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Abstract

Equations with derivatives and fractional order differences are widely
used to describe various processes and phenomena. Currently, methods of
identification of systems described by equations with fractional order dif-
ferences are actively developing. The paper is devoted to the identification
of discrete dynamical systems described by equations with fractional order
differences with errors in variables. The problems of identifying systems with
errors in variables are often ill-conditioned. The paper proposes an algorithm
that uses the representation of a normal biased system as an augmented
equivalent system. This representation allows to reduce the number of con-
ditionality of the problem to be solved. Test examples have shown that the
proposed algorithm has a higher accuracy than the algorithms based on the
decomposition of Cholesky and the minimization of the generalized Rayleigh
quotient.
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Introduction. Equations with fractional-order derivatives and differences are
widely used to describe various processes and phenomena. Models based on equa-
tions with fractional-order derivatives and differences find wide application in hy-
drology, economics, and forecasts of network data usage [1-3]. Besides, the branch
of management theory dealing with the synthesis of fractional order regulators is
developing actively. Mechanics was one of the first fields to use equations with
fractional order derivatives. A large amount of research deals with viscoelasticity
models [4-7].
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Generally, the creep and relaxation processes for actual nonuniform media are
nonlinear both in space and in time. As a result, using fractional-order derivatives
in the state equations for viscoelastic media makes it possible to display and factor
in the nonuniform structures of viscous and elastic elements and the nonuniformity
of mechanical processes in time.

Because equations with fractional order derivatives and differences are actively
being developed and used for forecast and modeling problems, methods for identi-
fying systems described by fractional-order equations and differences are actively
being developed as well. Noise-free identification methods have been treated for
ordinary differential equations with fractional order derivatives [8] and for partial
differential equations with fractional order derivatives [9].

Most of the research in the field deals with parameter identification of frac-
tional order differential equations by using the error in an equation or in an output
signal. References [10, 11] describe time domain identification methods based on
the least-square technique. Reference [12]| presents an overview of different meth-
ods for identifying systems with fractional-order derivatives.

It is noteworthy that a fairly large amount of research addresses the problem
of identifying viscoelasticity models [13—-16]. That research deals with identifying
fractional order models such as a generalized model with a fixed number of param-
eters. Results generalization for the case of an arbitrary number of parameters is
a nontrivial operation. Most of the methods we considered disregard the presence
of measurement errors.

The problem of identifying systems that have errors in input and output signals
is much more complicated. Reference [17] gives an overview of the contemporary
state of this problem. A relatively small amount of research attention has been
given to identifying systems with fractional order derivatives and differences in the
presence of those errors. Methods based on higher statistics have been proposed
in [18, 19]; methods based on minimizing the generalized Rayleigh ratio have been
treated in [20] (for white noise) and in [22] (for fractional white noise).

This paper proposes generalizing the identification algorithm [23| for equations
with fractional order differences. The proposed algorithm makes it possible to
achieve more accurate estimates than those in [20] for ill-conditioned systems.

1. Problem statement. Fractional-order systems can be represented by the
fractional difference equation given by

' T1
=) b Az + > afV AP, =i G wimai+ G (1)
m=1 m=1
where b[(]m), aém) are coefficients; 0 < a1 ... < ay, 0 < By ... < Bry;

Az = i(—nj (O;T”>zi_j, APrg; = i(—l)j (i’”) i

j=0 Jj=0
are fractional differences [1];

<am> _ I'(am + 1) <5m> _ L'(Bm +1)
J I(j+D(am—j+1)" \Jj L+ DB =5+ 1)
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are the generalized binomial coefficients; the Euler’s function I' is defined as

F(a):/ e 't Ldt.
0

Autoregressions with fractional differences are widely used in the analysis
of time series with long memory [24, 25|. In [26], a discrete Kalman filter with
fractional differences is proposed. Equations with fractional order differences of
the form (1) are also used to approximate differential equations with Grunfeld—
Letnikov derivatives; the identification of such systems is considered in [27]. Mod-
eling of various physical processes based on equations with fractional-order differ-

ences is considered in |28, 29].
The following assumptions are introduced:

1. The dynamic system (1) is asymptotically stable. Results on the asymptotic

stability of discrete-time fractional difference systems in [30, 31].

If system (1) is unstable, then the output signal increases indefinitely. This
leads to overflow of the bit grid. Therefore, obtaining a solution for unstable
systems has additional computational difficulties that are not considered
in this paper. There is also no theoretical proof of strong consistency for

discrete fractional systems with errors in variables.

