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Abstract

The Khalouta integral transform is a powerful method for solving vari-
ous types of equations, including integro-differential equations and integral
equations. It can also be applied to initial and boundary value problems
associated with ordinary differential equations and partial differential equa-
tions with constant coefficients. The main objective of this paper is to derive
solutions to systems of linear Caputo fractional Volterra integro-differential
equations using the Khalouta integral transform.

To solve such systems using this technique, it is essential to establish and
define several key properties of the Khalouta integral transform, which are
crucial for deriving the transformation of the Caputo fractional derivative
appearing in the systems. Several numerical examples are presented and
solved by using the Khalouta integral transform method to demonstrate
the applicability of the proposed approach. The results obtained from these
numerical examples confirm that the proposed method is highly efficient
and provides exact solutions for systems of linear fractional Volterra integro-
differential equations in a straightforward manner.
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1. Introduction. Fractional integro-differential equations have wide applica-
tions in numerous fields of physics and applied mathematics, including continuum
mechanics, geophysics, potential theory, electromagnetism, optimization, renewal
theory, kinetic theory, quantum mechanics, radiation, optimal control systems,
mathematical economics, communication theory, queuing theory, radiative equi-
librium, acoustics, steady-state heat conduction, fluid mechanics, and fracture me-
chanics. Among these, fractional Volterra integro-differential equations are partic-
ularly significant due to their prevalence in approximation theory, computational
mathematics, and physical mathematics.

Recent research has explored various methods to analyze fractional integro-
differential equations for accurate and reliable solutions. Integral transforms stand
out as a prominent approach for solving such mathematical problems. Several
integral transforms have proven effective for handling different types of fractional
integro-differential equations. For instance:

— In [1], an exact solution for Volterra-type fractional integro-differential equa-

tions was proposed using the Elzaki integral transform.

— The Aboodh integral transform was applied in [2] to study analytical so-
lutions of linear and nonlinear dynamical systems of fractional integro-
differential equations.

— The Mohand integral transform was employed in [3] to analyze fractional
integro-differential equations.

— The Ramadan group integral transform was used in [4] to solve fractional
Fredholm-Volterra integro-differential equations.

— The Laplace integral transform facilitated solutions to fourth-order frac-
tional partial integro-differential equations in [5].

— In [6], the Laplace integral transform yielded analytical solutions for a sys-
tem of Volterra-type integro-fractional differential equations with variable
coefficients and multi-time delay.

The objective of this paper is to investigate the efficacy of a novel integral
transform method, the Khalouta integral transform, for solving systems of linear
fractional Volterra integro-differential equations. The system under consideration
is given by:

DX = 110+ 3 [ Kot = 9051,
j=1

DYX5(t) = fa(t) + Z/O ng(t — s)Xj(s)ds,
j=1

nooet
DX (1) = fult) + 3 / Koyt — $)X;(s)ds,
j=1"0
subject to the initial conditions

X®0) = s XP00) = Copy ..o, XBN0)=Cppy k=0,1,....m—1, (2)

where X1 (t), Xo(t), ..., X (t) are unknown functions to be determined, K;;(t, s) =
K;;(t—s) are difference kernels for i, 7 = 1,2,...,n, f;(t) are real-valued functions
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for i = 1,2,...,n, and D* denotes the Caputo fractional derivative of order «
withm—-1<a<<m,m2>21.

The Khalouta integral transform is a novel integral transform recently intro-
duced by the author, generalizing several well-known integral transforms including
the Laplace transform [7], Sumudu transform [8], ZZ transform [9], ZMA trans-
form [10], Elzaki transform [11], Aboodh transform [12]|, natural transform [13],
and Shehu transform [14]. The Khalouta integral transform offers several key ad-
vantages:

— Unit Preservation: It enables direct problem-solving without frequency-do-
main conversion, particularly valuable in physical sciences where dimen-
sional consistency is crucial;

— Linear Operator Properties: As a linear operator preserving linear functions,
it maintains units and dimensions without modification;

— Handling of Initial Conditions and Singularities: The transform is specifi-
cally designed to address initial conditions and singularities commonly en-
countered in practical engineering models;

— Simplified Inversion: The inverse Khalouta transform avoids complex con-
tour integration, offering a more straightforward solution methodology.

This paper is organized as follows. Section 1 presents the introduction. Sec-
tion 2 provides essential definitions, properties, theorems, and foundational results
on fractional calculus and the Khalouta integral transform, which are utilized
throughout subsequent sections. Section 3 develops the solution methodology for
systems of linear fractional Volterra integro-differential equations (1) with initial
conditions (2) using the Khalouta transform. Section 4 demonstrates numerical
applications, and Section 5 concludes the paper.

