rational relative invariants can be devel-
oped according to list of invariants (26) due to joint inner products of considered

vectors. Thus, a rationally system of algebraic rational relative invariants of ten-
(1]

sor ¢ and vectors nj and 7k'l is shown in table 4. A system for tensor ,u,i and
vectors ny and Ti is given in table 5. Note that, a literary search is shown an lack

of results devoted to a system of joint ivariants of two second-rank tensors and
two vectors. In table 6 we propose the joint algebraic rational relative invariants

(1],

containing simultaneously tensors o and p. P

As we can see, the system of joint algebraic rational relative invariants pre-
sented in the tables 4-6 is complete but is not irreducible one. The invariants in
4% 6t and 8" rows in the table 4, 4™, 6**, and 8" rows in the table 5 and 279,
4% 6th and 8*" rows in the table 6 are not independent and can be excluded from
consideration in virtue of obvious rational syzygies. Moreover, the joint algebraic
rational relative invariants of higher order involving cubics and biquadratics in
stresses and couples corresponding to 58 rows in the table 4, 5" -8 rows in
the table 5, 3"9-8" rows in the table 6 should be excluded from considerations
according to the Cayley—Hamilton theorem [19].

Thus, the irreducible complete system of joint algebraic rational relative in-

. i (—1];,.
variants of the force stress tensor o'/, couple stress tensor p . and vectors ny
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Table 4

Joint absolute rational invariants simultaneously involving
the force stress tensor

Vector form Weight Coordinate form
t-n=n-o-n 0 thng, = n;ot*ny
g n=n-o0°-n 0 gsns =n;ollo;sn®
t-t 0 gij 7t
ti-ty 0 giitItt — (t'n;) (t*Fny)
tt 0 tlgi
ti-to 0 tig,» — (t'n;) (tgn®)
b1ty 0 gtit; — (tin*) (Len”)
Table 5

Joint relative rational invariants involving the couple
stress tensor

Vector form Weight Coordinate form
[;ri] ‘n=n- [Itl] ‘n -1 [E%Lnk = 715[711,]“’”71’C
[;ﬁ]-n:n~[;¢1]2-n _9 [;glnj—nz[ﬁls[u]k nk
[;r}] . [;r}] _9 g”[m] [ml
[I—Ii]l. [;&]L _9 gii = ;[WH B ([Ezlinl)([;nlink)
[I—ﬁ] . [;5] _3 gij[*mll_[é%
[I—Ii]l. [;ﬁ]l _3 gii T i[gﬂ B ([%”Llinz)([;;;mk)
2 -2 4 ifonond
2 2 27 2
[I_ﬁ]i' [;ﬁ]l 4 gij[%ﬁ_[%ﬁ B ([52121“1)([@2%?1]“)

and Ti can be and given by 15¢-3"1 rows in the table 4, 15¢-3' rows in the table 5,

1%t and 2" rows in the table 6. Such system will be insensitive to a rotation of
the local coordinate frame (n;, 71'1'7 72'2) around the unit normal vector n; to the

propagating growing surface X.

6. Algebraic invariants sensitive to mirror reflections

As shown in Sec.3, the hemitropic constitutive pseudoscalars are sensitive to
the mirror reflections and 3D-space inversions. Thus, we should pay attention to
invariants sensitive to mentioned transformations. Consider a propagating growing
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Table 6

Joint relative rational invariants involving the force and
couple stress tensor

Vector form Weight Coordinate form
-1 -1 -1
—1 -1 . [—1
t, - [m]L -1 tz[ml - (g”[m;ni)(tknk)
—92 -
t [m] -2 tl[n”a
2 2
[72] i[_ ] i i [ ]
to m -2 tm; — (t'n;) (g% myn;)
[-1] i1
m -t -1 g9 mjgz
—1 L [—=1 —1 .
me 1| gyt~ (i) (gen®)
t- 2 CIy
2 2 975
(—2] i, (=21 gy 122
. — Wt — - J
SL m 2 g gz mj (gkn ) g )

surface located in 3D-space and introduce local coordinate frame consisted of
mutually orthogonal vectors: a unit normal vector n;, and the two unit vectors in
a tangent plane 71'1‘, gl In case of 3D-space transformation sensitive to an inversion,

we need to descriminate those invariants shown in the tables 4-6 that have an odd
weight. Thus, the system of joint algebraic rational relative invariants is defined
by 1%, 5" and 6" rows in the table 5 and 1%¢, 20 5*" and 6" rows in the table 6.
The irreducible system of joint algebraic rational relative invariants sensitive to
the mirror reflections and 3D-space inversions consists of 15* row in the table 5
and 1% row in the table 6.

7. Conclusions

(i) The formulation of the virtual work principle for the micropolar solids of a
constant staff has been discussed. The weights of the fundamental relative
tensors have been estimated and collected in table 1.

