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Abstract

The paper presents a new class of exact solutions for the Navier—Stokes
equations. These solutions describe unsteady three-dimensional in velocities
and two-dimensional in coordinates for a viscous incompressible fluid flow.
The procedure for constructing an exact solution generalizes Trkal’s method
proposed for studying screw flows. The new class of exact solutions allows
to describe non-hecical flows (the velocity vector forms a nonzero angle with
the vorticity vector) and fluid flows existing in a finite time.

Keywords: Navier—Stokes equation, exact solution, Trkal’s method, eigen-
functions of the Laplacian, non-helical flows, blow-up regimes.

Received: 29" July, 2020 / Revised: 18" September, 2020 /
Accepted: 16" November, 2020 / First online: 9" December, 2020

Introduction. The study of the properties of Navier—Stokes equation solu-
tions and continuity equation solutions is known to be based on different ap-
proaches, which can be divided into two big groups: analytical research and nu-
merical integration. Analytical research, in turn, is divided into the study of the
general properties of flows (one of the latest results were obtained in [1-3]) and
the integration of the equations of motion of a viscous incompressible fluid. The
mathematical tool for the analytical integration of the equations of motion of a
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viscous incompressible fluid for replication of exact solutions is based on group
(symmetry) analysis. However, the study of the invariant properties and finding
various symmetries of equations gives no way of obtaining all the exact solutions
to the Navier—Stokes equations [4]. An important problem of the theory of inte-
gration of the equations of fluid motion is constructing classes of exact solutions,
which is often heuristic [5-15]. The fact is that classes of exact solutions are known
that have yet to be classified in terms of the invariance theory [5-7, 14, 15]. There-
fore, it is very important to know how methods for “reproducing” exact solutions
can be developed using known flows as examples. This approach was discussed
in [5,9,12,13].

It has been shown in recent papers that there are generalizations of the well-
known Trkal method [16] which allow exact solutions to the Navier-Stokes equa-
tions to be constructed [17,18]. Most of nonstationary three-dimensional exact so-
lutions to the Navier—Stokes equations were obtained by the Trkal method which
is an extension of the Taylor-Caldonazzo approach to helical flows [18].

The method is based on the fact that with a constant coefficient k relating
velocity vector to vorticity one, velocity vector and vorticity rotor one will also be
related by a constant coefficient k2. This paper proposes a family of non-helical
exact solutions in which the velocity vector and the vorticity one are even non-
collinear. However, the velocity and vorticity rotor vectors prove to be related by a
constant coefficient, and this eventually enables us to obtain nonstationary exact
solutions to the Navier-Stokes equations from stationary exact solutions to the
Euler equations. Thus, the here-proposed method can be viewed as an extension
of the Trkal method to non-helical flows.

1. Notation and equations of motion. In dimensionless variables, the
flow of a viscous incompressible fluid in a potential field of body forces obeys the
Navier—Stokes equation system and the continuity equation

0 1 V2
—V+AXxV =—— Q- — 1
B + Q x Rer V<p+ 5 +G>, (1)

divV =0, (2)

where V is velocity, 2 = V X V is vorticity, p is pressure related to density, Re
is the Reynolds number, V is the two-dimensional Hamilton operator, G is the
potential of body forces.

2. The family of exact solutions. Consider an arbitrary solution to the
equation with respect to the (twice continuously differentiable) function of two
variables ¢ = ¢(z,y) in a rectangular Cartesian coordinate system Ozxyz:

A = A\, (3)

82
ox2
operator. Examples of such solutions (which are the eigenfunctions of the Laplace
operator) can be found e.g. in [4,17,18].

For any solution ¢ = ¢ (x,y) of equation (3), we assume that

where A is an arbitrary constant, A = + 53—;2 is the two-dimensional Laplace

v—(vz,v;,,vz)—exp(ﬁé)(;yw, —a%w, ). (4)
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It can easily be seen that this representation of velocity provides the inherent
(identical) fulfillment of the continuity equation (2). It remains to verify that
there exists a pressure field p > 0 that, together with the velocity represented
by equation (4), satisfies equation (1). To do this, we rewrite the Navier—Stokes
equation (1) as

9 \&
SV Vxn+nxv——v(p+7+c;) (5)
and compute the terms in the left-hand side of (5).

The first term in equation (5) is transformed as follows:

O [ R

Taking into account (3), we obtain the following expressions for the vorticity
vector: ) 9 P
Q=rew(2) (50 —5-v ). 7
*P(ge) 3y~ Y (7)
Note that the second term in the left-hand side of (5) coincides up to sign
with the first term in equation (6):

Lonaden(@)(-e Lo )-dv

Finally, we compute the third term:
2tA 0 0
Qx V=Aexp( 22 ) (<A + DY —(0+ g, v 0) =

e I

Substituting expressions (6), (8), and (9) into formula (5), we arrive at the
fluid motion equation:

2

—v(m;l)qﬁ exp(%)) - —V(p+V7+G). (10)

For the velocity field V set by formula (4), the solution of equation (10), and
hence equation (1) with respect to the pressure field p > 0 does exist and it is
determined to an arbitrary constant py ensuring the positivity of the pressure in
the region under study as

pem-G bt (20 - (2o es().