2. Noises {;} and {(;} are statistically independent sequences with E{¢;} = 0,
E{¢G} = 0, E{¢&} = ag < oo, E{¢?} = O'g < o0 a.s., where E is the

expectation operator.

3. The sequences {¢;} and {(;} are mutually uncorrelated and uncorrelated

with sequences {z;}, {zi}.

4. The noise-free input sequence {x;} is persistently exciting of sufficiently

high order.
5. Noise ratio v = ag/ag is known.

It is required to estimate the unknown coefficients linear fractional order dy-
namical system, described by the equation (1) in observable sequences {y; }, {w;}.

2. Criteria for parameter estimation. In [20] the following criterion was

proposed for estimating the parameters of a system described by equations

0. 0)?
IGIEQZ 1+ bTHgb +~aT Hea’

where
N-1
(mk) 4 Om Q N—j _ _
e 3B (5)(0) 5. e 0
7=0
N-1
1 N —
H™) — lim B (B} N —J . om=T1,r1, k=T
N—oo N \ 4 J J N
7=0
6=(bD, ..., b® |a®) a(m) )T
PYi = ( A YZi—j—1, , A%z j—1 ‘ Aﬁlxz—jy ) Aﬁrlxz j )T
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We transform the criterion (2) in the following form

L lld—col3
QeB 1 + HTHééug’

H 0
H&‘:( 0é 7H<>’ d:(yl,---ayN)T> C:(¢1T’ s PN )T'

THEOREM. Suppose that the dynamical system is described by equation (1) with
initial zero conditions and that assumptions 1-5 are satisfied. Then the estimate
for coefficients é(N) determined by expression (2) exists, is unique, and converges
to the true value of the coefficients with a probability of 1—that is,

O(N) =% 6.

N—oo

The proof of the theorem is similar to the proof given in [21].

The modeling results show that the accuracy of the algorithm proposed in [20]
is not satisfactory for ill-conditioned systems.

One of the approaches used to write numerically stable algorithms is trans-
forming problem (3) into a problem of total least squares for which stable numer-
ical implementations exist.

Let us transform problem (3) into a problem of total least squares. According
to condition 4, the matrix Hgc is positively definite, and so we will express it as
the Cholesky decomposition

Hee = UgcUgc.

Let us introduce a new variable
¥ = Ugch.
Then criterion (3) can be written as

ld — CUL 93

dew  1+970 @

3. Numerical methods for the problem of total least squares. There

are several approaches to minimizing (4). One of them is based on the fact that

solving problem (4) requires calculating the minimal singular value for the ex-

tended matrix (C’Ugcl,d) and the right singular vector corresponding to that
value.

The problem of finding the singular vector is a nonlinear vector problem.
Solving that problem numerically involves significant difficulties [32]| related to
convergence issues, high computational complexity, and the stability of search
algorithms.

Another approach is based on solving a biased normal system. Reference [33]
shows that given the satisfaction of the condition

A= Amin (CU, d) < Amin (CU), (5)
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solution to problem (4) is obtainable from the system ofequations
~\T ~pr—1 2 _ -\ T
((cug) cvgt =x2r)v = (cugh) a. (6)

When system (6) is solved, only the scalar problem of finding the minimal
singular value Apin (CU&I, d) is remained nonlinear. This problem is always well-
conditioned [32]. The vector problem is in turn linear. But system (6) is often
ill-conditioned. The condition number of the shifted normal matrix is obtainable
from the expression

=T A A2 (CU) = N2
condg(CT(J) 2 condy (CUfl)TCUfl _ 27 = Jme & .
( & £¢ ) A2, (CUECl) 2

There are two reasons why (5) is ill-conditioned: the multiplication (CU, 521) Tcu gcl
min

The use of the Cholesky method can make the solution more stable. As this
method applies to systems of linear equations with symmetrical positively definite
matrices, it can also be used for the biased normal system (6). But the Cholesky
method suffers from a severe drawback: if the matrix is ill-conditioned, the method
yields a solution with unacceptable error.

Reference 23] proposes using an augmented system of equations that is equiv-
alent to the biased normal system:

and the possible proximity of numbers A2 (CUS_Cl) and \2.

