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Abstract

This study considers an approach to construct an approximate solver
for the non-classical Riemann problem. In this regime, the solution of the
discontinuity decay problem may contain composite waves, including both
classical and non-classical compression and rarefaction waves. The algorithm
for finding the exact solution is based on a geometric representation of shock
and rarefaction waves on isentropic curves and involves the repeated use of
iterative methods to solve local tasks, such as identifying inflection points on
isentropes, points of tangency between a straight line and a curve, intersec-
tion points, and others. A significant challenge when using iterative methods
is the need to specify initial guesses that ensure method convergence. The
approach proposed in this work is based on tabulating exact solutions for
Riemann problems over a wide range of initial state parameters. These tab-
ulated data are then used to find an approximate solution without requiring
iterative methods. The approximate solver was successfully applied to solve
two one-dimensional discontinuity decay problems in the non-classical do-
main.
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Ko r o l e v a M. R.

1. Introduction. Exact solutions to the fluid dynamics equations are impor-
tant for several reasons. First, they provide a convenient tool for the theoretical
study of liquid and gas flow characteristics [1–3]. Furthermore, exact solutions are
widely used for verifying new numerical models developed to approximate solu-
tions to fluid dynamics problems [4,5]. They are particularly relevant for complex
and generally underexplored physical regimes, such as those in non-classical gas
dynamics.

Non-classical gas dynamics is a field of fluid mechanics that studies the dy-
namic behavior of substances not obeying the ideal gas law. Such substances
include, for example, dense gases, supercritical compressible fluids, and certain
two-phase media. These gases, referred to as real gases, are described by spe-
cial equations of state and are characterized by thermodynamic conditions near
the saturation curve in the region where the fundamental derivative 𝐺 is nega-
tive [6–8]:

𝐺(𝑝, 𝑣) =
𝑣3

2𝑐2

(︁𝜕2𝑝
𝜕𝑣2

)︁
𝑠
,

where 𝑝 is pressure, 𝑣 is specific volume, and 𝑐 =
√︀

−𝑣2(𝜕𝑝/𝜕𝑣)𝑠 is the speed of
sound evaluated along an isentrope 𝑠 = const.

The region with 𝐺 < 0 is termed the inversion zone. In Fig. 1, the inversion
zone is highlighted in gray on the (𝑝–𝑣) diagram. In this region, the wave structure
of the Riemann problem solution is non-trivial, involving unusual phenomena such
as rarefaction shocks and smooth compression fans [9,10]. These can also combine
to form complex composite waves known as non-classical waves. The emergence
of non-classical waves is related to the convexity of the isentropes on the (𝑝–𝑣)
diagram and the relative position of the contact discontinuity with respect to the
initial states in the Riemann problem.

To find the exact solution to the Riemann problem in the inversion zone,
a complex geometric algorithm proposed in [7] can be applied. This algorithm
requires solving a series of local problems: (a) finding the inflection points of the
isentropes, (b) constructing the tangent lines at the curve points, (c) determining
the intersection points of a curve with a secant line, and (d) solving a nonlinear
system of equations. This approach is justified for a simple test problem. However,

Figure 1. (𝑝–𝑣) diagram close to the critical point; the inversion zone (𝐺 < 0) is shaded in gray
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Approximate solution to the Riemann problem in non-classical gas dynamics

it becomes impractical for larger-scale applications, even in one dimension. The
local problems listed above are typically solved iteratively using Newton’s method,
which is highly sensitive to the initial approximation, particularly in the inversion
region [11].

In this study, a method for constructing an approximate Riemann solver for
non-classical gas dynamics in the inversion region is proposed. It is based on the
exact solution of the Riemann problem but is less computationally intensive while
still capturing the essential features of the non-classical solution.

