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Abstract

Exact solution of the Oberbeck—Boussinesq equations for describing
steady flows of binary Poiseuille-type fluids is proposed and studied. The
fluid motion is considered in the infinite horizontal layer. Shear flows are
described by overdetermined system of equations. Nontrivial exact solution
for the Oberbeck—Boussinesq system exists in the class of velocities with
two vector components and depends only on the transverse coordinate. This
structure of the velocity vector coordinates ensures naturally the fulfillment
of the continuity equation as an “extra” equation. The pressure field, the
temperature field, and the concentration field of the dissolved substance are
described by linear functions of horizontal (longitudinal) coordinates with
coefficients that functionally depend on the third coordinate. Fluid layer, as
it is shown, can have two points where the velocity becomes zero. In this
case, the spiral flow is realized (the hodograph of the velocity vector has a
turning point).
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1. Introduction. Theoretical study of convection started with consideration
of the motion of liquids of homogeneous composition [1-9]. It is known, the as-
sumption of liquid homogeneity does not always satisfy accuracy. Sea water and
sugar syrup are the classic examples of non-homogeneous liquids where the dis-
tribution of salt and sugar induces more intense mixing of the medium than the
motion caused by non-uniform temperature distribution [10-13]. Thus, the influ-
ence of dissolved substances in the solution on the structure of convection in a
hydrodynamic thermal diffusion flow must be taken into account while studying
the convective motion of a real liquid [10-12, 14].

The cross dissipative effects of Soret and Dufour should be regarded to de-
scribe thermal diffusion in solutions [15-24|. The Soret effect (the influence of
temperature change on the impurity distribution) is traditionally included in so-
lution while studying the flows of binary liquids considering the Dufour effect
(inverse effect) to be negligibly small [19-22].

The study of binary fluid flows is carried out similarly to the study of convec-
tive flows in the Boussinesq approximation. The density dependence on temper-
ature and concentration of the dissolved substance according to the linear law is
considered in the term for the density of the Archimedes force and is neglected
for the inertial forces [1-3,18,22,25-33]. Consequently, the structure of exact so-
lutions of the equations of binary fluid convection coincides with the expressions
of motions generated by heat sources [30].

The exact solution for unidirectional steady convective flows can be presented
as the Ostroumov-Birikh—Shliomis solution type V, = U(z), P = Py(z) + xP1(2),
T =To(z)+2T1(2) [25,26,34-38]. This exact solution describes the superposition
of gravitational convection and fluid motion caused by horizontal temperature
gradients (Marangoni convection) [26, 39-45]. The Ostroumov—Birikh—Shliomis
solution type was used to solve various one-dimensional convective boundary value
problems with subsequent study of ansatzes on hydrodynamic stability for various
classes of disturbances [2,3,27,29]. The application of this type of exact solutions
to unsteady flows was undertaken in several scientific researches [2,3,27].

The generalization of the Ostroumov—Birikh—Shliomis solution type was im-
plemented in the papers [18,19,21,22,32,46-51] to describe steady-state shear
flows in velocity field V, = U(z), V,, = V(z) with linear two coordinate forms
for the temperature and pressure fields: T = Ty(z) + 2T1(2) + yT2(z) and P =
= Py(z) + xP1(2) + yT>(z). This exact solution for description of binary fluids
was announced in [18]. The linear forms of the force fields of pressure, concentra-
tion, and temperature were used to construct classes of exact solutions describing
inhomogeneous shear flows [19,21, 32].

After publication of paper [46], the announced exact solution was used to
study shear thermal convective flows. The study of shear flows of binary fluids in
infinite horizontal layer was started with the description of Couette-type flows in
paper [18]. In this paper, the influence of horizontal pressure gradients (Poiseuille
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flow [52-55]) on the structure of hydrodynamic fields of moving solutions with
one dissolved substance is studied.

2. Motion equations and exact solution. We consider steady-state shear
flow of binary viscous incompressible fluid in extended horizontal layer with
boundaries formed by a pair of non-deformable parallel planes spaced apart by
a distance h. We will also assume that the lower plane is absolutely rigid and
motionless, and the upper plane is free. The assumption of negligible deformation
of the upper boundary does not allow us to consider fluid motions comparable in
scale to the thickness of the studied layer, for example, gravitational, thermos-
capillary and other types of surface waves [1-3,6]. We introduce Cartesian coor-
dinate system Oxyz where the Oxy plane coincides with the lower boundary of
the layer, and the Oz axis is directed perpendicular to this boundary toward the
upper plane (boundary), spaced by a distance h (Fig. 1).