A =d,
or
I 0 | cug! r d
0 T | jAl rec | = (0
(cu)" [aar] o 9 0

The expression for the condition number of matrix A is written as

V 1 max 2
condy(A) = 1—:_': . Ij\;

2 (1+Hmax+k2)3/2

s l 3\/§ NmianQ
cos <3 + 3 arccos( 5 (1+umin+>\2)3/2)

_\2
cos (% arccos(?’\/gM))

(7

where pimax and ppi, are the maximal and minimal eigenvalues of the matrix
UL (cugh) '

An analysis of expression (7) shows that using the augmented system of equa-
tions does not always reduce the condition number of the matrix compared to the
biased normal system (6).

Let us consider the system

1 0 | kCU, ggl kr kd
0 T | JEM Frec 0 |, 8)
(kCug)" | jkaL | 0 b 0
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where k is an arbitrary positive variable multiplier.
The condition number of matrix A (k) is written as

\/1 + k?2ﬂmax + Kk2)2
V1 + k2 puin + k222

(1+k2ﬂmax+k2>\2)3/2

cos ( +3 arccos(?"{ K2 (fimin— 1) ))

conda(A(k)) =

cos (é arccob(i’)\?f k2 (pmax—A2) )) '

(1+k2ﬂ‘min+k2>\2)3/2
The problem of finding the minimal condition number can be considered as
the problem of selecting the optimal multiplier k:

lig% conda(A(k)). 9)

Problem (9) does not have an analytical solution but is solvable with numerical
methods. In practice, an estimate of kop¢ can be given by

3 Amax (CU) + A 2
kopt = 2" (10)
Amin (CUg) + A\ A2 (CUL) + A

The augmented system of equations (8) is solvable with the standard methods
for solving equation systems, such as LU decomposition.
The equation 9 = Ugg@ can yield an estimate for the parameter vector 0:

— U1y
0 ="Ug 0.

ALGORITHM.
STEP 1. Decompose
He = UecUsc

STEP 2. Find the minimal singular value for the matrix (C’U&l, d)

StEP 3. Calculate the multiplier with (9) or (10).

STEP 4. Solve equation system (8) with the Gauss method or with algo-
rithm [23].

STEP 5. Find an estimate of the coefficient vector by 6 = Ugclﬁ.

4. Test Examples. The proposed algorithm has been compared with the
algorithm based on Cholesky decomposition and the algorithm based on the gen-
eralized Rayleigh quotient (GRQ) in [20].

Test cases were compared by the following characteristics:

— the normalized root mean square error (NRMSE) of parameter estimation

defined as

56 = /116 — 60112/ 60| - 100 %,

— and normalized root mean square error of modelling defined as

= /12 = z[/ll=]]* - 100 %.

The number of data points N in each simulation was 200.
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ExaMPLE 1. A dynamic system is described by the equation
2= 0.5A%22 1 +0.3A% 2y + A%%lY 1 0.9A%15, (. (11)
Noise standard deviation ratio
o¢/o, =107% o¢fo, =0.2.

The results are presented in tables 1, 2.

Table 1
Normalized root mean square error for dynamic system (11)
conda (C‘Té) condz(A) conda (A(k))
3.143 - 10° 9.55 - 10 1.73-10°
Table 2

Values of condition numbers for a dynamic system (11)

NRMSE || GRQ | Cholesky decomposition | Proposed algorithm

50, % || 4.55 4.55 4.55
6z, % || 1.03 1.03 1.03

ExXAMPLE 2. A dynamic system is described by the equation
2 = 05422, 1 4+ 0.3A%192; ) + A%2z() 10,9715, (12)
Noise standard deviation ratio
oefo, =107 op/o, =0.2.

The results are presented in tables 3, 4.

Table 3
Normalized root mean square error for dynamic system (12)
condz (CTC) condz(A) conda(A(k))
1.03 - 10 1.07 - 10%° 4.14 -10°
Table 4

Values of condition numbers for a dynamic system (12)

NRMSE || GRQ |Cholesky decomposition | Proposed algorithm

00, % |/1126.45 3.03 3.03
0z, % || 241.03 0.67 0.67

ExaMPLE 3. A dynamic system is described by the equation
2= 0.5A%%2 1 +0.3A%192 1 4 A%2(1 4 0.9A015, (1), (13)
Noise standard deviation ratio
o¢fo, =107 oc/o, =0.2.
The results are presented in tables 5, 6.
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Table 5
Normalized root mean square error for dynamic system (13)
cond; (C"C) conda(A) conda (A(k))
9.46 - 1033 5.01- 105 5.86 - 10°
Table 6