2. Geometric Interpretation of the Riemann Problem Solution. Let
us consider the Riemann problem for the Euler equations governing the motion
of a compressible inviscid non-heat-conducting gas. To construct the solution,
the specific volume 𝑣, the velocity 𝑢, and the specific entropy 𝑠 are used as the
unknown variables. By introducing the definitions

𝑊 =

⎛⎝𝑣𝑢
𝑠

⎞⎠ , 𝐴(𝑊 ) =

⎛⎜⎝ 𝑢 −𝑣 0

𝑣
(︁
𝜕𝑝
𝜕𝑣

)︁
𝑠

𝑢 𝑣
(︁
𝜕𝑝
𝜕𝑠

)︁
𝑣

0 0 𝑢

⎞⎟⎠ ,

the governing gasdynamic equations can be written as follows:

𝜕𝑊

𝜕𝑡
+𝐴(𝑊 )

𝜕𝑊

𝜕𝑥
= 0. (1)

The system of equations (1) is closed by an equation of state in the general
form 𝑒 = 𝑒(𝑠, 𝑣), from which the gas pressure 𝑝(𝑠, 𝑣) can be determined.

The initial data contain a discontinuity separating two states with uniform
distributions on the left and right sides:

𝑊 (𝑥, 0) =

{︃
𝑊Left, for 𝑥 < 0,

𝑊Right, for 𝑥 > 0,

where 𝑊Left = (𝑝𝐿, 𝑣𝐿, 𝑢𝐿) and 𝑊Right = (𝑝𝑅, 𝑣𝑅, 𝑢𝑅). To find the solution, the
intermediate state 𝑊imdt = (𝑝*, 𝑣*𝐿, 𝑣

*
𝑅, 𝑢

*) that connects 𝑊Left and 𝑊Right must
be determined.

In classical gas dynamics, the Riemann problem has a self-similar solution
comprising a system of simple waves—shock waves (𝑠) or rarefaction waves (𝑓)—
connected by a contact discontinuity (𝑐𝑑). In general, a set of possible solutions, or
solution patterns, can be denoted as follows: 𝑠–𝑠, 𝑠–𝑓 , 𝑓–𝑠, 𝑓–𝑓 . The wave struc-
ture of the solution depends on the intermediate state (𝑝*, 𝑣*𝐿, 𝑣

*
𝑅, 𝑢

*), obtained
by determining the intersection between the one-parameter family of states con-
nected to the left state (𝑝𝐿, 𝑣𝐿) and the one-parameter family associated with the
right state (𝑝𝑅, 𝑣𝑅).

One of the solutions is shown in Fig. 2. It includes, from left to right, a rarefac-
tion wave, a contact discontinuity, and a shock wave. The solution is characterized
by an 𝑓–𝑠 pattern, sketched in Fig. 2, b. This corresponds to Sod’s shock tube
problem with the initial data:

Sod:

{︃
𝑣𝐿 = 1, 𝑝𝐿 = 1, 𝑢𝐿 = 0,

𝑣𝑅 = 8, 𝑝𝑅 = 0.1, 𝑢𝑅 = 0.
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In Fig. 2, a, two isentropes are shown on the (𝑝–𝑣) diagram: the lower one
corresponds to the gas parameters on the left of the discontinuity, and the upper
one to the gas parameters on the right. The line denoted as 𝑠𝑅𝐻 is the Hugoniot
adiabat. The red composite line connecting these two states represents the solution
to the Riemann problem. Since 𝑝𝐿 > 𝑝*, the solution on the left side contains
a rarefaction wave. On the right side, 𝑝𝑅 < 𝑝*; therefore, a shock wave forms
there. These waves are connected by a contact discontinuity. The pressure, specific
volume, and velocity distributions are shown in Fig. 2, c, d, and e, respectively.