2. Fundamental Definitions and Theorems. This section presents the es-
sential definitions and theorems of fractional calculus and the Khalouta transform,
along with their key properties.

DEFINITION 1 [15]. Let X (¢) be a continuous function on the interval [0, 77,
where T' > 0. The Riemann—Liouville fractional integral operator of order a > 0
is defined as

RN .
rox e [ -9 X a0,
X(t), a =0,

where I'( - ) denotes the Gamma function.

DEFINITION 2 [15]. Let X (¢) be a continuous function on [0,7], T > 0. The
Caputo fractional derivative operator of order o > 0 is defined as

o m=exmt), m—1<a<m,
DX (t) = {X(m)(t), o—m.

where m = [a] € N.
An important relationship between these operators is given by:

t>0.

n—1 k
t
a o _ k +
DX (t) = X(t) - > X®(0 )i
k=0
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DEFINITION 3 [16]. Let X (¢) be a continuous function of exponential order on
[0,T], T > 0. The Khalouta integral transform of X (¢) is defined as

KHIX (1] = (s, 7m) = - /U "o~ ) x 0y,

where s, v, n > 0 are real or complex parameters independent of .
The inverse Khalouta transform is given by:

“+100 S
X(t) =KH '[K(s,n,7)] = ! /w 1exp<wt7)’C(s,n,v)ds, (3)
©

% —ico S
where ¢ is a real constant and the integral in (3) is evaluated along s = ¢ in the

complex plane s = x + 1y.

The Khalouta integral transform possesses the following fundamental proper-
ties.

1. LINEARITY PROPERTY:
KHAX () £ pY (£)] = AKH[X ()] & pKH[Y ()],
where A and p are nonzero constants.

2. DIFFERENTIATION PROPERTY:

m—1

KH[X ™) (£)] = (%)mKH[X(t)] -3 (;7)"”“ x®)(0),
k=0

where X (™) (t) denotes the m-th derivative of X (t) with respect to t for m =
0,1,2,...

3. CONVOLUTION PROPERTY:

KH[(X *Y)(t)] = ?KH[X(t)]KH[Y(t)]

4. INVERSE TRANSFORM OF ELEMENTARY FUNCTIONS:

KHil[l] - 17
KH~! [ﬁ —t
s | )
- n
KH—I[(ﬂ)” :L7 n=20,1,2,...,
S | n!
a t*
K [(2)] = =50 a>-1
S F(Oé + 1) ’ “ ’
KH_l[ s = exp(at),
§ —aym-
K- [%- — sin(at
e sin(at),
1 s?
KH~ [7 = cos(at),
2 + a2~2n2 (at)
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where a is a constant.
THEOREM 1 [17]. The Khalouta integral transform of the Caputo fractional
derivative is given by:

m—1
S

<ap (o) = () ()] - X ()T X000, mot<asm

REMARK 1. The Khalouta integral transform generalizes several well-known
integral transforms through appropriate parameter choices:

1) For v = n = 1, we recover the Laplace—Carson transform of the Caputo
fractional derivative [18]:

m—1
LC[D*X (t)] = s“LC[X sakx (k) m—1<a<m
k=0

2) For s = v = 1, we obtain the Sumudu transform of the Caputo fractional
derivative [19]:

S[D X (1)) = —S[X(1)] - XM(0), m—1<a<m:

3) For v = 1, we derive the ZZ transform of the Caputo fractional deriva-

tive [20]:
m—1 _
zipnx ()= (5) 2x @) - X () X900, mo1<a<m
k=0

4) For s = 1, we obtain the ZMA transform of the Caputo fractional deriva-
tive [10]:

,_.

1 m—
ZyalDUX ()] = ﬁZMA ®(0), m—-1<a<m.
m o
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3. Procedure of Khalouta Integral Transform Method. This section
presents the methodology for solving systems of linear fractional Volterra integro-

differential equations using the Khalouta integral transform.

Consider the general system of linear fractional Volterra integro-differential

equations (1), subject to the initial conditions (2).