Values of condition numbers for a dynamic system (13)
NRMSE || GRQ |Cholesky decomposition | Proposed algorithm

00, % |/6528.96 235.58 0.14
0z, % || 162.93 0.77 0.53

Conclusion. The examples show that with relatively small condition num-

bers, all three algorithms exhibit identical results. The least stable is the algorithm
based on minimizing the generalized Rayleigh ratio, while the proposed algorithm
is the most stable.
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U nentudukaiys JUHEHHBIX JUHAMUYECKUX CUCTEM
ApOOHOTO Tops/IKa ¢ OomMbKaMu B mepeMeHHbIX
HAa OCHOBE€ paCHIMPEHHOI cucTeMbl ypaBHEHUI

© . B. Usaros

Camapckuii rocyJapCTBEHHbBI YHUBEPCUTET IIyTeH COOOIEHMS,
Poccusi, 443066, Camapa, yia. CBobozsr, 2 B.

AHHOTaNA

VpaBHeHHUs C IPOU3BOJHBIMU U PA3HOCTSAMU JIPOOHOIO IOPsJIKA HAXO-
JAT IMIAPOKOEe IIPUMEHEHHE JIjIsl ONHMCAHUS PA3JIUYHBIX IIPOIECCOB U SBJIE-
Huii. B Hacrosiimee BpeMsi aKTUBHO Pa3BUBAIOTCS METOIbI UIEHTU(MOUKAIIIN
CHCTEM, ONMCHIBAEMBIX yPABHEHUSIMHE C PA3HOCTSAMHA JIPOOHOTO mmopsiyika. Cra-
Thsl TOCBAIIEHA UJIEHTUMUKAIINNA JTUCKPETHBIX JTUHAMUIECKUX CHCTEM, OIIM-
CHIBaEMbIX YPABHEHUSIMU C PA3HOCTSIME JIPOOHOTO ITOPSIKA C OIMUOKAMU B I1e-
PEMEHHBIX. 3aJ[ad UJICHTUMUKAIMA CUCTEM C ONMOKAMHU B II€PEMEHHBIX
9acTO OBIBAIOT IIJIOXO OOYCJIOBJIEHHBIMHU. B cTaTbe IIPeJJIoXKeH ajlOPUTM,
UCHOJIB3YIONINI IIpeJcTaBJIeHe HOPMAaJIbHONW CMEIIEHHOII CHUCTEMBl B BHJIE
pacIIIpeHHoi SKBUBAJIEHTHON cucTeMbl. JlaHHOe TIpe/IcTaB/IeHNe TO3BOJISET
YMEHBIIUTH YUCJIO OOYCJIOBJIEHHOCTH PeIaeMoil 3ajadu. 1ecToBble IIpruMe-
DBI [IOKa3aJid, 9YTO IPEJIOKEHHBIN ajaropuTM obJiazaer 0oJjiee BHICOKON TOU-
HOCTBIO TI0 CPABHEHUIO C AJITOPUTMAMU HA OCHOBE PA3JIOXKEHUST XOJIEITKOTO
1 MUHUMB3auu 000OIIEHHOTO OTHOIeHusT Pejest.

KurouyeBbie ciioBa: pa3HOCTH APOOHOIO MOPSIKA, IOJHLIE HAUMEHDIINE
KBa/[PAThI, OIIMOKU B IIEPEMEHHBIX, IJI0Xas 00YCJIOBIEHHOCTD.

IMosnyuaenne: 20 mapra 2021 1. / Ucnpasnenue: 24 mons 2021 r. /
pungarue: 28 uons 2021 r. / Ily6iukanus onnaita: 27 cenrsadpsa 2021 r.

KOHKypI/IpyIOH_[I/Ie MHTEpeECHI. KOHKypI/IpyIOIL[I/IX MHTEepeCOB HE MMEIO.

ABTOpCKasi OTBETCTBEHHOCTD. ¢ HECy IMOJIHYIO OTBETCTBEHHOCTH 33 IIPEIOCTABJIEHUE
OKOHYATEJILHON BepcHM pPYyKONHMCH B mevdarh. OKOHYATETbHAS BEPCUs PYKOIUCH MHOIO
omo0peHa.

BaarogapHoctu. Asrop 6/1arosapuT aHOHUMHOIO PELEH3EHTa 38, TIIATEILHOE IIPOUTe-
HUE CTATHU W IeHHbIE TPEIJIOYKEHNT U KOMMEHTAPUN.
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