We use the system of thermal diffusion equations regarding the Boussinesq
hypothesis of the density dependence to describe the steady-state liquid [1,18,30]:
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Figure 1. Liquid flow diagram (the Oz and Oy axes are “glued” together in figure; in reality
the space is considered as three-dimensional)
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We use the following designations in system (1): V, V;, are the components of the
velocity vector; P is the pressure normalized to the constant average density of
the liquid p; v is the kinematic (molecular) viscosity of the mixture; C, T are the
concentration of the light component and the temperature of the liquid, respec-
tively, measured from the equilibrium value; g is the gravity acceleration; y, d, «
are the coeflicients of thermal diffusivity, diffusion, thermal diffusion, respectively;
01 and (B9 are the coefficients of temperature and concentration volume expansion
of the liquid, respectively; n = [% (g—g,) T P] o Is the thermodynamic parameter.

The main feature of system (1) (in addition to its nonlinearity) is its overde-
termination: there are six equations to determine the five unknown functions that
describe the behavior of the velocity, pressure, temperature, and concentration
fields. We assume the relationship between the hydrodynamic fields that allows
us to restore the balance between the number of unknown functions and the
number of their relations solving the system (1) [30,49-51]. We consider such
relationship as following;:

Ve =Ul(z), Vy = V(2),

T =To(z) + 2T (z) + yTa(z), P = Py(z) + zPi(2) + yTa(2), (2)
C = Cy(z) +2C1(2) + yCa(z).

The velocity field of the form (2) describes many classical flows, for exam-
ple, the Couette flow [56], the Poiseuille flow [52-55|, the Birikh—Ostroumov
flow [25,26] and many others. The use of the class of exact solutions (2) gen-
eralizes the well-known exact Ostroumov—Birikh solution for describing unidirec-
tional convective flows. In [46], it was shown how the exact solution was modified
for two-dimensional flows in velocities. Such flows cannot be reduced to unidi-
rectional ones [46]. In the articles [18,48,49] similar solutions of shear flows were
constructed. The exact solution (2) allows to linearize the equation for the transfer
of angular momentum, but this is not an artificial postulation of linear approxi-
mation of the Oberbeck—Boussinesq equations (1). It is an opportunity to study
the transverse structure of the flow, in which direct calculations of the flow char-
acteristics are impossible. This solution exactly allows to study the structure of
horizontal and vertical convection of binary fluid for the boundary value prob-
lem announced below for infinite horizontal layer. The exact solution (2) is the
simplest solution for the overdetermined system (1) and is necessary for studying
flows with non-uniform velocities.

The structure of correlation (2) for the velocity field allows identical satisfac-
tion of the incompressibility equation in system (1). And substitution of correla-
tion (2) into the remaining equations of system (1) leads (due to the independence
of the coordinates of the selected Cartesian system) to the system of eleven ordi-
nary differential equations to define eleven unknown functions:

(x + &2dn)T] + adnC) =0, (x + o?dn)Ty + adnCY = 0;
CY+dTy =0, aC¥+ adly = 0;

P{ = gBiTi + gB2C1, Py = gBiTs + gB2Co, (3)
VU” = Pl, I/V” = PQ;
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UTy 4+ VTy = (x + &?dn)TY + adnClj, UC) 4+ VCy = aCY + adTy;
Py = g61To + gB2Co.

Here the prime denotes the derivative with respect to the vertical coordinate z.
The coincidence of the number of equations and the number of unknown functions
in the system (3) indicates that the selected class of solutions (2) removes the
overdetermination of the original Oberbeck-Boussinesq system (1).

The second derivatives of the gradients of the temperature and concentration
fields are shown in [18] to be only zero values:

T/ =0, Ty=0 C/=0 C§=0. (4)

The constant coefficients in the linear forms (4) are determined from the
boundary conditions. Based on expressions (4), one can obtain exact solution
for the horizontal pressure gradients and expression for the components of the
velocity vector:

5
+ Z3)+ ( 2 23)+ 2 ens+ 7
C1 Cc2 6 C5 24 Ce 6 C9 2 C112 C12,

4 3 2
z z
952 <C7* + 68*> + c10= + c132 + c14.