Applying the Khalouta integral transform to system (1) and using the convo-

lution property yields:

(KB X4 (0] = K[ (0] + Y T KE[Iy, () KELX, (1),
] 1

KH[D® X5 ()] = KH[f2(t)] + Z 777KH (Ko (1)) KH[X; (1),
j=1

KH[DX,,(t)] = KH[f(t) ZWKHKW()]KH[X()}
7j=1

Applying Theorem 1 to the first term of system (4) yields:

() -5 () o -

() e M<;>°“ 0
KH]f, (1) ZWKHKW()]KH[X()]

212

— \m
— KH[A(0)]+ > ?KH[Ku(t)]KH[Xj(wL
j=1
m—1
(&) - EE) st

— KH[f2(t)] + Z ?KH[sz(t)]KH[Xj(t)J,
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Substituting the initial conditions (2) into system (5) gives:

m—1

() - 2 ()

k=0

= KH[f1 ()] + ? Z KH[ K1, () KH[X; (#)],

~ KHp) + 30 VR (OB (0, O
j=1

()

\ Jj=1

Simplifying system (6) results in:

()" = VIRH{ K (0] ) KB (0] ~ 3 TKEK ()JKHLX; ()] =

el s =
:=KHvuwy+§§(s)“*om,
(@f—?m%mﬁmmm—gfmwwmmmmz
J7#2
w0+ S (2) e,
o 11
-

()" — YRE[K 0 ()] ) KEX ()] — S UKHI[Ky (1)]KH [X(1)] =

m s ‘= s

m—1

s \a—k
=KH[0]+ Y (=) Cm
o 11
(7)
The solution of system (7) is obtained through Cramer’s rule as follows
A
KH[Xl(t)] = K? = 1727 >y 1,
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where A is the determinant of the coefficient matrix:

ail a2 o Qi
a1 G2 -+ Q2p
A == . . . . Y
apl Ap2 - Qpn
with matrix elements
S (07
(=) - rHEKa0), =,
. m s

Y] o
*?KH[Kij(t)], i # 7,

and A; are the determinants formed by replacing the i-th column of A with the
column vector

Applying the inverse Khalouta transform to KH|[X;(¢)] yields the final solution
for each X;(t), i =1,2,...,n.

4. Numerical Applications. This section demonstrates the Khalouta inte-
gral transform method through a concrete example of fractional integro-differential
equations.

ExaMpPLE 1. Consider the system of linear Caputo fractional Volterra integro-
differential equations:

DXy (t) = 2t* + /Ot(t — $)X1(s)ds + /Ot(t — 5)Xa(s)ds,

DO Xo(t) = —3t2—%t5—|— /0 (1 — $) Xy (s)ds — /0 (t — 5)Xo(s)ds,

(8)

where 0 < a < 1, with initial conditions
X1(0) =1, X5(0)=1.

Applying the Khalouta transform yields:

()] - ()" =42+ (2 o+ ()

B N

_ _a(ls”)Q - 12(%)5 + (?YKH[Xl ()] — (¥>2KH[X2(75)}'
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Solving the last system gives:

ta+2 toz+2
Xit) =146, Xo(t)=1—6——.
1(t) + T(a+3)’ 2(t) T(a+3)

For the integer case (o = 1), we recover the exact solution:
Xi(t) =141, Xp(t)=1-1

which agrees with known results obtained via Laplace transform methods [21].

ExampLE 2. Consider the following system of linear Caputo fractional Volterra
integro-differential equations:

;

D*X4(t) = t4+3/ Xo(s ds+4/ X3(s
DQXQ():2+t2 —2/ X1 d8+4/ X3 (9)
D“Xg()—6t—t2+t3+2/ Xi(s)ds — 3 /X2

where 1 < a < 2, subject to the initial conditions
X1(0) =0, X{(0) =15 Xa(0) = X3(0) = 0 Xa(0) = X3(0) = 0.

Applying the Khalouta integral transform to system (9) yields:
KH[D* X (t)] = KH[—#3 — 4] + ﬂKHB]KH[Xg(t)] + ﬁKH[ZL]KH[Xg(t)],
S S
KH[D® X5 ()] = KH[2 + 2 — 4] — %KH[Q]KH[Xl )] + ?KH[ﬁl]KH[Xg(t)],

KH[D*X3(t)] = KH[6t — t? + 3] + ?KHMKH[Xl(t)] - ?KH[?)]KH[XQ(t)].

(10)
Using Theorem 1, we transform system (10) to

(%)aKH[X1(t)] - (;’n)o‘_1 -
_ —6(?) _ 12(777) + 3%KH[X2(75)] + 4%”KH[X3(75)]7

() KHIX:(0)] =

= a2 )" a2 2 TR, (1) + 4 L RH]X (1),

() KHIXs(0)] = S )

=677 (1) 4 6( 1) 1 2 VIR, (1)) — 3 TIKHIXo )

Solving the last system gives:

toz—l to ta-‘rl

Xa(t) = o)’ Xo(t) =2 X3(t) = Gm-
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For o = 2, we obtain the exact solution:
Xl(t) = ta X?(t) = t2’ X3(t) = t37

which matches the known solution obtained via Laplace transform methods [21].