The pressure value in the intermediate state 𝑝* is defined by the equation
𝐹 (𝑝) = 0 [11]. This equation arises from a combination of the Rankine–Hugoniot
relations and the condition of constant entropy. For an ideal gas, 𝐹 (𝑝) can be
expressed in terms of pressure and velocity variables, without the specific volume
variable, as follows:

𝐹 (𝑝) = 𝑓(𝑝, 𝑝𝐿, 𝑣𝐿) + 𝑓(𝑝, 𝑝𝑅, 𝑣𝑅)− (𝑢𝐿 − 𝑢𝑅) = 0. (2)

The functions 𝑓(𝑝, 𝑝𝐿, 𝑣𝐿) and 𝑓(𝑝, 𝑝𝑅, 𝑣𝑅) in (2) are defined as:

𝑓(𝑝, 𝑝𝐻 , 𝑣𝐻) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(𝑝− 𝑝𝐻)𝑣𝐻

𝑐𝐻

√︂
𝛾 + 1

2𝛾

𝑝

𝑝𝐻
+
𝛾 − 1

2𝛾

, for 𝑝 > 𝑝𝐻 ,

2

𝛾 − 1
𝑐𝐻

[︂(︁ 𝑝

𝑝𝐻

)︁ 𝛾−1
2𝛾 − 1

]︂
, for 𝑝 < 𝑝𝐻 ,

where the subscript “𝐻” denotes “𝐿” for the left wave and “𝑅” for the right wave,

a b

c d e
Figure 2. Schematic of the Riemann problem solution for the fan–shock case in classical gas
dynamics: a) (𝑝–𝑣) plane; b) characteristic field; c) pressure distribution; d) specific volume

distribution; e) velocity distribution
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𝛾 is the specific heat ratio, and 𝑐𝐻 is the speed of sound, calculated from the
equation of state.

In non-classical gas dynamics, the isentropes corresponding to the left and
right initial states can exhibit concave portions. The algorithm proposed in [7] is
based on a geometric procedure that requires constructing the convex envelope
for a set of points in the (𝑝–𝑣) plane. This construction can be viewed as a method
to connect two states in the (𝑝–𝑣) plane by combining different paths—portions
of the flux curve and straight-line segments. The result is a composite curve with
no convexity changes. The shape of this composite curve between the two states
determines the resulting wave type. This algorithm is physically justified by the
Oleinik entropy condition [12]. Constructing the solution requires determining the
following elements for each isentrope:

1) Two inflection points: (𝑝𝑖𝐿, 𝑣
𝑖
𝐿)1,2 and (𝑝𝑖𝑅, 𝑣

𝑖
𝑅)1,2;

2) Two absolute envelope points: (𝑝𝑒𝐿, 𝑣
𝑒
𝐿)1,2 and (𝑝𝑒𝑅, 𝑣

𝑒
𝑅)1,2;

3) Points where a straight line is tangent to the isentrope: (𝑝𝑡𝐿, 𝑣
𝑡
𝐿), (𝑝

𝑡
𝑅, 𝑣

𝑡
𝑅),

and (𝑝𝑡𝑣, 𝑣
𝑡
𝑣);

4) Points where a straight line intersects the isentrope: (𝑝inter, 𝑣inter).
In this case, the solution can include both classical waves (rarefaction fans

and shock waves) and non-classical waves (compression fans (𝐹 ) and rarefaction
shocks (𝑆)). Moreover, the solution may involve composite waves, such as a non-
classical rarefaction shock combined with a classical rarefaction fan from the left
state, and a classical shock combined with a non-classical compression fan and a
classical shock from the right state (e.g., an 𝑆𝑓–𝑠𝐹𝑠 pattern).

