ISSN: 2310-7081 (online), 1991-8615 (print)

do https://doi.org/10.14498/vsgtu2150

EDN: FBMSFM

УДК 517.968.22

О конструктивной разрешимости одного нелинейного интегрального уравнения Вольтерра на всей числовой прямой

$X. A. Xачатрян^1, A. \Gamma. Мурадян^2$

- 1 Ереванский государственный университет, Армения, 0025, Ереван, ул. А. Манукяна, 1.
- ² Армянский государственный экономический университет, Армения, 0025, Ереван, ул. Налбандяна 128.

Аннотация

Рассматривается нелинейное интегральное уравнение Гаммерштейна-Вольтерра на всей числовой оси. Доказывается конструктивная теорема существования неотрицательного ограниченного и непрерывного решения. Более того, доказывается равномерная сходимость соответствующих последовательных приближений к решению со скоростью убывающей геометрической прогрессии. Далее исследуется интегральная асимптотика построенного решения. Кроме того, доказывается единственность построенного решения в определенном подклассе ограниченных и неотрицательных функций. В конце приводятся конкретные примеры соответствующего ядра и нелинейности, удовлетворяющие всем условиям доказанных теорем.

Ключевые слова: вогнутость, равномерная сходимость, итерации, монотонность, ограниченное решение, предел решения.

Получение: 24 января 2025 г. / Исправление: 8 апреля 2025 г. / Принятие: 19 мая 2025 г. / Публикация онлайн: 27 июня 2025 г.

Дифференциальные уравнения и математическая физика Научная статья

© СамГТУ, 2025 (составление, дизайн, макет)

Образец для цитирования

Хачатрян Х. А., Мурадян А. Г. О конструктивной разрешимости одного нелинейного интегрального уравнения Вольтерра на всей числовой прямой // Вести. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2025. Т. 29, № 2. С. 256–273. EDN: FBMSFM. DOI: 10.14498/vsgtu2150.

Сведения об авторах

Хачатур Агавардович Хачатрян № № https://orcid.org/0000-0002-4835-943X доктор физико-математических наук, профессор; зав. кафедрой теории функций и дифференциальных уравнений; e-mail: khachatur.khachatryan@ysu.am

Арам Грачович Мурадян № https://orcid.org/0009-0007-3529-9283 кандидат физико-математических наук, доцент; доцент; каф. высшей математики; e-mail:muradyan.aram@asue.am

[©] Коллектив авторов, 2025

Введение. Рассмотрим класс нелинейных интегральных уравнений на всей числовой прямой

$$f(x) = \mu(x) \int_{-\infty}^{x} V(x-t) \left(G(f(t)) + w(t) \right) dt, \quad x \in \mathbb{R} := (-\infty, +\infty)$$
 (1)

относительно искомой неотрицательной непрерывной и ограниченной на множестве \mathbb{R} функции f(x).

В уравнении (1) множитель перед интегралом $\mu(x)$ обладает следующими основными свойствами:

- I) $\mu(x)$ является непрерывной на \mathbb{R} функцией и $0\leqslant \mu(x)\leqslant 1,\ x\in\mathbb{R};$ II) существуют $\lim_{x\to -\infty}\mu(x)=\varepsilon_0\in (0,1),\ \lim_{x\to +\infty}\mu(x)=1.$

Ядро V определено на множестве $\mathbb{R}^+ := [0, +\infty)$ и удовлетворяет следу-ЮЩИМ ОСНОВНЫМ УСЛОВИЯМ:

- a) $V(\tau) \ge 0, \ \tau \in \mathbb{R}^+$;
- b) $V \in L_1(\mathbb{R}^+) \cap L_{\infty}(\mathbb{R}^+),$

а функция w, в свою очередь, обладает свойствами:

- 1) $w(t) \ge 0, t \in \mathbb{R}$,
- 2) $w \in B(\mathbb{R})$, где $B(\mathbb{R})$ есть множество всех ограниченных на \mathbb{R} функций;
- 3) существуют $\lim_{t \to \pm \infty} w(t) < +\infty$.

Нелинейность G определена на множестве \mathbb{R}^+ и удовлетворяет следующим ограничениям:

- A) $G(0) = 0, G \in C(\mathbb{R}^+)$;
- В) y = G(u) возрастающая и вогнутая функция на \mathbb{R}^+ , причем

$$\lim_{u \to +\infty} \frac{G(u)}{u} = 0;$$

С) существует непрерывное возрастающее и вогнутое отображение

$$\varphi:[0,1]\to[0,1]$$

со свойствами $\varphi(0) = 0$ и $\varphi(1) = 1$ такое, что имеет место неравенство $G(\sigma u) \geqslant \varphi(\sigma)G(u), \ \sigma \in (0,1), \ u \in (0,\xi), \$ где число $\xi > \lambda_1\lambda_2$ однозначно определяется из характеристического уравнения

$$u = \lambda_1 G(u) + \lambda_1 \lambda_2, \tag{2}$$

a

$$0 < \lambda_1 := \int_0^\infty V(\tau) d\tau < +\infty, \quad 0 \leqslant \lambda_2 := \sup_{t \in \mathbb{R}} w(t) < +\infty.$$
 (3)

Следует отметить, что в случае, когда $\lambda_2 = 0$, существование положительного решения ξ для характеристического уравнения (2) предполагается, а в случае $\lambda_2 > 0$ существование решения $\xi > \lambda_1 \lambda_2$ характеристического уравнения (2) не предполагается и сразу следует из условий А) и В).

Вопросы допустимости линеаризации при исследовании устойчивости уравнения типа (1) обсуждены в работе [1] (см. также [2, гл. 2, п. 17]). Отметим

также, что линейный аналог уравнения (1) при $w \equiv 0$, $\mu \equiv 1$ возникает в демографии, где искомое решение f(t) представляет из себя плотность рождений во времени t, а V(x) — функция плодовитости, т.е. плотность повозрастного распределения рождений у женщин (см. [3, стр. 93]).

Вопросы существования и единственности для соответствующих нелинейных интегральных уравнений с переменным нижним пределом (на положительной полупрямой) обсуждались в работах [4-7].

В случае, когда $w \neq 0$, нелинейные интегральные уравнения с переменным верхним пределом, когда нижний предел — конечное число, изучались в работах [8–10] при различных ограничениях на ядро и на нелинейность.

В настоящей работе мы будем заниматься вопросами существования единственности и асимптотического поведения решения нелинейного уравнения (1). Структура работы следующая. Раздел 1 посвящен конструктивной разрешимости уравнения (1) в пространстве непрерывных и ограниченных на \mathbb{R} функций. Доказывается теорема существования нетривиального непрерывного и ограниченного на \mathbb{R} решения уравнения (1), причем устанавливается, что последовательные приближения

$$f_{n+1}(x) = \mu(x) \int_{-\infty}^{x} V(x-t) \left(G(f_n(t)) + w(t) \right) dt,$$

$$f_0(x) \equiv \xi, \quad n = 0, 1, \dots, \quad x \in \mathbb{R}$$
(4)

равномерно со скоростью некоторой бесконечно убывающей геометрической прогрессии сходятся к непрерывному и ограниченному решению (см. теорему 1). В разделе 2 исследуется асимптотическое поведение решения на $\pm \infty$ (см. теорему 2). Раздел 3 посвящен доказательству единственности решения в определенном подклассе неотрицательных и ограниченных на $\mathbb R$ функций (см. теорему 2), а также выявлению конкретных примеров функций μ , V и G, удовлетворяющих всем условиям доказанных теорем.

