Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki
|[J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, vol. 24, no. 3, pp. 528-541
ISSN: 2310-7081 (online), 1991-8615 (print) d  https://doi.org/10.14498/vsgtul770

Mathematical Modeling,
Numerical Methods
and Software Complexes

MSC: 76F02, 76M45, 76F45, 7T6R05, 76U05

Convective layered flows of a vertically whirling viscous
incompressible fluid. Temperature field investigation

© N. V. Burmasheva'?, E. Yu. Prosviryakov'

I Institute of Engineering Science, Urals Branch, Russian Academy of Sciences,
34, Komsomolskaya st., Ekaterinburg, 620049, Russian Federation.

2 Ural Federal University named after the First President of Russia B. N. Yeltsin,
19, Mira st., Ekaterinburg, 620002, Russian Federation.

Abstract

The paper discusses a class of exact solutions of the Oberbeck—Boussinesq
equations suitable for describing three-dimensional nonlinear layered flows
of a vertically swirling viscous incompressible fluid. An inhomogeneous dis-
tribution of the velocity field (there is a dependence of the field components
on the horizontal coordinates) generates a vertical swirl in the fluid without
external rotation (excluding Coriolis acceleration). Setting the linearly dis-
tributed heat field and the field of shear stresses at the boundaries of the flow
region is one of the reasons inducing convection in a viscous incompressible
fluid. The main attention is paid to the study of the temperature field prop-
erties. The effect of vertical twist on the distribution of isolines of this field
is studied. It is shown that the homogeneous component of the temperature
field can be stratified into several zones relative to the reference value, and
the number of such zones does not exceed nine. The inclusion of inhomoge-
neous components of the temperature field can only decrease this number.
It is also demonstrated that the class discussed in the paper allows one to
generalize the previously obtained results on modeling convective flows of
viscous incompressible fluids.
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Introduction

One of the main factors causing convection in a viscous fluid is the uneven
heating of this fluid. The reasons for the heterogeneity of the temperature field
distribution are different, e.g. the presence of a heat source inside the volume
occupied by the fluid, heating/cooling of the boundaries of this volume, etc.|1,2].

The energy equation (or the heat equation as one of its simplest versions)
is known to depend, besides the physical characteristics of the liquid, on the
value of the flow velocity V in view of mixing. Thus, it is necessary to take
into account the mutual influence of hydrodynamic fields. Another important
case illustrating this dependence is a model of viscous fluid flow based on the
Boussinesq hypothesis [2]. This hypothesis suggests a linear relationship between
fluid density p and temperature T'. As a result, the specific gravity pg appearing
in the Navier—Stokes vector equation is substituted by the term ¢fT, where g
is the volume expansion coefficient, and it is neglected in the inertia forces. In
this case, the fluid is considered incompressible. Thus, the relationship between
the flow velocity field determined by the velocity vector V and the temperature
field T becomes mutual in the sense that both the equation of motion and the
heat equation include the components of both fields: the temperature field and
the velocity field.

In addition to the Navier—Stokes equation and the heat equation, the consti-
tutive equations for constructing models of viscous fluid mechanics include the
law of mass conservation [1-11]. In the case of incompressible fluids, this law is
written in the divergent form of the incompressibility equation V-V = 0 [1,2|. The
resulting system consists of five scalar equations with respect to five unknowns,
namely the components V.., V,, V. of the velocity vector V, pressure P, and tem-
perature T'. When considering a number of practically important flows belonging
to the class of layered and shear (unidirectional and non-one-dimensional) flows,
a problem arises related to the overdetermination of the Oberbeck—Boussinesq
system since V, = 0 for these flows [12-25].

One can resolve such an overdetermined system if, for example, one selects the
projections of the velocity vector from a certain generalized class of exact solutions
which allows one to satisfy the “unnecessary” equations [12-14,16-19,26,27]. The
families of such classes differ, among other things, in that some of them can
describe only flows of vertically unvortexed fluids, while others are suitable for
modeling flows of fluids with nonzero vertical swirl [12-19, 28-37]. Moreover,
taking into account the vertical twist is certain to complicate the structure of the
solution to the boundary value problem under study.

The velocity field of convective flows of a vertically swirling fluid was studied
in [13,18,19]. It was shown that the vertical vorticity component can exist when
the fluid does not rotate. Isothermal flows of this kind were studied in |38, 39|.
When considering thermal factors, it is important not only to study their influence
on the velocity field, but also to evaluate the contribution of the velocity field to
the stratification of the temperature field.
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This paper considers the exact solution of a boundary value problem describing
the convective flow of a viscous fluid under the action of a given field of shear
stresses. The effect of a constant vertical swirl on the temperature field is studied,
as well as the features of the temperature field distribution depending on the given
shear and normal stresses at the boundaries of a horizontal infinite fluid layer.