Let us consider two test examples with non-classical wave solutions for the
Riemann problem, with the following initial conditions:

𝑓–𝐹 case:

{︃
𝑣𝐿 = 0.677, 𝑝𝐿 = 1.405, 𝑢𝐿 = −0.1365,

𝑣𝑅 = 1.451, 𝑝𝑅 = 1.03, 𝑢𝑅 = −0.1.
(3)

𝐹𝑠–𝑓 case:

{︃
𝑣𝐿 = 1.294, 𝑝𝐿 = 0.959, 𝑢𝐿 = 0,

𝑣𝑅 = 1.423, 𝑝𝑅 = 1.055, 𝑢𝑅 = 0.
(4)

The general solution for the initial state (3) has an 𝑓–𝐹 pattern. Its left part
is a classical rarefaction fan. Since the right state lies within the inversion zone
on the (𝑝–𝑣) diagram, the solution includes a non-classical wave—a compression
fan. A schematic of the solution for the initial conditions (3) from the right state
is shown in Fig. 3, a. The coordinate 𝑣*𝑅 of the intermediate state point is located
between the inflection points 𝑣𝑖1𝑅 and 𝑣𝑖2𝑅 of the right isentrope. Thus, a non-
classical compression fan wave forms, highlighted in red in Fig. 3.

The general solution for the initial state (4) has an 𝐹𝑠–𝑓 pattern. The left
initial state also lies within the inversion zone. A schematic of the solution for the
initial conditions (4) from the left state is shown in Fig. 3, b. The coordinate 𝑣*𝐿
of the intermediate state point is located ahead of the inflection points 𝑣𝑖1𝐿 and
𝑣𝑖2𝐿 of the left isentrope. However, a straight line is required to connect 𝑣*𝐿 with
the non-classical rarefaction shock originating from the left state.

The pressure and gas velocity for intermediate state of the solution are deter-
mined from the nonlinear system of two equations imposing that both pressure
and velocity assume the same values across the contact discontinuity.

507



Ko r o l e v a M. R.

a b
Figure 3. Schematic of the Riemann problem solution for non-classical gas dynamics: a) 𝐹 -wave
pattern from the right initial state for the 𝑓–𝐹 case; b) 𝐹𝑠-wave pattern from the left initial

state for the 𝐹𝑠–𝑓 case

{︃
𝑝(𝑣*𝐿, 𝑝𝐿, 𝑣𝐿) = 𝑝(𝑣*𝑅, 𝑝𝑅, 𝑣𝑅),

𝑢(𝑣*𝐿, 𝑝𝐿, 𝑣𝐿, 𝑢𝐿) = 𝑝(𝑣*𝑅, 𝑝𝑅, 𝑣𝑅, 𝑢𝑅).
(5)

The solution of the equation system (5) is determined by the relations for
pressure and velocity as functions of 𝑣 for different wave structures. It is neces-
sary to use expressions for the sound speed, gas velocity, and pressure for the
rarefaction wave, along with the Hugoniot relations for shock waves [8]. These
equations depend on the equation of state. For a van der Waals gas [13], the
general expressions can be written as follows:

– Pressure for the rarefaction wave:

𝑄(𝑣, 𝑝𝐻 , 𝑣𝐻) =
(︁
𝑝𝐻 +

1

𝑣2𝐻

)︁(︁𝑣𝐻 − 1

𝑣 − 1

)︁1+𝛿
− 1

𝑣2
; (6)

– Pressure for the shock wave:

𝑝𝑅𝐻(𝑣, 𝑝𝐻 , 𝑣𝐻) =
𝑒𝐻 − 𝑝𝐻

𝑣−𝑣𝐻
2 +

(︀
1− 1

𝛿

)︀
1
𝑣 + 1

𝛿𝑣2(︀
1
2 + 1

𝛿

)︀
𝑣 −

(︀
1
2𝑣𝐻 + 1

𝛿

)︀ . (7)

In (6) and (7), 𝛿 = 𝑅/𝑐𝑣 is a dimensionless parameter, where 𝑐𝑣 is the specific
heat at constant volume and 𝑅 is the gas constant of the substance. There exists a
boundary value 𝛿nonclas = 0.06; substances with 𝛿 below this value exhibit behavior
within the inversion zone. The problems (3) and (4) have been formulated for
𝛿 = 0.008, and the relations (6) and (7) have been used to define the functions
in (5):