1. Существование ограниченного решения уравнения (1). Рассмотрим последовательные приближения (4). Принимая во внимание условия I(a), b(b), I(a), I(a

$$f_n(x) \geqslant 0, \quad n = 0, 1, \dots, \quad x \in \mathbb{R},$$
 (5)

$$f_{n+1}(x) \leqslant f_n(x), \quad n = 0, 1, \dots, \quad x \in \mathbb{R}.$$
 (6)

Действительно, докажем, например, справедливость неравенств (6). Сначала, принимая во внимание тот факт, что число $\xi > \lambda_1 \lambda_2$ является решением характеристического уравнения (2) и учитывая условия I), a), b), 1), 2), а также обозначения (3), из (4) будем иметь

$$f_1(x) = \mu(x) \int_{-\infty}^x V(x-t)(G(\xi) + w(t))dt \leqslant$$

$$\leqslant G(\xi) \int_{-\infty}^x V(x-t)dt + \lambda_2 \int_{-\infty}^x V(x-t)dt =$$

$$= G(\xi)\lambda_1 + \lambda_1\lambda_2 = \xi = f_0(x), \quad x \in \mathbb{R}.$$

Далее, если предположим, что неравенство (6) выполняется при некотором натуральном n, то, используя (5) и условия I), а), A), B), 1) и 2), из (4) получим, что

$$f_{n+2}(x) \leq \mu(x) \int_{-\infty}^{x} V(x-t)(G(f_n(t)) + w(t))dt = f_{n+1}(x), \quad x \in \mathbb{R}^+.$$

Используя тот факт, что свертка суммируемой и ограниченной функций представляет собой непрерывную функцию (см. [11]), и учитывая непрерывность функции μ , в силу условий A), B) методом индукции нетрудно доказать, что

$$f_n \in C(\mathbb{R}^+), \quad n = 0, 1, 2, \dots$$

Принимая во внимание условия I), II), можно утверждать, что существует число r>0 такое, что при |x|>r имеет место неравенство

$$\mu(x) \geqslant \frac{\varepsilon_0}{2}.\tag{7}$$

Рассмотрим следующую вспомогательную функцию на множестве \mathbb{R} :

$$\chi(x) := \frac{1}{\xi} \int_{-\infty}^{x} V(x - t) \left(G(\lambda_1 G(\xi) \mu(t) + g(t)) + w(t) \right) dt, \quad x \in \mathbb{R},$$
 (8)

где

$$g(x) := \mu(x) \int_{-\infty}^{x} V(x - t)w(t)dt, \quad x \in \mathbb{R}.$$
 (9)

Снова используя непрерывность свертки суммируемых и ограниченных функций, условия I), a), b), b), b), b), b), b), b), b), b), b0, b0, b1), b3, b4, b5, b6, b7, b8, b9, b9,

$$\chi, g \in C(\mathbb{R}), \quad g(x) \geqslant 0, \quad \chi(x) \geqslant 0, \quad x \in \mathbb{R}.$$
(10)

Докажем теперь, что на самом деле существует число $\sigma_0 \in (0,1)$ такое, что

$$\chi(x) \geqslant \sigma_0, \quad x \in \mathbb{R}.$$
(11)

Пусть сначала $x \in [-2r, 2r]$, где число r > 0 было определено для выполнения неравенства (7). Тогда, если учитывать условия I), a), b), 1), а также неравенства (7) и (10), из (8) для всех $x \in [-2r, 2r]$ будем иметь

$$\chi(x) \geqslant \frac{1}{\xi} \int_{-\infty}^{-2r} V(x-t) \left(G(\lambda_1 G(\xi) \mu(t) + g(t)) + w(t) \right) dt \geqslant$$

$$\geqslant \frac{G\left(\frac{\lambda_1 \varepsilon_0}{2} G(\xi)\right)}{\xi} \int_{-\infty}^{-2r} V(x-t) dt = \frac{G\left(\frac{\lambda_1 \varepsilon_0}{2} G(\xi)\right)}{\xi} \int_{x+2r}^{\infty} V(y) dy \geqslant$$

$$\geqslant \frac{G\left(\frac{\lambda_1 \varepsilon_0}{2} G(\xi)\right)}{\xi} \int_{4r}^{\infty} V(y) dy =: \sigma_1 > 0. \quad (12)$$

Предположим теперь, что x>2r. Тогда, используя условия I), a), b), 1) и оценки (7), (10), из (8) в случае x>2r получим

$$\chi(x) \geqslant \frac{1}{\xi} \int_{-\infty}^{x} V(x-t)G(\lambda_{1}G(\xi)\mu(t))dt =$$

$$= \frac{1}{\xi} \int_{0}^{\infty} V(y)G(\lambda_{1}G(\xi)\mu(x-y))dy \geqslant$$

$$\geqslant \frac{1}{\xi} \int_{0}^{r} V(y)G(\lambda_{1}G(\xi)\mu(x-y))dy \geqslant$$

$$\geqslant \frac{G(\frac{\lambda_{1}\varepsilon_{0}}{2}G(\xi))}{\xi} \int_{0}^{r} V(y)dy =: \sigma_{2} > 0. \quad (13)$$

Наконец, если x < -2r, то снова используя условия I), а), b), 1) и оценки (7), (10), из (8) имеем

$$\chi(x) \geqslant \frac{1}{\xi} \int_0^\infty V(y) G\left(\lambda_1 G(\xi) \mu(x - y)\right) dy \geqslant \frac{G\left(\frac{\lambda_1 \varepsilon_0}{2} G(\xi)\right)}{\xi} \int_0^\infty V(y) dy =$$

$$= \frac{\lambda_1}{\xi} G\left(\frac{\lambda_1 \varepsilon_0}{2} G(\xi)\right) =: \sigma_3 > 0, \quad x < -2r. \quad (14)$$

Из правых частей неравенств (12), (13) и (14) немедленно следует, что $\max(\sigma_1, \sigma_2) < \sigma_3$.

Убедимся теперь, что имеет место неравенство

$$\sigma_3 < 1. \tag{15}$$

Действительно, учитывая равенство $\xi = \lambda_1 G(\xi) + \lambda_1 \lambda_2$, обозначения (3), а также условия A) и B), будем иметь

$$\sigma_3 < \frac{\lambda_1}{\xi} G(\lambda_1 G(\xi)) = \frac{\lambda_1}{\xi} G(\xi - \lambda_1 \lambda_2) \leqslant \frac{\lambda_1 G(\xi)}{\xi} = \frac{\xi - \lambda_1 \lambda_2}{\xi} \leqslant 1.$$

Таким образом, в силу (12)–(15) для $\sigma_0 = \min(\sigma_1, \sigma_2) \in (0, 1)$ приходим к неравенству (11).