REMARK 2. Figures 1-5 demonstrate the behavior of the obtained solutions for
different values of the fractional order «, comparing them with exact solutions in
two applications of linear Caputo fractional Volterra integro-differential equation
systems solved via the Khalouta integral transform method. Numerical simula-
tions confirm that the fractional solutions converge precisely to the exact solutions
when « approaches 1 for system (8) and 2 for system (9). All computations were
performed using MATLAB R2016a for symbolic computation.

5. Conclusion. This study has demonstrated the successful application of
the Khalouta integral transform method for solving systems of linear Caputo
fractional Volterra integro-differential equations. The numerical applications and
accompanying graphical representations have validated both the accuracy and
effectiveness of the proposed approach. Our results establish the Khalouta trans-
form as a powerful tool for obtaining solutions to systems of linear fractional
integro-differential equations, making a significant contribution to this field of
research.

The presented findings not only advance current theoretical understanding
but also create new opportunities for applications across various scientific and
mathematical disciplines. Future research directions will focus on extending this
methodology to nonlinear Caputo—Volterra—Fredholm integro-differential equa-
tions with complex kernels, potentially combining the Khalouta integral trans-
form with established techniques such as the Adomian decomposition method,
the homotopy perturbation method, the variational iteration method, or the dif-
ferential transform method to develop more robust solution frameworks for these
challenging problems.
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Pentenne cucremMm JIMHEMHBIX WHTErpo-Aud depeHImaibHbIX
ypaBHeHmnit BosbTeppa ApobHOrO nopsiika ¢ Npou3BOIHOMN
KanyTo MeTo/ioM MHTErpajibHOro mpeodbpa3oBaHus XaJjayTa

A. Khalouta
Université Ferhat Abbas de Sétif 1, Sétif, 19000, Algeria.

AnHOTaUSA

WNurerpanbroe npeobpazoBanre XayyThl TPEACTABISET COOON MOITHBIH
METOJ], PEeIlleHUsT PA3JIMIHBIX TUIOB yPAaBHEHUil, BK/IIOYasi MHTErpo-audde-
peHIuAIbHbIE yPABHEHUS W MHTerpaJjbHble ypaBHeHus. OHO Tak»Ke MOKeT
OBITH IPUMEHEHO K HAYaJbHBIM U KPaeBbIM 3aJadaM JJisi OOBIKHOBEHHBIX
i depeHIuaJIbHbIX YPAaBHEHNI 1 yPABHEHMI B YACTHBIX IIPOU3BO/IHBIX C I10-
crostHHbIME KO3 durnmenramu. OCHOBHAs 1I€JIb JAaHHONW pabOThI — IOJIyde-
HU€ PeIeHnuil CUCTEM JIMHEHHBIX WHTErpo-auddepeHnuaaIbHbIX YpaBHEHUI
Boabreppa apobHOro mopsiaka ¢ mMpom3BomgHON KamyTo ¢ mcrmosab3oBaHneMm
WHTErpajbHOTO MPeoOpPa30BAHUA XAJIYTHI.

i1 peleHust TAKUX CUCTEM JaHHBIM METOJO0M HEeOOXOIMMO YCTAHOBUTH
U OIIPeJIeJINTh KJIIOUEBble CBOMCTBA MHTErPaJIbHOIO IIPeoOpa30BaHus XaJly-
ThI, KOTOPbIE UT'PAIOT Ba’KHEHIIIYIO POJIb IIPU BBIBOJE IIPEOOPA3OBAHUST JIJIsT
Japobuoit mpousBoguoil KamyTo, Bxojsimeit B cucrembl. B pabore mpeacras-
JIEHbI W PEIIeHbl HECKOJBKO YHCICHHLIX IMPUMEPOB C IPUMEHEHHEM MeTO-
JIa, THTErPATbHOTO MPeobpa3oBannst XaJIyThl, JEMOHCTPUPYIOIIAE TPIMEHN-
MOCTb IIP€JIJIOZKEHHOIO TI0X0/1a. 11o/IyueHHbIe Pe3yJIbTaThl [TOATBEPKIAIOT,
9TO JAHHBIA MeTo 00J1a/1aeT BBICOKON 3(DMPEKTUBHOCTHIO U MTO3BOJISIET Ha-
XOJIUTHh TOYHBIE PEIIEHUs CUCTEM JUHEHHBIX UHTErPo-IuddepeHInaIbHbIX
ypasHeruit Bosibreppa apoOHOro mOpsijiKa IPsIMBbIM CIIOCOOOM.

KuroueBble ciioBa: mHTErpaabHOe Tpeodpas3oBanne XaJayThl, HHTErpo-Tud-
depeHnnraabHbIe ypaBHeHUs Bojibreppa, 1pobHast mpousBoaHas KaryTo, Tod-
HOE DeEIleHue.
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