– For shock waves:⎧⎪⎨⎪⎩
𝑝(𝑣, 𝑝𝐻 , 𝑣𝐻) = 𝑝𝑅𝐻(𝑣, 𝑝𝐻 , 𝑣𝐻) = 𝑝𝑅𝐻 ,

𝑢(𝑣, 𝑝𝐻 , 𝑣𝐻 , 𝑢𝐻) = 𝑢𝐻 ∓ 𝑧 ·
√︀

(𝑣𝐻 − 𝑣)(𝑝𝑅𝐻 − 𝑝𝐻),

𝑧 = sign(𝑣𝐻 − 𝑣);

(8)
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– For rarefaction fans:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑝(𝑣, 𝑝𝐻 , 𝑣𝐻) = 𝑄(𝑣, 𝑝𝐻 , 𝑣𝐻),

𝑢(𝑣, 𝑝𝐻 , 𝑣𝐻 , 𝑢𝐻) = 𝑢𝐻 ±
∫︁ 𝑣

𝑣𝐻

√︀
−𝑄′(𝑣, 𝑝𝐻 , 𝑣𝐻) 𝑑𝑣,

𝑄′(𝑣, 𝑝𝐻 , 𝑣𝐻) =
𝜕𝑄(𝑣, 𝑝𝐻 , 𝑣𝐻)

𝜕𝑣
;

(9)

– For non-classical double composite waves (𝑓𝑠 construction):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑝(𝑣, 𝑝𝐻 , 𝑣𝐻) = 𝑝𝑅𝐻(𝑣, 𝑝𝑡𝑣, 𝑣
𝑡
𝑣) = 𝑝𝑅𝐻

𝑣 ,

𝑝𝑡𝑣 = 𝑄(𝑣𝑡𝑣, 𝑝𝐻 , 𝑣𝐻),

𝑢(𝑣, 𝑝𝐻 , 𝑣𝐻 , 𝑢𝐻) = 𝑢𝐻 ±
∫︁ 𝑣𝑡𝑣

𝑣𝐻

√︀
−𝑄′(𝑣, 𝑝𝐻 , 𝑣𝐻) 𝑑𝑣 −

− 𝑧 ·
√︀
(𝑣𝑡𝑣 − 𝑣)(𝑝𝑅𝐻

𝑡 − 𝑝𝑡𝑣),

𝑧 = sign(𝑣𝑡𝑣 − 𝑣).

(10)

Similar expressions can be derived for all possible wave patterns in accordance
with the wave solution identification algorithm.

3. Constructing the Solution for Composite Waves. Constructing the
solution for composite waves requires considering all possible wave patterns over
a wide range of the variable 𝑣 in the system (5). To build the solution, specific
volume-dependent Boolean variables must be defined:

1) A procedure for selecting the correct wave associated with the left initial
state begins by determining the location of the left point on the isentrope. If
the wave starts with a segment along the isentrope, the first logical variable
is true (PrL = true). Otherwise, PrL = false.

2) To identify a classical rarefaction fan or a non-classical compression fan,
the local coordinate 𝑣 must be positioned relative to the inflection points.
If the segment (𝑣𝐿, 𝑣) does not contain any inflection point, the second
logical variable is true (PrInf = true).

3) To define the non-classical 𝑓𝑆 and 𝑓𝑆𝑓 patterns, the location of 𝑣 relative
to the absolute envelope points must be identified. If the segment (𝑣𝐿, 𝑣)
contains both absolute envelope points, the third logical variable is false
(PrAbs = false).

4) To identify the non-classical 𝑆 and 𝑆𝑓 patterns, the position of the isen-
trope curve relative to the secant line through (𝑣𝐿, 𝑝𝐿) and (𝑣, 𝑝(𝑠𝐿, 𝑣))
must be determined. If the segment lies above the curve, the fourth logical
variable is true (PrSecUp = true).