Заметим теперь, что $\chi(x) \leq 1$, $x \in \mathbb{R}$. Действительно, принимая во внимание условия I), a), b), 1), 2), A), B) и обозначения (3), из (8) получим

$$\chi(x) \leqslant \frac{1}{\xi} \int_{-\infty}^{x} V(x-t) \left(G(\lambda_1 G(\xi) + g(t)) + w(t) \right) dt \leqslant$$

$$\leqslant \frac{1}{\xi} \int_{-\infty}^{x} V(x-t) \left(G(\lambda_1 G(\xi) + \lambda_1 \lambda_2) + w(t) \right) dt \leqslant$$

$$\leqslant \frac{1}{\xi} \left(G(\xi) \lambda_1 + \lambda_1 \lambda_2 \right) = 1, \quad x \in \mathbb{R}.$$

Теперь, используя неравенство (11), убедимся, что имеет место следующая оценка снизу:

$$f_2(x) \geqslant \sigma_0 f_1(x), \quad x \in \mathbb{R}.$$
 (16)

Действительно, из (4) немедленно следует, что

$$f_1(x) = \lambda_1 \mu(x) G(\xi) + g(x), \quad x \in \mathbb{R},$$

$$f_2(x) = \mu(x) \int_{-\infty}^{x} V(x-t) \left(G(\lambda_1 \mu(t) G(\xi) + g(t)) + w(t) \right) dt, \quad x \in \mathbb{R}.$$

Следовательно, принимая во внимание (8)–(11), (2), (6) и неравенство $0 \leqslant g(x) \leqslant \lambda_1 \lambda_2, x \in \mathbb{R}$, в силу условий I), a), b), 1), A), B) будем иметь

$$f_2(x) = \mu(x)\xi \cdot \chi(x) = \mu(x)\chi(x)\left(\lambda_1 G(\xi) + \lambda_1 \lambda_2\right) \geqslant$$

$$\geqslant \mu(x)\chi(x)\left(\lambda_1 G(\xi) + \int_{-\infty}^x V(x-t)w(t)dt\right) =$$

$$= \chi(x)f_1(x) \geqslant \sigma_0 f_1(x), \quad x \in \mathbb{R}.$$

Таким образом, в силу (6) и (16) приходим к следующему двустороннему неравенству:

$$\sigma_0 f_1(x) \leqslant f_2(x) \leqslant f_1(x), \quad x \in \mathbb{R}.$$
 (17)

Неравенство (17) будет играть важную роль в наших дальнейших рассуждениях.

Теперь при следующих дополнительных предположениях относительно функций μ и w:

- III) $\mu(x)$ не убывает на \mathbb{R} ;
 - 4) w(x) не убывает на \mathbb{R} ,

мы докажем, что

$$f_n(x)$$
 не убывают по x на \mathbb{R} , $n = 0, 1, \dots$ (18)

В случае n=0 утверждение (18) сразу следует из определения нулевого приближения в итерациях (4). Предположим, что для некоторого натурального n при всех $x_1, x_2 \in \mathbb{R}$ из $x_1 > x_2$ следует неравенство $f_n(x_1) \geqslant f_n(x_2)$. Тогда, записывая итерации (4) в виде

$$f_{n+1}(x) = \mu(x) \int_{\xi}^{x} V(y) (G(f_n(x-y)) + w(x-y)) dy,$$

$$f_0(x) \equiv \xi, \quad n = 0, 1, \dots, \quad x \in \mathbb{R},$$

и при этом учитывая условия a), 1), I), III), 4), A) и B), согласно индукционному предположению имеем

$$f_{n+1}(x_1) \geqslant \mu(x_2) \int_0^\infty V(y) \Big(G(f_n(x_1 - y)) + w(x_1 - y) \Big) dy \geqslant$$
$$\geqslant \mu(x_2) \int_0^\infty V(y) \Big(G(f_n(x_2 - y)) + w(x_2 - y) \Big) dy = f_{n+1}(x_2).$$

Итак, утверждение (18) доказано.

Вернемся к неравенству (17). Из (17) в силу условий I), a), A) и B) следует, что

$$\mu(x) \int_{-\infty}^{x} V(x-t) \left(G(\sigma_0 f_1(t)) + w(t) \right) dt \leqslant f_3(x) \leqslant f_2(x), \quad x \in \mathbb{R}.$$
 (19)

Принимая во внимание условие C) и тот факт, что $\varphi(\sigma_0) \in (0,1)$, из (19) получаем

$$\varphi(\sigma_0)f_2(x) \leqslant f_3(x) \leqslant f_2(x), \quad x \in \mathbb{R}.$$
 (20)

Снова используя условия I), a), a), a), a), a0) и a0), из a0) приходим к неравенствам

$$\mu(x) \int_{-\infty}^{x} V(x-t) \big(G(\varphi(\sigma_0) f_2(t)) + w(t) \big) dt \leqslant f_4(x) \leqslant f_3(x), \quad x \in \mathbb{R}$$

откуда с учетом условия C) и включения $\varphi(\varphi(\sigma_0)) \in (0,1)$ получаем, что

$$\varphi(\varphi(\sigma_0))f_3(x) \leqslant f_4(x) \leqslant f_3(x), \quad x \in \mathbb{R}.$$

Продолжая данную процедуру на n-ном шаге, получим следующее двустороннее неравенство:

$$\underbrace{\varphi(\varphi\dots\varphi(\sigma_0))}_{n} f_{n+1}(x) \leqslant f_{n+2}(x) \leqslant f_{n+1}(x), \quad n = 1, 2, \dots, \quad x \in \mathbb{R}.$$
 (21)

Из (21) с учетом (6) и определения нулевого приближения в итерациях (4) приходим к оценке

$$0 \leqslant f_{n+1}(x) - f_{n+2}(x) \leqslant \xi(1 - \underbrace{\varphi(\varphi \dots \varphi(\sigma_0))}_{n}, \quad n = 1, 2, \dots, \quad x \in \mathbb{R}.$$
 (22)

Теперь воспользуемся следующим неравенством из работы [12]:

$$1 - \underbrace{\varphi(\varphi \dots \varphi(\sigma_0))}_{r} \leqslant k^n (1 - \sigma_0), \quad k := \frac{1 - \varphi(\sigma_0)}{1 - \sigma_0} \in (0, 1). \tag{23}$$

С учетом (23) из (22) следует, что

$$0 \leqslant f_{n+1}(x) - f_{n+2}(x) \leqslant C \cdot k^n, \quad n = 1, 2, \dots, \quad x \in \mathbb{R},$$
 (24)

где $C := \xi(1 - \sigma_0) > 0.$

Из (24) следует равномерная сходимость последовательности непрерывных на \mathbb{R} функций $\{f_n(x)\}_{n=0}^{\infty}$ к непрерывной функции f(x):

$$f_n(x) \rightrightarrows f(x), \quad n \to \infty, \quad f \in C(\mathbb{R}),$$

при этом в силу (5) имеем, что $f(x) \ge 0$, $x \in \mathbb{R}$.

Записывая неравенства (24) для номеров n+1, n+2, ..., n+p, затем складывая полученные неравенства и (24), приходим к следующим оценкам:

$$0 \leqslant f_{n+1}(x) - f_{n+2+p}(x) \leqslant C(k^n + \dots + k^{n+p}) \leqslant \frac{C \cdot k^n}{1-k}, \quad n = 1, 2, \dots, x \in \mathbb{R}.$$

В последнем неравенстве, устремляя число $p \to \infty$, получим

$$0 \leqslant f_{n+1}(x) - f(x) \leqslant \frac{C \cdot k^n}{1 - k}, \quad n = 1, 2, \dots, x \in \mathbb{R}.$$
 (25)

Из (18) также следует, что f(x) является неубывающей функцией на \mathbb{R} . Следовательно, используя непрерывность, неотрицательность и ограниченность решения f(x), можно утверждать, что существуют

$$\lim_{x \to -\infty} f(x) =: \alpha \quad \text{if} \quad \lim_{x \to +\infty} f(x) =: \beta, \tag{26}$$

причем $0 \leqslant \alpha \leqslant \beta \leqslant \xi$.