9B ( 24 z
24 6 2

Cgﬂ + C4€> + 7

The final integration of the equation system (3) needs in definition of exact
solution for uniform (background) components of pressure, temperature and con-
centration fields. The revealed view of these bulky relations are not shown but
can be easily obtained on the base of above written relations. The background
temperature Ty and background concentration Cj are presented as seventh power
polynomials upon the z variable. The background pressure F; is eighth power
polynomials upon the z variable. The exact solution for velocity field is studied
in details in this paper.

3. Boundary value problem. The coefficients appeared from the integration
of some equations of system (3), as mentioned above, must be determined from
the boundary conditions. We formulate them.

We assume that the no-slip condition is satisfied at the lower boundary (bot-
tom):

Vz(0) = V,(0) = 0.

At the upper boundary z = h we assume given uniform distribution of veloc-
ities, which corresponds to the motion of the upper boundary as a solid surface:

Va(h) =Wecos¢, V,(h)=Wsin¢.

Here W is the value of the velocity at the upper boundary, ¥ is the angle the
velocity vector forms with the abscissa axis Oz. In other words, the movement
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of the solid boundary (plate) kinematically causes steady convective flow of the
binary liquid.
The boundary condition for pressure is presented as

P(h) = Sy + Sz + Soy,

where Sy is the atmospheric pressure on the free surface. The condition of im-
permeability and ideal heat exchange is established for the concentration and
temperature at the boundary z = 0, respectively:

oC or
@—0, 5—0.

In addition, we assume that the temperature and concentration are determined
by the following linear forms at the upper boundary of the layer:

T(h) = ax + by, C(h)=mz+ ny.

According to representation (2) for hydrodynamic fields, the formulated bound-
ary conditions are reduced to the following conditions:

dfy _ ATy _dTy _, dCy _ ~ dCy _ dCy

U=v=0 -">=0 =5 =% =% & ~%

—0 (6)

at the lower boundary;

U=Wcosp, V=Wsing, Typ=0, Ti=a, Ty=0, %
Po=S5y, PL=5, =S, Cy=0, Ci=m, Cy=n

at the upper boundary of the studied layer.

4. Solution of the boundary value problem. The fulfilment of the bound-
ary conditions (6) and (7) in expressions (4) and (5) leads to the following exact
solution:

Z
Ve=U(z) = o [6Wvcosp + h*(—1+ Z)(3v(S1 — ghE) + ghE(1 + 2))],
(®)
VA
V,=V(z) = & [6Wvsing + h*(—1+ Z)(3v(Sy — ghF) + ghF (1 + 2))].
Z = z/h € [0, 1] is the normalized vertical coordinate in expressions (8), and the
following notations are introduced for the coefficients:

E = (apy +mp2), F = (bp1+npa).

As was already mentioned above (constructing the general solution (5)), the
main focus of the article is concentrated on the study of the velocity field, therefore
the exact solutions for the temperature, concentration and pressure fields are
bulky and are not given here. We will only note that they have the following
structure:

T =Ty(2) +ax+ by, C=Co(z)+ ma+ny,
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P = Py(z) + Pi(2)x + P(2)y.

In other words, the gradients of the temperature field and the concentration field
are constant values determined by the boundary conditions (7). Contrarily the
pressure gradients in the studied problem can vary across the layer:

P =5 +Egh(—-1+4+2), P»=S2+ Fgh(—-1+ 2).

Moreover, these components of the pressure field can change sign for a certain
correlation of values specified at the boundary of the flow region, i.e. the pressure
can either increase or decrease across the layer.

The expressions (8) for both components of the velocity field have the same
structure and can be obtained from each other by simultaneous replacement
cos¢ — sing, S — Sz and E — F'. This is the reason that we will study in
detail the properties of one component (e.g., the velocity U) and extend the ob-
tained conclusions to the behavior of the second component (the velocity V). For
a uniform form of notation, we do not assume that sin¢ = 0, which, generally
speaking, we have the right to do without loss of generality, since the orientation
of the axes Ox, Oy has not been specified anywhere above.

So, the velocity profile U is determined, in particular, by the number of its
zero points. And we begin with analysis of their number and position.

First of all, we note that if the condition £ = S; = 0 is fulfilled (i.e. the
influence of thermal diffusion factors and pressure is ignored), then the solution (8)
degenerates into a linear dependence

U‘SFE:O = W cospvZ.

In other words, the velocity profile is described by exact Couette-type solution [56],
which means that the counter-flows in the direction of the Ox axis are not possible.
Therefore the counter-flows are induced by the superposition of the temperature
and concentration fields in combination with the non-uniformity of the pressure
distribution.