5) To define a shock wave (𝑠) or double non-classical 𝑆𝐹 and 𝑠𝐹𝑠 patterns, the
position of the isentrope curve relative to the secant line through (𝑣𝐿, 𝑝𝐿)
and (𝑣, 𝑝(𝑠𝐿, 𝑣)) must be determined. If the segment lies below the curve,
the fifth logical variable is true (PrSecDn = true).

6) To identify the non-classical 𝑆𝐹 and 𝑠𝐹𝑠 patterns, the local coordinate 𝑣
must be positioned relative to the inflection points. If the segment (𝑣, 𝑣𝑡𝐿)
does not contain any inflection point, the sixth logical variable is true
(PrInfT = true).
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These Boolean variables are not used simultaneously, but the logical struc-
ture of the algorithm cannot be constructed without all of them. The DRAKON
flowchart [14] of the algorithm for wave solution identification is presented in
Fig. 4. It is designed for the left initial state when 𝑣𝐿 < 𝑣. The DRAKON flowchart
for the left initial state when 𝑣𝐿 > 𝑣 is presented in Fig. 5.

The input data for this algorithm are the initial state parameters (𝑝𝐿, 𝑣𝐿) and
the variable 𝑣. Depending on the current value of 𝑣, one of five different wave
patterns from the left side must be selected. A similar procedure applies to the
right wave solution. The presented algorithm is used to define the complicated
functions in the system (5).

Figure 4. DRAKON flowchart of the algorithm for wave solution identification (𝑣𝐿 < 𝑣)

Figure 5. DRAKON flowchart of the algorithm for wave solution identification (𝑣𝐿 > 𝑣)
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4. Approximate Solution. The system (5) can be solved by any iterative
method; for example, Newton’s method can be applied. The existence and unique-
ness of the solution to the Riemann problem have been established for classical
gas dynamics [15, 16], but this has not been rigorously formulated for the non-
classical regime. Moreover, iterative methods are also required to solve various
nonlinear equations for determining:

– inflection points;
– absolute envelope points;
– points of tangency between a straight line and an isentrope curve;
– points of intersection between a straight line and an isentrope curve.
In the field of non-classical gas dynamics, these functions, as well as those

in (5), are composite, and the problem of specifying a suitable initial guess for
iterative methods arises. This issue becomes particularly acute at the junctions of
waves in a composite solution, where iterative methods often diverge. Numerical
experiments have shown that for solving the aforementioned problems, the bisec-
tion method is more robust. However, even using the bisection method, in some
cases, “manual” control of the solution search procedure is required. The applica-
tion of iterative methods to the Riemann problem in non-classical gas dynamics is
justified for simple test problems. However, it becomes impractical for larger-scale
applications, such as when used as a building block within the Godunov method.
Extending the algorithm to a three-dimensional statement on a non-orthogonal
grid results in a physically justified but computationally inefficient algorithm from
a practical implementation perspective.

Given the above situation, an approximate Riemann solver appears to be a
viable alternative. The approach proposed in the present study to construct an
approximate Riemann solver is based on approximating the complex functions in
(5) without relying on specific initial states. Four different approaches have been
employed to build approximate solvers within the Godunov method framework
in [17]: linearization of the nonlinear equations, cubic interpolation, local approx-
imation of the equation of state using a two-term equation of state [11, 17], and
a tabulation method. Analysis of the obtained results demonstrated the effec-
tiveness of two approaches: the local approximation method and the tabulation
method. In this work, the tabulation method is applied to solve problems (3) and
(4).

The key challenge with composite wave solutions is the inability to express
pressure analytically as a function of gas velocity, as is achieved for the ideal
gas in equation (2). The main idea of the proposed approach is to replace the
governing continuous functions of the solution with their discrete representations
at interpolation nodes. These discrete functions can then be used to solve the
Riemann problem both in isolation, for test problems, and as part of the Godunov
method for more complex problems.