Ниже убедимся, что на самом деле $\alpha > 0$. С этой целью докажем, что имеет место оценка снизу:

$$f_n(x) \geqslant \tau^* f_1(x), \quad n = 1, 2, \dots,$$
 (27)

где τ^* — положительное решение характеристического уравнения: $\tau = \sigma_0 \varphi(\tau)$. Существование такого решения несложно доказать, например, при выполнении следующего дополнительного условия на функцию φ :

$$\varphi'(+0) = +\infty. \tag{28}$$

Сначала проверим выполнение неравенства (27) для номера n=1. Действительно, неравенство (27) при n=1 сразу получается из следующих соображений: $0 < \tau^* < \varphi(\tau^*)$ (ибо $\sigma_0 \in (0,1)$), $\varphi(1)=1$ и $\varphi(u)/u$ не возрастает на интервале (0,1). Пусть теперь оценка (27) имеет место при некотором натуральном n>1. Тогда, учитывая условия а), I), A), B) и C), из (4) будем иметь

$$f_{n+1}(x) \geqslant \mu(x) \int_{-\infty}^{x} V(x-t) \left(G(\tau^* f_1(t)) + w(t) \right) dt \geqslant$$

$$\geqslant \mu(x) \int_{-\infty}^{x} V(x-t) \left(\varphi(\tau^*) G(f_1(t)) + w(t) \right) dt \geqslant$$

$$\geqslant \varphi(\tau^*) \mu(x) \int_{-\infty}^{x} V(x-t) \left(G(f_1(t)) + w(t) \right) dt =$$

$$= \varphi(\tau^*) f_2(x) = \frac{\tau^*}{\sigma_0} f_2(x) \geqslant \tau^* f_1(x), x \in \mathbb{R},$$

ибо $f_2(x) \geqslant \sigma_0 f_1(x)$ (см. (20)) и $\varphi(\tau^*) \in (0,1)$.

В неравенстве (27), устремляя $n \to \infty$, получим $f(x) \geqslant \tau^* f_1(x), x \in \mathbb{R}$. С другой стороны, $f_1(x) \geqslant \mu(x) G(\xi) \lambda_1, x \in \mathbb{R}$. Следовательно,

$$\alpha = \lim_{x \to -\infty} f(x) \geqslant \tau^* G(\xi) \lambda_1 \lim_{x \to -\infty} \mu(x) = \tau^* G(\xi) \lambda_1 \varepsilon_0 > 0.$$

Докажем теперь следующие предельные соотношения:

$$\lim_{x \to +\infty} \int_{-\infty}^{x} V(x-t)G(f(t))dt = \lambda_1 G(\beta),$$

$$\lim_{x \to -\infty} \int_{-\infty}^{x} V(x-t)G(f(t))dt = \lambda_1 G(\alpha).$$
(29)

Сначала докажем первое предельное соотношение в (29). Учитывая обозначения (3), условие a) и монотонность функций f, G, будем иметь

$$0 \leq \lambda_1 G(\beta) - \int_{-\infty}^{x} V(x-t)G(f(t))dt =$$

$$= \int_{-\infty}^{x} V(x-t)(G(\beta) - G(f(t)))dt = \int_{0}^{\infty} V(y)(G(\beta) - G(f(x-y)))dy =$$

$$= \int_{0}^{x/2} V(y)(G(\beta) - G(f(x-y)))dy + \int_{x/2}^{\infty} V(y)(G(\beta) - G(f(x-y)))dy =: I_1 + I_2.$$

Так как $\lim_{x\to +\infty} f(x)=\beta>0, f(x)\geqslant \alpha>0, x\in\mathbb{R}, \ G\in C(\mathbb{R}^+)$, при каждом $\varepsilon>0$ существует число $\delta_1>0$ такое, что

$$G(\beta) - G(f(\tau)) < \varepsilon,$$

если только $\tau > \delta_1$.

С другой стороны очевидно, что при всяком $\varepsilon>0$ существует $\delta_2>0$ такое, что

$$\int_{\tau}^{\infty} V(y)dy < \varepsilon,$$

если только $\tau > \delta_2$.

Положим $\delta := \max(\delta_1, \delta_2)$ и пусть $x > 2\delta$. Тогда

$$I_1 \leqslant \varepsilon \int_0^\infty V(y)dy = \lambda_1 \varepsilon, \quad I_2 \leqslant \varepsilon G(\beta).$$

Следовательно,

$$0 \leqslant \lambda_1 G(\beta) - \int_{-\infty}^x V(x-t)G(f(t))dt \leqslant \varepsilon(\lambda_1 + G(\beta)),$$

если только $x > 2\delta$.

Перейдем к доказательству второго предельного соотношения в (29). В этом случае для всякого $\varepsilon > 0$ существует число $\delta_0 > 0$ такое, что

$$0 \leqslant G(f(t)) - G(\alpha) < \varepsilon,$$

если только $t > -\delta_0$.

Принимая во внимание обозначения (3), монотонность функции f и условия A), B), получим

$$0 \leqslant \int_{-\infty}^{x} V(x-t)G(f(t))dt - G(\alpha)\lambda_{1} =$$

$$= \int_{-\infty}^{x} V(x-t) \left(G(f(t)) - G(\alpha)\right)dt < \varepsilon \int_{-\infty}^{x} V(x-t)dt = \varepsilon \lambda_{1},$$

если только $x > -\delta_0$.

Итак, предельные соотношения (29) доказаны.

Аналогичными рассуждениями доказывается справедливость следующих предельных соотношений:

$$\lim_{x \to \pm \infty} \int_{-\infty}^{x} V(x - t)w(t)dt = \lambda_1 w_{\pm}, \tag{30}$$

где

$$0 \leqslant w_{\pm} := \lim_{t \to \pm \infty} w(t) < +\infty.$$

Переходя к пределу в обеих частях уравнения (1) при $x \to \pm \infty$ и учитывая (29), (30), а также условия II), 3), получаем следующие характеристические уравнения относительно β и α :

$$\beta = \lambda_1 G(\beta) + \lambda_1 w_+, \tag{31}$$

$$\alpha = \lambda_1 \varepsilon_0 G(\alpha) + \lambda_1 \varepsilon_0 w_-. \tag{32}$$

Займемся теперь изучением и решением характеристических уравнений (31) и (32). С этой целью рассмотрим следующую вспомогательную функцию на множестве $[\lambda_1 w_+, +\infty)$:

$$B(u) := \frac{u - \lambda_1 w_+}{G(u)} - \lambda_1, \quad u \in [\lambda_1 w_+, +\infty)$$

при условии, что $w_+ > 0$. Учитывая условия A), B), можно утверждать, что

$$B(\lambda_1 w_+) = -\lambda_1 < 0; \quad B(+\infty) = +\infty; \quad B \in C[\lambda_1 w_+, +\infty);$$

B(u) возрастает на множестве $[\lambda_1 w_+, +\infty)$.

Следовательно, существует единственное число $\beta > \lambda_1 w_+$ такое, что $B(\beta) = 0$, т.е. уравнение (31) при $w_+ > 0$ имеет единственное решение $\beta > \lambda_1 w_+$.