1. Problem statement. The exact solution
of the Oberbeck—Boussinesq system

A system of equations of thermal shear convection in the Boussinesq approxi-
mation is considered. For shear flows (the component V. of the velocity vector V is
assumed to be identically equal to zero), this system takes the form [12-15,18,19|:

Vm%Jr yan _ —a—P+yAVx; Vm%JrVyaV 8£+VAVy;
o op Y s T axéf)y v Y (1)
— = gBT; = XAT; -2 =0.
o7 = 9T Vego +Vig =xAT: H 450 =0

Here, P is the deviation of the pressure from hydrostatic, divided by the constant
mean density p of the fluid; T is the deviation from the average temperature;
v, x are the coefﬁcients of kinematic viscosity and thermal diffusivity of the fluid,
respectively; A = amQ + ayQ + 822 is the Laplace operator.

The system of equations (1) is overdetermined. It was shown in [13, 18, 19|
that, if we consider the flow velocity field of the form

Ve =U(2) +ulz)y, V,=V(2), (2)

the incompressibility equation in system (1) is satisfied identically. In this case,
the temperature field 7" and the pressure field P are be described by linear func-
tions of the longitudinal (horizontal) coordinates as

P=PR()+P(r+P(Ey;, T=T+T(z+T(2)y.  (3)

It was also shown in [13,18,19] that, substituting the families of generalized
solutions (2), (3) we can reduce system (1) to the ordinary differential equations
system of the following form:

"=0, T/ =0, P/ =g¢gBTh, xT¥=uli, Pjy=gBTs,
vV = P, vU" =Vu+ Py, XT(/)/ =UTy + VT, PO/ = gB1TpH.

Moreover, system (4) is integrated uniquely, and it can have a solution different
from the trivial one. Here, the prime denotes derivation with respect to the vertical
coordinate z. In what follows, we consider the case of constant vertical twist by
setting u = 2 = const.

2. Boundary value problem

We choose the conditions described in [12, 14,18] as the boundary conditions
for the horizontal temperature gradients 17, 15, the horizontal pressure gradients
Py, P, the background temperature Ty, the background pressure Py, and the
velocities U and V. We assume that the fluid flows in a horizontal infinite layer,
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the lower surface of which z = 0 is absolutely solid and selected by the reference
level of temperature measurement. Without loss of generality, we assume that the
reference temperature is zero,

T(z,y,0) = 0.
The velocity of the lower boundary z = 0 is given as
V2(0) =Qy, V,(0)=0.

At the undeformed (free) upper boundary z = h, constant atmospheric pressure
is set and, by analogy with the temperature setting, it is counted from zero,

P(z,y,h) =0.
We also assume that the field of shear stresses is set at the upper boundary as

o, U Oy 0V
T, TMay TSt Mo, T,

= &o.

Here, 1 is the dynamic viscosity coefficient. Note that, due to the structure of the
velocity field V, the resulting shear stress field is homogeneous, as in [12, 14, 18].
In addition, thermal sources are set at both boundaries of the fluid layer,

T(x,y,0) = Az + By, T(x,y,h) =19+ Cx+ Dy.

In view of the class of generalized solutions (2), (3), the selected boundary
conditions are written as follows:

U0)=Vv(0)=0, nU'(h)=¢&, nV'(h)==E&,
To(0) =0, Ti(0)=A, Ty(0)=B,
To(h) =9, Ti(h)=C, Ts(h) =D,

Py(h) = Py(h) = Py(h) = 0.

The exact polynomial solution of the boundary value problem (4), (5) for the
velocity field components for the special case B = D = 0 was given and analyzed
in [18]; therefore, we restrict ourselves to the exact solution for the temperature
field and the pressure field, which has the form