For this purpose, three interpolation meshes are defined:⎧⎪⎨⎪⎩
𝑝𝑖𝐻 = 𝑝𝑖−1

𝐻 +Δ𝑝𝑖, 𝑖 = 1, 𝑁𝑝, 𝑝0𝐻 = 𝑝min
𝐻 , 𝑝

𝑁𝑝

𝐻 = 𝑝max
𝐻 ,

𝑣𝑗𝐻 = 𝑣𝑗−1
𝐻 +Δ𝑣𝑗 , 𝑗 = 1, 𝑁𝑣, 𝑣0𝐻 = 𝑣min

𝐻 , 𝑣𝑁𝑣
𝐻 = 𝑣max

𝐻 ,

𝑣𝑘 = 𝑣𝑘−1 +Δ𝑣𝑘, 𝑘 = 1, 𝑁, 𝑣0 = 𝑣min, 𝑣𝑁 = 𝑣max.

(11)

Here, Δ𝑝𝑖, Δ𝑣𝑗 , and Δ𝑣𝑘 are the step sizes of the interpolation mesh for the
initial pressure, initial specific volume, and specific volume variable, respectively;
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𝑁𝑝, 𝑁𝑣, and 𝑁 are the numbers of nodes in the interpolation mesh.
For each point on these meshes, the discrete values 𝑝𝑖,𝑗 = 𝑝(𝑣, 𝑝𝑖𝐻 , 𝑣

𝑗
𝐻) and

Δ𝑢𝑖,𝑗 = Δ𝑢(𝑣, 𝑝𝑖𝐻 , 𝑣
𝑗
𝐻) are computed at all points 𝑣𝑘 using equations (8), (9), and

(10). Suppose the initial state (𝑝𝐿, 𝑣𝐿) of a given problem falls within the intervals
𝑝𝑖−1
𝐻 < 𝑝𝐿 < 𝑝𝑖𝐻 and 𝑣𝑗−1

𝐻 < 𝑣𝐿 < 𝑣𝑗𝐻 . The values of the functions 𝑝(𝑣, 𝑝𝐿, 𝑣𝐿) and
Δ𝑢(𝑣, 𝑝𝐿, 𝑣𝐿, 𝑢𝐿) at the points 𝑣𝑘 can be obtained using bilinear interpolation.
In Fig. 6, five lines in the (𝑝–𝑣) plane are shown. The dashed lines represent the
pressure functions defined on the interpolation meshes (11), and the solid line
represents the pressure function obtained by bilinear interpolation for the given
values (𝑝𝐿, 𝑣𝐿). The velocity function is determined similarly.

In general, the solution to the Riemann problem is based on the functions
𝑝1(𝑣) = 𝑝(𝑣, 𝑝𝐿, 𝑣𝐿), 𝑝2(𝑣) = 𝑝(𝑣, 𝑝𝑅, 𝑣𝑅) and 𝑢1(𝑣) = 𝑢𝐿−Δ𝑢(𝑣, 𝑝𝐿, 𝑣𝐿), 𝑢2(𝑣) =
𝑢𝑅 + Δ𝑢(𝑣, 𝑝𝑅, 𝑣𝑅), defined on the set of values 𝑣𝑘. These functions satisfy the
system (5). A graphical representation of the Riemann problem solution is shown
in Fig. 7.

To find the solution, two values 𝑣*𝐿 and 𝑣*𝑅 must be determined such that the
following equalities hold:

𝑝1(𝑣
*
𝐿) = 𝑝2(𝑣

*
𝑅),

𝑢1(𝑣
*
𝐿) = 𝑢2(𝑣

*
𝑅).