(ii) The static equations in an arbitrary curvilinear coordinate system has been
furnished. The weights of relative tensors of micropolar elasticity are verified
and given in table 2.

(iii) The elastic potential (treated as an absolute scalar) of the hemitropic mi-
cropolar continuum have been given and discussed. The weights of the mi-
cropolar hemitropic constitutive scalars have been discussed and then shown
by table 3. The rate form of static equations have been obtained.

(iv) The boundary conditions on the propagating growing surface have been
furnished by transformation of the micropolar equilibrium equations.

(v) The joint algebraic rational relative invariants of force stress tensor, couple
stress tensor and the unit normal vector to the propagating growing surface
have been presented in tables 4—6.
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(vi) The system of joint algebraic rational relative invariants insensitive to a

coordinate frame rotation around the unit normal vector to the propagating
growing surface has been proposed and discussed.

(vii) Invariants sensitive to the mirror reflections and 3D-space inversions have

been discriminated and discussed.
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O mukpomnossgpHoit 3D-Teopuu pacTyimux TeJa
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AnHOTan M

O06cy K aeTcst TPUHITAI BBIBOJA TPAHIMYHBIX YCJIOBHUI B KDAEBBIX 33/1a9aX
MEXaHUKHU PACTYIIUX MHUKPOIOJSIPHBIX Tesd. [IpuBomuTca BBIBOJ ypaBHEHMIT
JAWHAMUKUA MUKPOIIOJISIPHOT'O KOHTUHYYMa B T€PMUHAX OTHOCUTEJbHBIX TE€H-
30pOB [IJIsi T€JI IOCTOSHHOI'O COCTaBA. ¥ Ka3aHa OLPEIEISIONas KBaJpaTud-
Hag (opMa yupyroro mnorernusia (aGCOTIOTHOrO CKaJApa) i JIMHEHHOro
TEMHUTPOITHOTO MUKPOIIOJISIPHOTO TeJia. BBIBEJIEHBI OIPeIesIoniune COOTHO-
IIeHUd JJId CHMMETPUYHBIX U aHTUCUMMETPUYHBIX YacTeill TeH30pOB CUJIO-
BBIX W MOMEHTHBIX HanpsikeHuil. [losrydernbl KoHeUHbIE (DOPMBI ypaBHEHU
JUHAMUKU TeMUTPOITHOI'O MUKPOIIOJIIPHOIO KOHTUHYYMa B TEPMUHAX CKOPO-
creil mepemernneHuii 1 MuKpospamennit. [losydenmabie nuHaMIIecKne ypas-
HEHUS JJId TeJl IOCTOAHHOI'O COCTaBa OCTAIOTCA CIPaBEIJIMBBIMU U B TEO-
pusix pactymux Tesa. [Ipeamoxxena mporeaypa mpeodpa3oBaHus ypaBHEHUH
paBHOBeCHs JJId IIOJIyYeHNA I'PAHUYHBIX YCJIOBUIT Ha IIOBEPXHOCTU Hapalllu-
BaHUsI B TEDMUHAX OTHOCUTEILHBIX TEH30POB B (hopMe TuddepeHInaIbHbIX
OFpa.HI/ILIeHI/IfI. HOJ’IyLIeHHbIe ycioBud CHpaBeJIMBBI [IJIgd B€CbMa HINPOKOI'O
Kpyra MaTepUAJIOB M MeTamarepuasos. IIpu BBIBO/IE OIpEessionnx cooT-
HOIIIEHUII Ha IIOBEPXHOCTU HapAaIlUBaHWUs aKTHUBHO HCIIOJIb3yeTCd alrapaT
aJIreOpPhl PaIOHAIBHBIX OTHOCUTEIbHBIX HHBAPUAHTOB. Ilosydensl nosHble
CHUCTEMBI COBMECTHBIX OTHOCATEJIbHBIX MHBAPUAHTOB JJI TCH30POB CHUJIOBBIX,
MOMEHTHBIX HAIIPAXKEHUI U e JUHIYIHOI'O BEKTOpa HOPMaJId, B TOM YHUCJe CU-
CcTeMbl MHBAPUAHTOB, He BbLJIEPKUBAIOIIE 3€PKAJIbHBIX OTPaXKEHUIA.

KurogueBbie ciioBa: MUKPOIIOISPHBI MFeMATPONHBIN KOHTHHYYM, MHUKPOIIO-
BOPOT, IICEBJIOCKAJISAD, OTHOCUTEJbHBIN TEH30D, 3D-11ev1arTh, MOBepXHOCTHBIH
POCT, HalIpsXKeHue, ollpeleIsIollee ypaBHeHNe, PAIlMOHAJIbHBII OTHOCUTEIb-
HBI{l MHBApHUAHT, JuddepeHIagIbHOe OI'PAHNYEHNE, [TOTHAS CUCTEMA.
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