Th=A+(C-A)Z

P = 9§h((c A)Z2 + 247 — (C + A));
6
T2:—%h;(l—Z)Z((C’JrQA)Jr(C—A)Z); ©
gBOh3

(1-22((C+A)+2(C+ A)Z+ (C— A)Z?);
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4Z(1 - 2)
12Inp2y3
x [54%(2—2)(1+2Z — Z%)(4 — 2Z + Z°)+
+5AC(26 4+ 267 — 302> + 523 + 52 — 22°)+
+ C?(824 822 4+ 822% — 58Z° + 52 +52°)] -
— 3gBnvQ*h? [2A%(2 — Z)(912 + 13687 + 15962% — 36802°+
+19982% + 29475 — 83375 + 33627 — 427%)+
+ AC(7851 + 7851Z + 785122 — 2756923 + 153972+
+9212° — 347975 — 1427 4 756 2% — 1682°)+
+ 2C?(2088 + 20887 + 208822 — 407273 — 6072+
+18572° — 3432° — 34327 + 422° + 4227)] -
— gBnx QPP [A%(2 — Z)(19456 + 291847 — 951227 — 70802+
+ 383821 — 6362° — 39825 + 21627 — 272%)+
+ AC(82985 + 829857 — 2393522 — 1403523 + 8141.2*—
— 63725 — 63725 — 14227 + 24328 — 542°)+
+ C?(43268 + 432687 + 4326822 — 1019223 — 1019224+
+45922° — 3582° — 35827 + 272° + 2727)] -
—99792001*1V2 6 [A(L + Z — Z*) + C(1 + Z + Z°) |+
+ 3326401° 126X QA3+ 3Z + 322 — 7Z2° +22)+
+C(B+3Z+32% —22° —272%)]+
+ 332640h°vEx QU [A(14 + 147 — 162% — Z° + 22%)+

Ty = 97 + {—2376095nux2h5><

+C(13 4137 + 1322 — 22° — 274 } (7)

Here, Z = z/h € [0, 1] is the dimensionless vertical coordinate.

The expression for the background pressure Py is not given here since it is
cumbersome; however, it can be easily obtained by integrating the corresponding
equation of system (4) due to the exact solution (7).

Note that the condition u = 0, which determines the degeneracy of the class (2)
to the class

Ve=U(2), V,=V(2),

considered in [12, 14,16, 17|, is equivalent to the condition £ = 0; therefore, the
effect of the parameter Q2 on the temperature field topology will be studied in
more detail below.

3. Temperature field analysis

For further convenience, we introduce the functions Tlgzo, TQQZO, Té):[), which
are obtained from the exact solution (6), (7) when the vertical twist 2 proves to
be zero. In this case we have

TP = A+ (C - Az, T57°=0;
532
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4h3Z(1 — 2)
12Invy
x [54%(2 - 2)1+2Z — Z%)(4 — 2Z + Z*)+
+5AC(26 + 267 — 302% 4+ 523 + 52 — 22°)+
+C*(82 + 827 4+ 82Z° —582° + 52* + 52°)] -

— 9979200061 [A(1 + Z — Z%) + C(1 + Z + 72)] } 8)

T90 — 97 + {—2376Ogﬁnh2 x

3.1. Analysis of the properties of the longitudinal gradients T3, T5.
Note that, regardless of the magnitude of the twist §2, the component 77 = TIQZO
is a monotonic function, and it can take a single zero value in the layer [0, 1] only
if the inequality

T (0) -1 (1) <0

is valid. This inequality is equivalent to the condition
AC < 0.

Thus, when the longitudinal temperature gradients A and C' take values of dif-
ferent signs, the thermal field Tyz (and the field T{*=%z, respectively) admits
stratification at the point Z = A/(A — C).

We now consider the second longitudinal gradient (75). Obviously, T: QQZOy = 0;
therefore, this thermal field does not admit stratifications. Let us now study the
behavior of the field Toy determined from the expression (6) when Q # 0. It is
easy to see that, in the degenerate case A = C, the component 75 takes values of
the same sign; therefore, everywhere in the layer, the field Tsy is determined by
either heating or cooling of the fluid.

Let now the horizontal temperature gradients be different (A # C'); therefore,
C — A # 0 and consequently, by virtue of (6), the longitudinal gradient 75 can be
represented as ,

Ty = —M(l ~2)Z(Z + a),
6
where a = (C' 4+ 2A)/(C — A). It is easy to verify that the function (1-2)Z(Z+a)
can have a single zero inside the layer [0, 1] only when —1 < a < 0. Therefore, the
thermal field Toy can change its sign no more than once inside the studied fluid
layer.

3.2. Analysis of the properties of background temperature Tg.
We now study the features of the behavior of the background temperature. We
begin with the case that the vertical vorticity component is zero, 2 = 0. In this
case, the background temperature is determined by the expression (8). The field
T(?:O results from the interaction of several individual thermal fields induced by
heating the boundaries of the layer under study and setting the shear stress field
at the upper boundary. If both gradients A and C' are simultaneously zero, the
background temperature, according to (8), is determined only by a homogeneous
term (with respect to the horizontal coordinates),

0 = vz,
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the temperature T being unaffected by the value of the components &1, & of the
shear stress field.