Since the functions under consideration are discrete, a non-iterative procedure
can be employed to find the solution. For this purpose, it is necessary to construct
the discrete function 𝑃 (𝑢) = 𝑝*1(𝑢)−𝑝*2(𝑢) on the common interval of the variable
𝑢, thereby eliminating the variable 𝑣 from the relations. This is feasible for every
pair of discrete functions:

𝑝1(𝑣), 𝑢1(𝑣) ⇒ 𝑝*1(𝑢),

𝑝2(𝑣), 𝑢2(𝑣) ⇒ 𝑝*2(𝑢),

as they are defined on the same interpolation points.
In this case, solving the system (5) becomes unnecessary. The solution can

be directly determined on the interval [𝑢𝑖−1, 𝑢𝑖] where the function 𝑃 (𝑢) changes

Figure 6. Bilinear interpolation for the solu-
tion function Figure 7. Solution construction
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sign. Assuming a linear variation of 𝑃 (𝑢) between the mesh nodes 𝑢𝑖−1 and 𝑢𝑖,
the gas velocity at the contact discontinuity is found using the formula:

𝑢* = 𝑢𝑖 − 𝑃 (𝑢𝑖)
𝑢𝑖 − 𝑢𝑖−1

𝑃 (𝑢𝑖)− 𝑃 (𝑢𝑖−1)
.

Knowing the velocity 𝑢*, the pressure at the contact discontinuity can be
calculated from either of the two functions—𝑝*1(𝑢) or 𝑝*2(𝑢). Then, the specific
volume values 𝑣*𝐿 and 𝑣*𝑅 are uniquely determined from the corresponding tabu-
lated functions.

The described approach has been applied to approximately solve the test prob-
lems (3) and (4). A comparison of the exact solution of these problems with the
approximate one is given in Table 1. The maximum absolute deviation of the
approximate solution from the exact one does not exceed 0.06.

Table 1
Comparison of exact and approximate solutions for the test problems

Parameter
Solution

Exact Approximate
𝑓–𝐹 case

𝑝* 1.09759974969995 1.09763372318514
𝑢* −0.159809461904289 −0.159716582534566
𝑣*𝐿 0.903652908743441 0.903792866716065
𝑣*𝑅 1.16005152731677 1.15985386107073

𝐹𝑠–𝑓 case

𝑝* 0.991790383560825 0.991866646053808
𝑢* −0.122048393289314 −0.121922929652812
𝑣*𝐿 0.83579973857623 0.835319156613279
𝑣*𝑅 1.65865734349481 1.65845846192419

5. Conclusion. In the present paper, an approach to construct an approxi-
mate solver for the Riemann problem in the non-classical regime of gas dynamics
is proposed. It is based on utilizing tabulated discrete data obtained from the
exact solutions of the discontinuity decay problem on an interpolation mesh. This
approach eliminates the need for iterative methods to find an approximate solu-
tion and allows for the correct identification of physical quantities in composite
wave solutions.
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Приближенное решение задачи Римана
для неклассической газовой динамики

М. Р. Королева
Удмуртский федеральный исследовательский центр
Уральского отделения Российской академии наук,
Россия, 426067, Ижевск, ул. Т. Барамзиной, 34.

Аннотация

Рассмотрен подход к построению приближенного решателя для не-
классической задачи Римана. Решение задачи о распаде разрыва в обла-
сти неклассической газовой динамики может содержать составные вол-
ны, включающие чередующиеся волны сжатия и разрежения, в том чис-
ле неклассические. Алгоритм нахождения точного решения строится на
основе геометрического представления ударных волн и волн разрежения
на изэнтропах и предполагает многократное использование итерацион-
ных методов для решения локальных задач, таких как нахождение точек
перегиба на изэнтропах, точек касания прямой и кривой и т.д. При реше-
нии таких задач итерационными методами возникает проблема поиска
начальных приближений, обеспечивающих сходимость метода. Предла-
гаемый в данной работе подход основан на табулировании точных реше-
ний задач Римана в широком диапазоне параметров начального состо-
яния. Эти данные затем используются для нахождения приближенного
решения без применения итерационных методов. Приближенный реша-
тель был успешно применен для решения двух одномерных модельных
задач о распаде разрыва в неклассической области.

Ключевые слова: задача Римана, неклассическая газовая динамика,
точное решение, приближенное решение, геометрическая интерпретация
решения, табулирование данных.
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