Thus, for any solution 1) = 1 (x,y) of equation (3) and any field of body forces
G, formulaes (4) and (11) specify the velocity and pressure fields of an exact
solution to the Navier—Stokes equations.
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3. The analysis of the obtained solution family. The projection of the
velocity (4) onto the plane Ozy coincides with the velocities of plane exact so-
lutions obtained in [17]. A comprehensive analysis of these exact solutions was
performed in [17]; therefore, in [17], one can become familiar with the projections
of the velocities and streamlines of solution (4) for various values of A and for
various corresponding functions .

It follows from the analysis of the formulaes for the velocity vector (4) and
the vorticity vector (7) that they are parallel when A = —1. Thus, it is only in
the case A = —1 that the found exact solution is helical [16-18].

Note that when A = —1, one of the solutions to equation (3) is a stream
function of the form

Y = —cos(z/v/2) cos(y/v/2).

The corresponding velocity field (4) coincides with the known exact Berker
solution [19]:

V, = — cos(kz/v/2) sin(ky/v/2) /2,
V, = sin(kx/v/2) cos(ky/V2)/V2,
V, = cos(kxz/v/2) cos(ky/v/2).

If k = 1, this exact solution describes the flow of an ideal fluid in an infinite square
cross-section pipe (0 < z < \/§7T, 0<y< ﬂﬂ)

The construction of the exact solution (4) for the equations of motion of
a viscous incompressible fluid (1), (2) is based on finding eigenfunctions of the
Laplace equation (3). Recall that this approach was first proposed by Trkal [16].
When the classical Trkal method is applied, the velocity always decreases with
time since the exponent is —tk?/Re. In the family of the here-obtained solutions,
the velocity can increase with time. This is possible if the function v corresponds
to the positive value of X\. Such a stream function can be exemplified the formula

1 = exp(2z) cos y.
The substitution of this function to into formula (11) yields the following
pressure distribution in the fluid:

2t)\> (12)

p=po— G+ eXp;Z'B){()\ —4)(cosy)? — (Siny)Q}exp<R—e .

We assume that A = 3 in (12), then the expression in the curly brackets proves
to be negative ((3 — 4)(cosy)? — (siny)? = —1). Therefore, the corresponding
solution is time-bounded since, with any choice of pg, there exists such a point
in time that the pressure at some points reaches zero, and there appear caverns
(cavities) whose presence prevents from using the Navier—Stokes equations in the
entire region under study. The study of such flows is not the subject matter of this
paper; yet, the proposed class of exact solutions of the Navier—-Stokes equations
allows us to describe blow-up flows.

4. Conclusion.The paper has presented a procedure for constructing a new
class of exact solutions to the Navier—Stokes equations for a viscous incompressible
fluid. The obtaining of the new family of exact solutions is based on the modified
Trkal method. The announced solutions of the Navier—Stokes equations have a
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number of interesting properties. We have shown that it is possible to describe
not only helical flows, exponentially damped with time, by the Trkal method.
We have found examples of non-helical flows of a viscous incompressible fluid
existing in finite time. In other words, they simulate fluid motions characterized
by blow-up regimes.
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Annoranus

IIpuBenen HOBBIN Kitacc ToUHBIX pemreHuit ypasuenuii Hasre—Crokca.
OTH peIlleHnsl ONHCHIBAIOT HECTAIMOHAPHBIE TPEXMEPHBIE II0 CKOPOCTSIM
U AByMEpHBIE 110 KOODAMHATAM TEYCHUA BA3KON HECXKMUMAaeMOHN KUIKOCTH.
IIportiemypa mocTpoeHust TOUHOTO perenns: 06obiaeT Meto Tpkasta, mpe-
JIOXKEHHBIHN JIIs M3yJYeHus] BUHTOBBIX TeueHnuit. HoBbIt KJjtacC TOYHBIX perire-
HUIi TO3BOJISET OMUCHIBATH HEBUHTOBBIE TeUeHUsl (BEKTOP CKOPOCTH 00pa3yer
HEHYJIEBOI YroJI ¢ BEKTOPOM 3aBUXPEHHOCTH) U TEUEHUsl YKUIKOCTH, CYIIE-
CTBYIOIIAE KOHEYHOE BPEM.

KimroueBbie cioBa: ypasaenne Hasbe-Crokca, TOUHOE peIlleHnE, METOI
TpkaJia, cobcrBeHHbIe (DyHKIMHU orepaTopa Jlaniaca, HEBUHTOBBIE T€UEHUs,
PEXKUMBI ¢ 0OOCTPEHHEM.
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Koukypupyioiiiue nHTepechl. Mbl 3agB/seM, 9TO y HAC HET KOHQMJINKTa WHTEPECOB B
OTHOIIIEHNN aBTOPCTBA U IMyOJIMKAIIMN STON CTATHH.

ABTOpCKasi OTBETCTBEHHOCTb. MBI HeceM IMOJIHYI0 OTBETCTBEHHOCTH 3a IIPEIOCTAB-
JIEHWe OKOHYATEJbHOI pyKommch B mevdarh. Kaxkaplili m3 HAC 0100pUI OKOHYATEIbHYIO
BEpPCUIO PYKOIINCH.

®uHaHcupoBaHue. lccienoBanne BBIIOJIHEHO IpU (pUHAHCOBOI HojjIepKKe Poccnii-
ckoro nayguoro donga (npoekr Ne 19-19-00571).
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