Let us now consider the case that only one of the longitudinal temperature
gradients is zero. Assume that, for definiteness, A # 0. In this case, the expres-
sion (8) can be represented as

AR3(1 - 2)
T 1008y
x {gﬂnh2(2 — 2)1+2Z — Z%)(4— 27 + Z2) + 84ve (1 + Z — ZQ)H . (9)

90 = 7. £ (2) :Z[z?

It is obvious from (9) that, if some point Z; € (0,1) is the zero of the auxiliary
function f (Z), the stratification of the thermal field TOQZ0 can occur at this point.
Note that the polynomials

h(Z2)=(1-2)2-2)(1+2Z—-2%) (4-2Z+ 2Z?),

h(2)=1-2)1+2- 2%,

included in the solution (9) are strictly monotonic inside the layer under study.
Therefore, the background temperature T(?:O can have no more than two zero
points in the layer (0,1) (Fig. 1).

Z

1.0/

0.2

. . . L T=0
-1.0 —-0.5 0.5 1.0

Figure 1. Profile of the temperature T5'=° defined by the expression (9) when A #0,C =0

Assume now that the horizontal gradient is nonzero, C' # 0. We write the
solution (8) as

gﬁC2h5
B Tvy
x {522 - 2) (1422 - 22) (422 + 2%) +

T(?:O:Z-F(Z):Z[ﬂ (1-2Z)x

+5¢(26 + 267 — 302% +52% + 52 — 27°)+
+ (82 4827 4 827% — 5873 4 52% +52°)+
420v¢;
gBnh*C

c(+2-2)+(1+2+22)]}],
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where ¢ = A/C is a dimensionless parameter. Obviously, all the zero points of the
function F' (Z) will automatically be the zero points of the background tempera-
ture (8). The structure of the function F'(Z), in addition to the above polynomials
f1 and fs, includes the polynomials

f3(2)=(1-2)(26+26Z — 302> +52° +52* —22°)

f1(2)=(1-2)(82+82Z +82Z% — 582° + 5Z* + 52°)
f(Z2)=(1-2)(1+2Z+2%.

The functions f3, f4, f5 are also strictly monotonic on the interval [0, 1]. There are
only four coefficients in front of the polynomials f; (i = 1,6) in the solution (8).
All these coefficients can be considered independent of each other due to the
arbitrary choice of the values of the shear stress &1, the temperature gradient A,
the temperature 1, and the physical constants determining the viscous fluid under
study. The analysis of the properties of the polynomial (8) has shown that, in view
of these circumstances, the maximum number of zero points of the background
temperature (8) does not exceed three (Fig. 2).

—

0.2

‘ ‘ LT
—0.5 0.5 1.0

Figure 2. Profile of the temperature T5'=° defined by the expression (8)

Consequently, the thermal field 7| 52:0 can both heat and cool the fluid layer;
the type of the thermal effect can change no more than three times with the
distancing from the lower boundary Z = 0 in the direction of the upper boundary
Z =1.

Now, let the vertical twist {2 be nonzero. In this case, according to (7), the
terms reflecting the presence of nonzero vorticity in the fluid layer are added to
the above-mentioned individual thermal fields of various nature.

It is easy to verify that the number of points at which the background tem-
perature Ty (7) takes a zero value inside the fluid layer [0,1] does not exceed
eleven since the exact solution (7) is an 11th degree polynomial. Moreover, the
number of polynomials in the exact solution (7) increases sharply compared with
the same number for the thermal field T(?:O. Their number increases to fifteen, all
of them are strictly monotonic at Z € [0, 1]. However, the number of independent
coefficients in front of these polynomials increases to a lesser extent, i.e., only four
coefficients are added, which are determined by two new independent parameters,
namely the stress & and the actual vertical vorticity component 2. The study of
the localization of the zeros of the polynomial (7) has shown that their number
in the layer [0, 1] does not exceed eight (Fig. 3).
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Z

;
D>
>

—— . . To
-10 10 20 30

Figure 3. Profile of the temperature Ty determined by the exact solution (7)

Thus, taking into account the constant spatial acceleration u (z) = € = const
leads to a significant increase in the number of zero points of the thermal field T.

4. Superposition of thermal fields

The resulting temperature field is determined by the interaction of three ther-
mal fields: Thx, Toy, and Ty. As a result of their superposition, the number of
zero points of the temperature T' can change as the values of the longitudinal
coordinates x and y change. As an illustrative example, we consider the case that
the background temperature has four zero points (Fig. 4). This case corresponds
to the value ¢ = —2.04182 of the dimensionless parameter characterizing the ratio
of the longitudinal temperature gradients A and C'.