Пусть теперь $w_{+}=0$. В этом случае уравнение (31) сводится к уравнению (2) с $\lambda_{2}=0$, и существование единственного положительного решения было заранее предположено (см. Введение). Аналогичным образом можно исследовать уравнение (32).

Итак, на основе вышеизложенных фактов приходим к следующему результату.

ТЕОРЕМА 1. Пусть выполняются условия I), II), a), b), 1)–3), A)–C), (28) u уравнение $G(u)=\frac{u}{\lambda_1\varepsilon_0}$ имеет положительное решение. Тогда уравнение (1) обладает неотрицательным непрерывным u ограниченным на $\mathbb R$ решением f(x). Более того, имеют место неравенства

$$\xi \geqslant f(x) \geqslant \tau^*(\lambda_1 \mu(x) G(\xi) + g(x)), \quad x \in \mathbb{R}$$

u (25). Кроме того, если дополнительно выполняются условия III) u 4), то f(x) является неубывающей функцией на \mathbb{R} , причем

$$\lim_{x \to -\infty} f(x) = \alpha, \quad \lim_{x \to +\infty} f(x) = \beta,$$

еде числа α , $\beta > 0$ однозначно определяются из характеристических уравнений (31) и (32) соответственно.

2. Интегральная асимптотика решения. Перейдем к исследованию интегральной асимптотики полученного решения на $\pm \infty$ при следующих дополнительных ограничениях на функции V, μ и w:

при условиях
$$\Omega_1)\int_0^\infty tV(t)dt<+\infty,\ 1-\mu\in L_1(0,+\infty),\ w_+-w\in L_1(0,+\infty)\ \text{докажем},$$
 что
$$\beta-f\in L_1(0,+\infty),$$

а при условиях

$$\Omega_2$$
) $\int_0^\infty V(t)dt < +\infty, \ \mu - \varepsilon_0 \in L_1(-\infty,0), \ w-w_+ \in L_1(-\infty,0)$ аналогично доказывается, что

$$f - \alpha \in L_1(-\infty, 0). \tag{33}$$

Используя (31) и (3), во-первых имеем, что

$$0 \leqslant \beta - f(x) = \int_{-\infty}^{x} V(x - t)[w_{+} - w(t)]dt + \int_{-\infty}^{x} V(x - t) \left(G(\beta) - \mu(\alpha)G(f(t))\right)dt, \quad x \in \mathbb{R}. \quad (34)$$

Используя (26), непрерывность и монотонность функции G, можно утверждать, что существует число $r^*>0$ такое, что при $t>r^*$ имеет место неравенство

$$G(f(t)) \geqslant G(\beta/2).$$
 (35)

Пусть $R > r^*$ — произвольное число. Тогда, принимая во внимание условия а), b) и Ω_1), а также неравенство (35) и условия A), B), из (34) будем иметь

$$0 \leqslant \int_{r^*}^R (\beta - f(x)) dx \leqslant \int_{r^*}^R \int_{-\infty}^x V(x - t) [w_+ - w(t)] dt dx + \\ + \int_{r^*}^R \mu(x) \int_{-\infty}^x V(x - t) (G(\beta) - G(f(t))) dt dx + \\ + G(\beta) \int_{r^*}^R (1 - \mu(x)) \int_{-\infty}^x V(x - t) dt dx \leqslant \\ \leqslant \int_{r^*}^R \int_{-\infty}^{r^*} V(x - t) [w_+ - w(t)] dt dx + \int_{r^*}^R \int_{r^*}^x V(x - t) [w_+ - w(t)] dt dx + \\ + \lambda_1 G(\beta) \int_{r^*}^\infty (1 - \mu(x)) dx + \int_{r^*}^R \int_{-\infty}^{r^*} V(x - t) (G(\beta) - G(f(t))) dt dx + \\ + \int_{r^*}^R \int_{r^*}^x V(x - t) (G(\beta) - G(f(t))) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^R \int_{r - r^*}^\infty V(y) dy dx + \\ + \int_{r^*}^R \int_{r^*}^x V(x - t) (G(\beta) - G(f(t))) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^R \int_{r - r^*}^\infty V(y) dy dx + \\ + \int_{r^*}^R \int_{r^*}^x V(x - t) (G(\beta) - G(f(t))) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^R \int_{r - r^*}^\infty V(y) dy dx + \\ + \int_{r^*}^R \int_{r^*}^x V(x - t) (G(\beta) - G(f(t))) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^R \int_{r - r^*}^\infty V(y) dy dx + \\ + \int_{r^*}^R \int_{r^*}^x V(x - t) (G(\beta) - G(f(t))) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^R \int_{r - r^*}^\infty V(y) dy dx + \\ + \int_{r^*}^R \int_{r^*}^x V(x - t) (G(\beta) - G(f(t))) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^R \int_{r - r^*}^\infty V(y) dy dx + \\ + \int_{r^*}^R \int_{r^*}^x V(x - t) (G(\beta) - G(f(t))) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^R \int_{r - r^*}^\infty V(y) dy dx + \\ + \int_{r^*}^R \int_{r^*}^x V(x - t) (G(\beta) - G(f(t))) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^R \int_{r - r^*}^\infty V(y) dy dx + \\ + \int_{r^*}^R \int_{r^*}^x V(x - t) (G(\beta) - G(f(t))) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^R \int_{r^*}^\infty V(y) dy dx + \\ + \int_{r^*}^R \int_{r^*}^x V(x - t) (G(\beta) - G(f(t))) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^R \int_{r^*}^\infty V(x - t) (G(\beta) - G(f(t))) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^R \int_{r^*}^\infty V(x - t) (G(\beta) - G(f(t))) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^R \int_{r^*}^\infty V(x - t) (G(\beta) - G(f(t)) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^R \int_{r^*}^\infty V(x - t) (G(\beta) - G(f(t)) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^\infty V(x - t) (G(\beta) - G(f(t)) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^\infty V(x - t) (G(\beta) - G(f(t)) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^\infty V(x - t) (G(\beta) - G(f(t)) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^\infty V(x - t) (G(\beta) - G(f(t)) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^\infty V(x - t) (G(\beta) - G(f(t)) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^\infty V(x - t) (G(\beta) - G(f(t)) dt dx \leqslant (w_+ + \lambda_2) \int_{r^*}^\infty V(x - t) (G(\beta$$

$$+ \int_{r^*}^{R} [w_{+} - w(t)] \int_{t}^{R} V(x - t) dx dt + \lambda_{1} G(\beta) \int_{r^*}^{\infty} (1 - \mu(x)) dx +$$

$$+ G(\beta) \int_{r^*}^{R} \int_{x - r^*}^{\infty} V(y) dy dx + \int_{r^*}^{R} (G(\beta) - G(f(t))) \int_{t}^{R} V(x - t) dx dt \leq$$

$$\leq (w_{+} + \lambda_{2} + G(\beta)) \int_{0}^{\infty} \int_{t}^{\infty} V(y) dy dx + \lambda_{1} \int_{r^*}^{\infty} [w_{+} - w(t)] dt +$$

$$+ \lambda_{1} G(\beta) \int_{r^*}^{\infty} (1 - \mu(x)) dx + \lambda_{1} \int_{r^*}^{R} (G(\beta) - G(f(t))) dt =$$

$$= C_{0} + \lambda_{1} \int_{r^*}^{R} (G(\beta) - G(f(t))) dt,$$

где

$$C_0 := (w_+ + \lambda_2 + G(\beta)) \int_0^\infty y V(y) dy + \lambda_1 G(\beta) \int_{r^*}^\infty (1 - \mu(x)) dx + \lambda_1 \int_{r^*}^\infty [w_+ - w(t)] dt < +\infty.$$