Obviously, some point Z, € (0,1) is zero if it is zero solution of the function

f(z) = 6Wvcosp+ h*(—1+ Z)(3v(S1 — ghE) + ghE(1 + Z)) =
= gh’E(2*> — 1) 4+ 3v(S; — ghE)h*(—1 4 Z) + 6Wrcosp =
= gh’Ez* + 3v(S, — ghE)h?Z + (6W1/ cos p — gh’E — 3v(S; — ghE)hQ).
There are no more than two such zeros, since the function f defines a quadratic
dependence on the vertical coordinate. There is only one zero point in the layer

(near which a zone with reverse flow appears), if the function f takes values of
different signs at the ends of the interval (0, 1):

£(0)£(1) = 6Wwvcos p(6Wvcosp — gh®E — 3v(S; — ghE)h?) < 0.

The values of the function f at the boundaries of the interval (0,1) must
coincide in sign for the existence of two points of velocity stratification U:

£(0)£(1) = 6Wwvcos p(6Wvcosp — gh’E — 3v(S; — ghE)h?) > 0.
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This condition is necessary, but not sufficient. Additionally, it is necessary to
require that the values of the function f at its extremum point and at any end
of the interval (0, 1) should be of different signs (the values at the ends coincide
in sign due to the necessary condition, so, for simplicity, we will take the point

Z=1):
f(]-)f(ZextT) < 0.

Regarding the structure of the function f, this condition takes an equivalent form:
W cos @(—h(—?)Sll/ + Egh(—2 + 31/))2 + 24W Egv cos <,0)E_1 < 0.

The coefficient F is naturally assumed to be non-zero when we consider the
presence of two zero points for the velocity U, since this parameter is a multiplier
in the coefficient at the highest (second) power of the polynomial U.

Figure 2 shows the velocity U profiles with and without countercurrents. The
velocity profile U is not monotonic in all cases shown in Fig. 2. Nonlinear depen-
dence of expressions (8) on the normalized vertical coordinate Z explains this ef-
fect. Constructing the profiles (Fig. 2), the values of the parameters specified at the
boundaries of the fluid layer were varied. The values of the angle, layer thickness
h, and kinematic viscosity v were taken constant (v = 1.006-107% m?/s, h = 1 m,
¢ = m/3). The mentioned conclusions about the number of counter-current zones
are also applicable to the velocity V' due to the structure of expressions (8).

Figure 3 shows the hodograph of the velocity vector in the case where the
velocity U has two zero points in the layer, and the velocity V' has one zero point.

The solution of the boundary value problem is locally spiral flow with the
illustrations in Fig. 3. This effect (the formation of a loop on the hodograph) is
characteristic of the classical Ekman flow, which describes the rotation of liquid.
But there is no explicit rotation, only the vorticity is present:

k

i
- |0 9 9|_ _y 15
Q=rotV = |5 oy 9z| = "VitUj.
Ve Vy O
’
,/
’/
7’
4
,/
4
4
]
]
\
\
N,
\‘\
~N
\~~
n 1 n n n 1 n n n 1 n " > " n n 1 n n n
—0.6 0.4 —0.2 0 0.2 U

Figure 2. Velocity U profiles with countercurrents (solid heavy line and dash heavy line) and
without countercurrents (solid thin line)
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v

e ——

0.1

Figure 3. Hodograph of the velocity vector

The considered velocity vector field can be locally potential if the first derivatives
of both velocities U, V are simultaneously zero, for some value of the normalized
vertical coordinate Z within the interval. In other words, we indicate only on the
extremum points of the functions U, V', and these points must coincide.

5. Conclusion. The paper presents a new exact solution describing steady-
state thermos-diffusion flows of the Couette type. The solution is obtained in
the class of linear functions of the coordinates with nonlinear dependence of the
coefficients on remaining coordinates. The presented solution structure, with its
formal external simplicity, allows to mark nonlinear effects observed in liquid
during its flow and to study the methods of control of these effects. The main
attention in the article is focused on the analysis of the number of zero points
of the velocity field components and constructing zones with reverse flow. It is
shown that the velocity field under certain conditions can be stratified into three
zones, in each of which the flow has its own direction. Characteristic flow profiles
are given. The local helicity of the flow is illustrated.
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IIpemoxkeno n n3ydeno rodnoe pernenne ypasuernit Obepbeka—Byccu-
HECKA JIJIsT OIIMCAHUST yCTAHOBUBIIIIXCST TeUEHU OMHAPHBIX XKUJIKOCTEH THIA
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