Since the ratio A/C proves to be negative, according to the above analysis, the
thermal field 772 admits one stratification point (Fig. 5). Herewith, the parameter
a=(C+2A)/(C —A) = —1.01375 determining the presence of zero points of
the longitudinal temperature gradient 75 does not fall in the interval (—1,0), and
this means the absence of zero points of the gradient T, (Fig. 5). For definiteness,
when constructing the profiles of the temperature field components, the following
values of the parameters were taken: C' = 1, Qh%/(6x) = 1.

The resulting temperature field isolines T" are shown in Figs. 6 and 7.

The change in the location of the isolines is considered as an example of the
displacement of the zero isotherm in the characteristic isolines of the sections

y =0 (Fig. 8) and z = 0 (Fig. 9).

z
z
A
‘\
08p 0.8
0.6F

o>

—-0.5 0.5 1.0

Ty, Ty
1.0

Figure 4. Profile of the temperature Tp with  Figure 5. Profile of temperature gradients T
four zero points (solid line) and T» (dashed line)
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Figures 8, and 9 clearly illustrate the change (decrease) in the number of
stratification points of the final temperature field 7', even for small values of the
longitudinal coordinates x and y, compared to the number of zero points of the
background temperature T marked by a bold line in Figs. 8 and 9.

=

0.4
<

Figure 6. Isolines of the temperature 7"in the  Figure 7. Isolines of the temperature 7" in the
section y =0 section x = 0

-10 ) 05

1.0

T

10

Figure 8. Zero isotherm in the section y = 0  Figure 9. Zero isotherm in the section z = 0

forx =09, =03,z =0,z = —-03and fory=-09,y=-03,y=0,y=0.3and
x = —0.9 (from left to right) y = 0.9 (from left to right)
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HNccnenoBanmne teMnepaTypHOTro IOJIs
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AnHOTaN M

IIpuBenmen kiacc Tounbx perrenuit ypasuennii Obepbeka—byccunecka,
MIOJIXO/IAIINX JIJIS OIIMCAHNUA TPEXMEPHBIX HEJIMHEHHBIX CJIOUCTBIX TeYeHMit
BEPTUKAJIBLHO 3aBUXPEHHON BA3KOH HeckmMaeMoil kujakoctu. Heommopoi-
HOe PAaCIIpeJIeJIeHNe TI0JIsl CKOPOCTH (MMeeT MEeCTO 3aBUCHMOCTH KOMIIOHEHT
[OJIs OT TOPU3OHTAIBHBIX KOODJUHAT) FeHEPUPYET BEPTUKAJIBHYIO 3aKPYTKY
B 2KuJKOCTH 6e3 BHeriHero Bpainenus (6e3 ydaera Kopuosmcosa yckopenust).
Sajanne Ha rpaHUIaX OOJACTH TEYEHUs JTUHEHHO PACIPEIEIEHHBIX TerIo-
BOT'O TIOJIA U II0JIA KacaTeJbHbIX HAIIPSAKEeHUIl ABJIAeTCd OJHON U3 IIPUYMH,
UH/IYIAPYIOMNX KOHBEKIINIO B BA3KON HeCKnMaeMoil Kujkoctu. OCHOBHOE
BHUMAaHUE YIEJECHO UCCIEIOBAHUIO CBOMCTB TEMIIEPATYPHOTO 10Jis1. V3yt1eHno
BJINSIHUE BEePTUKAJBHOU 3aKPYTKH Ha paclipejieieHre U30JIMHUI 3TOTO II0JIA.
Ilokazano, 9TO OJHOPOIHAS COCTABJISIONIAS TEMIIEPATYPHOTO MO MOXKET
cTpaTuUIIPOBATHCA HA HECKOJIBKO 30H OTHOCHUTEJHHO OTCIETHOIO 3HATE-
HUsl, IPUYIEM YUCJIO TAKUX 30H HE IIPEBOCXO/IUT JIEBATU. ¥ YT HEOTHOPOIHBIX
COCTaBJIAIONINX II0JI TeMIlepaTypbl MOXKET IIPUBOJUTH TOJIBKO K yMEHbIIIe-
HUIO 3TOTO 4mcia. Tak»Ke MOKa3aHO, UTO MPEJICTABICHHBI B CTATbhe KJIAcC
[I03BOJIsIeT O0OOIUTH paHee IOJIyUeHHBbIE Pe3yJILTATHI 110 MOJIETUPOBAHUIO
KOHBEKTUBHBIX T€YEHUI BA3KUX HECXKUMAEMBIX KUJIKOCTEH.
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