Итак, для любого $R > r^*$ мы получим следующую априорную оценку:

$$0 \leqslant \int_{r^*}^{R} (\beta - f(x)) dx \leqslant C_0 + \lambda_1 \int_{r^*}^{R} (G(\beta) - G(f(x))) dx.$$
 (36)

Теперь, используя неравенство (35) для $t > r^*$, а также условия A), B) и тот факт, что $f(t) \uparrow \beta$, при $t \to +\infty$ будем иметь (см. рис. 1)

$$G(\beta) - G(f(x)) \leqslant \frac{G(\beta) - G(\beta/2)}{\beta/2} (\beta - f(x)), \quad x > r^*.$$
(37)

 ${\bf C}$ другой стороны, заметим, что имеет место строгое неравенство (см. puc. 1)

$$\varkappa := \frac{2\lambda_1}{\beta} \left(G(\beta) - G(\beta/2) \right) < 1. \tag{38}$$

Действительно, учитывая условия А), В), из (31) будем иметь

$$\frac{2\lambda_1}{\beta}G(\beta/2) > \frac{\lambda_1G(\beta)}{\beta} = \frac{\beta - \lambda_1w_+}{\beta},$$

откуда

$$\lambda_1 G(\beta/2) > \frac{1}{2}(\beta - \lambda_1 w_+).$$

Следовательно,

$$\lambda_1 \left(G(\beta) - G(\beta/2) \right) < \lambda_1 G(\beta) - \frac{\beta}{2} + \frac{\lambda_1 w_+}{2} = \frac{\beta}{2} - \frac{\lambda_1 w_+}{2} \leqslant \frac{\beta}{2}.$$

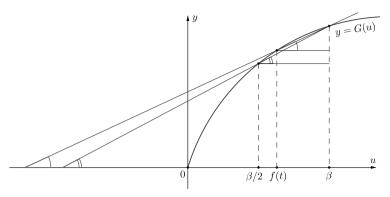


Рис. 1. Пересечение графика функции y=G(u) с прямой проходящей через точки $(\beta,G(\beta))$ и $(\beta/2,G(\beta/2))$

[Figure 1. Intersection of the graph of the function y = G(u) with the line passing through the points $(\beta, G(\beta))$ and $(\beta/2, G(\beta/2))$]

Учитывая (37) и (38) из (36), приходим к следующему неравенству:

$$0 \leqslant \int_{r^*}^{R} (\beta - f(x)) \, dx \leqslant \frac{C_0}{1 - \varkappa}. \tag{39}$$

B(39), устремляя число R к бесконечности, получаем, что

$$0 \leqslant \int_{x^*}^{\infty} (\beta - f(x)) \, dx \leqslant \frac{C_0}{1 - \varkappa}.$$

Так как $f \in C(\mathbb{R}^+)$, из доказанного выше следует, что $\beta - f \in L_1(0, +\infty)$. Совершая аналогичные рассуждения, можно доказать, что при условии Ω_2) имеет место также включение (33).

Таким образом, имеет место следующая

ТЕОРЕМА 2. Пусть выполняются все условия теоремы 1. Тогда, если выполняется дополнительное условие Ω_1), то $\beta - f \in L_1(0, +\infty)$. Если жее выполняется условие Ω_2), то $f - \alpha \in L_1(-\infty, 0)$.

3. Единственность решения. Примеры. Перейдем теперь к вопросу единственности решения уравнения (1). Имеет место следующая

ТЕОРЕМА 3. Пусть выполняются условия I), II), a), b), 1)–3), A)–C), (28) и уравнение $G(u)=\frac{u}{\lambda_1\varepsilon_0}$ имеет положительное решение. Тогда уравнение (1), кроме решения f, построенного при помощи последовательных приближений (4), в следующем классе функций

 $\mathfrak{M}:=\{f\in L_{\infty}(\mathbb{R}): \textit{cywecmbyem } \varepsilon>0 \ \textit{makoe}, \ \textit{что} \ f(x)\geqslant \varepsilon\mu(x), x\in\mathbb{R}\}$

других решений не имеет.

 $\mathcal{A}o \kappa a 3 a m e n b c m 6 o$. Сперва для корректности докажем, что построенное нами решение f принадлежит классу \mathfrak{M} . Действительно, из теоремы 1 и условий I), a), 1) немедленно следует, что $f(x) \geqslant \tau^* G(\xi) \mu(x)$, $x \in \mathbb{R}$,

 $f(x) \leqslant \xi, \ x \in \mathbb{R}$. Следовательно, $f \in \mathfrak{M}$. Пусть теперь уравнение (1), кроме решения f, обладает другим решением $\tilde{f} \in \mathfrak{M}$. Сначала убедимся, что тогда имеет место неравенство

$$\tilde{f}(x) \leqslant \xi, \quad x \in \mathbb{R}.$$
 (40)

Обозначим через $\tilde{c}:=\sup_{x\in\mathbb{R}}\tilde{f}(x)<+\infty$. Тогда из (1) с учетом условий I), a), b), A), B) и обозначений (3) имеем

$$\tilde{f}(x) \leqslant \int_0^x V(x-t)(G(\tilde{c}) + \lambda_2)dt = \lambda_1 G(\tilde{c}) + \lambda_1 \lambda_2, \quad x \in \mathbb{R},$$

откуда следует, что

$$\tilde{c} \leqslant \lambda_1 G(\tilde{c}) + \lambda_1 \lambda_2.$$
 (41)

Заметим, что $\tilde{c} < \xi$. Действительно, в противном случае в силу того, что функция G(u)/u убывает на $(0,+\infty)$, получим

$$\frac{\lambda_1 G(\tilde{c})}{\tilde{c}} < \frac{\lambda_1 G(\xi)}{\xi}.\tag{42}$$

Однако $\lambda_1 G(\xi) = \xi - \lambda_1 \lambda_2$. Следовательно, из (42) имеем

$$\frac{\lambda_1 G(\tilde{c})}{\tilde{c}} < \frac{\xi - \lambda_1 \lambda_2}{\xi}.\tag{43}$$

C другой стороны, если использовать неравенство (41), то из (43) будем иметь

$$\frac{\tilde{c} - \lambda_1 \lambda_2}{\tilde{c}} < \frac{\xi - \lambda_1 \lambda_2}{\xi}$$

или, что то же самое,

$$(\tilde{c} - \xi)\lambda_1\lambda_2 < 0.$$

Последнее неравенство невозможно. Следовательно, оценка (40) доказана.

Используя (40) и применяя индукцию по n, легко убедиться в достоверности следующих неравенств:

$$\tilde{f}(x) \leqslant f_n(x), \quad n = 0, 1, 2, \dots, x \in \mathbb{R}.$$
 (44)

В (44), устремляя число n к бесконечности, приходим к неравенству

$$\tilde{f}(x) \leqslant f(x), \quad x \in \mathbb{R}.$$
 (45)

Так как $f(x) \leq \xi$, $x \in \mathbb{R}$, из (1) и соотношения $\xi = \lambda_1 G(\xi) + \lambda_1 \lambda_2$ сразу следует, что

$$f(x) \leqslant \xi \mu(x), \quad x \in \mathbb{R}.$$
 (46)

Поскольку $\tilde{f} \in \mathfrak{M}$, существует число $\tilde{\varepsilon} \in (0, \xi)$ такое, что

$$\tilde{f}(x) \geqslant \tilde{\varepsilon}\mu(x), \quad x \in \mathbb{R}.$$
 (47)

Полагая $\tilde{\sigma} := \tilde{\varepsilon}/\xi$ и учитывая (46) и (47), получим

$$\tilde{f}(x) \geqslant \tilde{\sigma}\xi\mu(x) \geqslant \tilde{\sigma}f(x), \quad x \in \mathbb{R}.$$
 (48)

Итак, в силу (45) и (48) мы получили следующую двустороннюю оценку:

$$\tilde{\sigma}f(x) \leqslant \tilde{f}(x) \leqslant f(x), \quad x \in \mathbb{R},$$
 (49)

где $\tilde{\sigma}:=\tilde{\varepsilon}/\xi\in(0,1)$. Далее, совершая рассуждения, как при доказательстве равномерной сходимости последовательных приближений (4), из (49) получаем, что существуют константы $C^* > 0$ и $k_* \in (0,1)$ такие, что

$$0 \le f(x) - \tilde{f}(x) \le C^* k_*^n, \quad n = 1, 2, \dots, \ x \in \mathbb{R}.$$
 (50)

В (50), устремив $n \to \infty$, получаем, что $f(x) = \tilde{f}(x)$, $x \in \mathbb{R}$. Таким образом, теорема полностью доказана.

Приведем примеры функций μ , V, w и G, удовлетворяющих, всем условиям доказанных теорем. Сперва приведем примеры для функций μ и w:

$$\mu_{1}) \ \mu(x) = \frac{1-\varepsilon_{0}}{2} \operatorname{th} x + \frac{1+\varepsilon_{0}}{2}, \ x \in \mathbb{R}, \ \varepsilon_{0} \in (0,1);$$

$$\mu_{2}) \ \mu(x) = \begin{cases} \varepsilon_{0} + \varepsilon_{1}e^{x}, & \text{при } x \in (-\infty,0), \\ 1-(1-(\varepsilon_{0}+\varepsilon_{1}))e^{-x}, & \text{при } x \in [0,+\infty), \\ x \in \mathbb{R}, \end{cases}$$

$$\text{где } \varepsilon_{0} \in (0,1), \ \varepsilon_{1} \in (\varepsilon_{0},1) - \text{произвольные числа};$$

$$w_{1}) \ w(x) = \operatorname{th} x + 2, \ x \in \mathbb{R};$$

$$w_2$$
) $w(x) = \begin{cases} e^x, & x \in (-\infty, 0), \\ 2 - e^{-x}, & x \in [0, +\infty). \end{cases}$

Теперь приведем примеры вида функции V:

 $V_1) \ V(x) = \int_a^b e^{-xs} dB(s), \ x \in [0, +\infty),$ где B(s) — возрастающая непрерывная функция на [a, b], $0 < a < b \leqslant +\infty$, причем

$$\int_{a}^{b} \frac{dB(s)}{s} < +\infty;$$

 V_2) $V(x) = de^{-x^2}$, $x \in [0, +\infty)$, d > 0—числовой параметр.

Наконец, приведем конкретные примеры для нелинейности G:

 $g_1) \ G(u) = u^{\alpha}, \ u \in [0, +\infty), \ \alpha \in (0, 1)$ —числовой параметр; $g_2) \ G(u) = \gamma (1 - e^{-u^{\alpha}}), \ u \in [0, +\infty), \ \gamma > 1, \ \alpha \in (0, 1)$ —числовые параметры.

Следует отметить, что для примеров g_1) и g_2) в качестве отображения φ можно выбрать функцию $\varphi(\sigma) = \sigma^{\alpha}, \ \sigma \in [0, 1], \ \alpha \in (0, 1).$

Заключение. В статье исследовано нелинейное интегральное уравнение Гаммерштейна-Вольтерра на всей прямой. Доказаны теоремы существования и единственности неотрицательного непрерывного и ограниченного решения (см. Теоремы 1 и 3). Установлена равномерная сходимость соответствующих последовательных приближений. Исследована интегральная асимптотика построенного решения (см. Теорему 2) и приведены конкретные примеры ядра и нелинейности удовлетворяющих всем ограничениям доказанных результатов

Конкурирующие интересы. Заявляем, что в отношении авторства и публикации этой статьи конфликта интересов не имеем.

Авторский вклад и ответственность. Все авторы принимали участие в разработке концепции статьи и в написании рукописи. Авторы несут полную ответственность за предоставление окончательной рукописи в печать. Окончательная версия рукописи была одобрена всеми авторами.

Финансирование. Исследование первого автора выполнено при финансовой поддержке Комитета по науке РА в рамках научного проекта № 23RL−1A027.

Благодарность. Авторы выражают благодарность рецензентам за полезные замечания.

Библиографический список

- 1. Неймарк Ю. И. О допустимости линеаризации при исследовании устойчивости // Докл. AH CCCP, 1959. Т. 127, № 5. С. 961–964.
- 2. Bellman R., Cooke K. L. Differential-Difference Equations / Mathematics in Science and Engineering. vol. 6. New York, London: Academic Press, 1963. xvi+462 pp.
- 3. Нахушев А. М. Уравнения математической биологии. М.: Высш. шк., 1995. 301 с. EDN: PDBBNB.
- 4. Хачатрян Х. А., Терджян Ц. Э., Броян М. Ф. Однопараметрическое семейство суммируемых решений одной системы нелинейных интегральных уравнений типа Гаммерштейна-Вольтерры в закритическом случае // Диффер. уравн., 2016. Т. 52, № 8. С. 1075–1081. EDN: WHVDVP. DOI: https://doi.org/10.1134/S0374064116080094.
- 5. Хачатрян Х. А., Терджян Ц. Э., Броян М. Ф. О разрешимости одной системы нелинейных интегральных уравнений типа Гаммерштейна—Вольтерра в критическом случае // Владикавк. матем. журн., 2016. Т. 18, № 4. С. 71–79. EDN: XVSSLD. DOI: https://doi.org/10.23671/VNC.2016.4.5996.
- 6. Хачатрян X. А., Григорян С. А. О нетривиальной разрешимости одного нелинейного интегрального уравнения типа Гаммерштейна—Вольтерра // Владикавк. матем. эксури., 2012. Т. 14, № 2. С. 57–66. EDN: OYFBBT. DOI: https://doi.org/10.23671/VNC. 2012.14.10964.
- 7. Азизян Э. О., Хачатрян Х. А. Однопараметрическое семейство положительных решений для одного класса дискретных нелинейных уравнений Гаммерштейна—Вольтерра // Уфимск. матем. эсурн., 2016. Т. 8, № 1. С. 15—21. EDN: VOXKQF.
- 8. Асхабов С. Н. Интегральное уравнение Вольтерра со степенной нелинейностью // *Че-бышевский сб.*, 2022. Т. 23, № 5. С. 6–19. EDN: EIGULQ. DOI: https://doi.org/10.22405/2226-8383-2022-23-5-6-19.
- 9. Асхабов С. Н. Интегро-дифференциальное уравнение Вольтерра произвольного порядка со степенной нелинейностью // Чебышевский сб., 2023. Т. 24, № 4. С. 85–103. EDN: JXSSJW. DOI: https://doi.org/10.22405/2226-8383-2023-24-4-85-103.
- 10. Асхабов С. Н. Система неоднородных интегральных уравнений типа свертки со степенной нелинейностью // *Владикавк. матем. экурп.*, 2022. Т. 24, № 1. С. 5–14. EDN: UOCUKL. DOI: https://doi.org/10.46698/w9450-6663-7209-q.
- 11. Rudin W. Functional Analysis / International Series in Pure and Applied Mathematics. New York, NY: McGraw-Hill, 1991. xviii+424 pp.
- 12. Хачатрян А. Х., Хачатрян Х. А., Петросян А. С. Вопросы существования, отсутствия и единственности решения одного класса нелинейных интегральных уравнений на всей прямой с оператором типа Гаммерштейна—Стилтьеса // Тр. ИММ УрО РАН, 2024. Т. 30, № 1. С. 249—269. EDN: ECMMEF. DOI: https://doi.org/10.21538/0134-4889-2024-30-1-249-269.

Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki

J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 2025, vol. 29, no. 2, pp. 256-273

ISSN: 2310-7081 (online), 1991-8615 (print)

dinttps://doi.org/10.14498/vsgtu2150

MSC: 45G10, 47H30

On the constructive solvability of a nonlinear Volterra integral equation on the entire real line

Kh. A. Khachatryan¹, A. H. Muradyan²

¹ Yerevan State University,

1, A. Manukyan str., Yerevan, 0025, Armenia.

² Armenian State University of Economics, 128, Nalbandyan str., Yerevan, 0025, Armenia.

Abstract

A nonlinear integral equation with a Hammerstein–Volterra operator on the entire real line is considered. A constructive existence theorem for a bounded and continuous solution is established. Moreover, the uniform convergence of successive approximations to the solution is proved, with the error decreasing at a geometric rate. The integral asymptotics of the constructed solution are then investigated. Additionally, the uniqueness of the solution is demonstrated within a specific subclass of bounded and continuous functions. Finally, specific examples of equations and nonlinearities satisfying all the conditions of the theorems are provided.

Keywords: concavity, uniform convergence, iterations, monotonicity, bounded solution, limit of solution.

Received: 24th January, 2025 / Revised: 8th April, 2025 / Accepted: 19th May, 2025 / First online: 27th June, 2025

Competing interests. We declare that we have no conflicts of interest in the authorship and publication of this article.

Differential Equations and Mathematical Physics Research Article

© The Author(s), 2025

© Samara State Technical University, 2025 (Compilation, Design, and Layout)

Please cite this article in press as:

Khachatryan Kh. A., Muradyan A. H. On the constructive solvability of a nonlinear Volterra integral equation on the entire real line, *Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki* [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2025, vol. 29, no. 2, pp. 256–273. EDN: FBMSFM. DOI: 10.14498/vsgtu2150 (In Russian).

Authors' Details:

Khachatur A. Khachatryan ♠ № https://orcid.org/0000-0002-4835-943X

Dr. Phys. & Math. Sci., Professor; Head of the Dept., Dept. of Theory of Functions and Differential Equations; e-mail: khachatur.khachatur.khachatur.mam@ysu.am

Aram H. Muradyan https://orcid.org/0009-0007-3529-9283

Cand. Phys. & Math. Sci., Associate Professor; Associate Professor; Dept of Higher Mathematics; e-mail: muradyan.aram@asue.am

Authors' Responsibilities. The authors are absolutely responsible for submit the final manuscript to print. Each author has approved the final version of manuscript.

Funding. This research was supported by the Science Committee of the Republic of Armenia, scientific project no. 23RL-1A027.

Acknowledgments. The authors are grateful to the reviewers for their valuable comments and suggestions.

References

- 1. Neimark Yu. I. On the admissibility of linearization in stability research, *Dokl. Akad. Nauk SSSR*, 1959, vol. 127, no. 5, pp. 961–964 (In Russian).
- 2. Bellman R., Cooke K. L. *Differential-Difference Equations*, Mathematics in Science and Engineering, vol. 6. New York, London, Academic Press, 1963, xvi+462 pp.
- 3. Nakhushev A. M. *Uravneniya matematicheskoy biologii* [Equations of Mathematical Biology]. Moscow, Vyssh. shk., 1995, 301 pp. (In Russian). EDN: PDBBNB.
- 4. Khachatryan Kh. A., Terdzyan Ts. E., Broyan M. F. One-parameter family of integrable solutions of a system of nonlinear integral equations of the Hammerstein-Volterra type in the supercritical case, *Differ. Equ.*, 2016, vol. 52, no. 8, pp. 1036-1042. EDN: XNRJXJ. DOI: https://doi.org/10.1134/S0012266116080097.
- Khachatryan Kh. A., Terjyan Ts. E., Broyan M. F. On solvability of a Hammerstein-Voltera type nonlinear system of integral equations in critical case, *Vladikavkaz. Mat. Zh.*, 2016, vol. 18, no. 4, pp. 71–79 (In Russian). EDN: XVSSLD. DOI: https://doi.org/10.23671/VNC. 2016.4.5996.
- Khachatryan Kh. A., Grigoryan S. A. On nontrivial solvability of a nonlinear Hammerstein–Volterra type integral equation, Vladikavkaz. Mat. Zh., 2012, vol. 14, no. 2, pp. 57–66 (In Russian). EDN: 0YFBBT. DOI: https://doi.org/10.23671/VNC.2012.14.10964.
- 7. Azizyan E. O., Khachatryan Kh. A. One-parametric family of positive solutions for a class of nonlinear discrete Hammerstein-Volterra equations, *Ufa Math. J.*, 2016, vol. 8, no. 1, pp. 13–19. EDN: XLIBFL. DOI: https://doi.org/10.13108/2016-8-1-13.
- 8. Askhabov S. N. Volterra integral equation with power nonlinearity, *Chebyshevskii Sb.*, 2022, vol. 23, no. 5, pp. 6–19 (In Russian). EDN: EIGULQ. DOI: https://doi.org/10.22405/2226-8383-2022-23-5-6-19.
- 9. Askhabov S. N. Volterra integro-differential equation of arbitrary order with power non-linearity, *Chebyshevskii Sb.*, 2023, vol. 24, no. 4, pp. 85–103 (In Russian). EDN: JXSSJW. DOI: https://doi.org/10.22405/2226-8383-2023-24-4-85-103.
- Askhabov S. N. A system of inhomogeneous integral equations of convolution type with power nonlinearity, Sib. Math. J., 2023, vol. 64, no. 3, pp. 691-698. EDN: EXKOSK. DOI: https://doi.org/10.1134/S0037446623030163.
- 11. Rudin W. Functional Analysis, International Series in Pure and Applied Mathematics. New York, NY, McGraw-Hill, 1991, xviii+424 pp.
- 12. Khachatryan A. Kh., Khachatryan Kh. A., Petrosyan H. S. Questions of existence, absence, and uniqueness of a solution to one class of nonlinear integral equations on the whole line with an operator of Hammerstein–Stieltjes type, *Trudy Inst. Mat. i Mekh. UrO RAN*, 2024, vol. 30, no. 1, pp. 249–269 (In Russian). EDN: ECMMEF. DOI: https://doi.org/10.21538/0134-4889-2024-30-1-249-269.