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Abstract

This paper presents a new exact solution describing the inhomogeneous
distribution of velocity and pressure fields in the problem of isothermal
steady shear flow of a viscous incompressible fluid. The obtained exact solu-
tions remain valid when the kinematic viscosity is replaced by the turbulent
viscosity in the Navier—Stokes equations.

It is shown that in the class of functions that are linear in some coor-
dinates, a joint inhomogeneous solution for the velocity field can have only
a specific structure—with constant spatial accelerations. In this case, either
only two specific accelerations vanish, or all four spatial accelerations equal
zero (homogeneous velocity field, Ekman solution). No other joint solutions
exist in the specified class.

The case of two nonzero spatial accelerations is analyzed in detail, and
the complete exact solution is provided. To understand the main properties
of this solution, the corresponding boundary value problem is investigated
and comprehensive illustrative material is presented.
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Inhomogeneous Ekman flow

Introduction. The description of natural fluid flows is based on the equations
of geophysical hydrodynamics, which are derived from the standard Navier—Stokes
equations by accounting for planetary rotation [1-3|. The study of fluid flows was
initiated by Ekman in his seminal paper [4]. Ekman investigated flows not on
a sphere but on a tangent plane attached at a specific point (a region of study
within the World Ocean). Thus, in developing the theory of oceanic and sea cur-
rents, Ekman introduced the idea of locally neglecting the planet’s sphericity.
This simplification allowed the vast majority of subsequent studies to use only
one Coriolis parameter (the first Coriolis parameter) to describe rotation. This
approach in geophysical hydrodynamics became known as the “primitive equa-
tions” of ocean theory [5-8].

In a rectangular Cartesian coordinate system, Ekman derived equations of
motion for a rotating fluid by considering the balance of inertial forces and viscous
friction forces, supplemented by the continuity (incompressibility) equation [4].
The fluid motions considered in his article belong to the class of shear flows and
are described by an overdetermined system of partial differential equations.

It should be noted that the classification of Ekman flow types varies depending
on the frame of reference. Ekman’s pioneering work [4] considered isobaric flow
in a rotating coordinate system. In other words, the pressure force is balanced
by the centrifugal force. If the fluid flow is considered in a stationary (inertial)
coordinate system, such motion is not isobaric. Gradient Ekman flows (Ekman-
Couette—Poiseuille flows) were first considered in the monograph [9].

When constructing an exact solution for the equations of the rotating ocean,
Ekman proposed an exact solution for the overdetermined system, describing a
homogeneous shear flow; that is, the velocity field structure is determined solely by
the vertical (transverse) coordinate. In this case, the continuity (incompressibil-
ity) equation was automatically satisfied. Consequently, it became a “redundant”
equation in the overdetermined system of partial differential equations. The Ek-
man exact solution now serves as a starting point for investigating World Ocean
currents. Initially, it was used to model fluid motion in an infinite ocean. Grad-
ually, perspectives shifted, and a transition occurred from modeling the ocean as
having infinite depth to a layer of finite thickness [8-21].

Studies in [18,19] initiated research on modifying the Ekman exact solution by
incorporating two or three Coriolis parameters in the representation of the angular
velocity vector to describe inhomogeneous shear flows. An exact solution was
constructed for the overdetermined Navier—Stokes system within the Lin—Sidorov—
Aristov class. Note that the type of exact solution describing an inhomogeneous
Ekman-type flow is determined by the combination of Coriolis parameters and
the curvature of the pressure field (which leads to a change in the type of the
differential equation).

Despite the increasing number of modifications and generalizations of the Ek-
man exact solution [23-29], specialists in geophysical hydrodynamics perceive a
deficit of research on boundary value problems for the mathematical and physical
modeling of World Ocean currents. This paper analyzes an exact solution to a
boundary value problem describing an inhomogeneous Ekman flow with a single
(first) Coriolis parameter.
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1. Problem Statement. We consider an isothermal steady flow of a rotating
viscous incompressible fluid. The rotation is characterized by a constant angular
velocity €2. We assume that the vector € has only one nonzero component (the
single Coriolis parameter approximation) [5,6,12]:

1
2= (0,0, /).

The system of Navier—Stokes equations, taking into account the inertial force (in
the rotating coordinate system), takes the form [10,12]:

(V-V)V+2QxV =—VP+vAV,
V-V =0. (1)

Here V = (Vz(:c,y,z),%(x,y,z),Vz(x,y, z)) is the velocity vector; P(x,y, z) is
the reduced pressure normalized by density, obtained from the true pressure p by
subtracting the centrifugal component £(€2xr, Q2 xr) and accounting for potential
body forces; v is the kinematic viscosity of the fluid; V, A are the Hamiltonian
and Laplace operators, respectively.

In coordinate form, system (1) for inhomogeneous shear flows

V = (er(maya Z)a Vy(maya Z)’ 0)

becomes:

oV, oV, oP 0V, 0*V, 0%V,
V‘”’”aerVyay_ny__aerV(ax? T T oz )

ov, v, oP (9%, 0%V, O,

2y 'y - _ 2
anx+Vy8y AL 8y+y<8x2+8y2+822 ’ @)
oP v, oV,
9. o Ty

The resulting system (2) is quadratically nonlinear and overdetermined. To
resolve the overdeterminacy, we consider a velocity field of the following form |10,
18,19

Ve=U(z) +u(z)y, V,=V(2). (3)

Functions of the form (3) identically satisfy the last equation of system (2)—
the incompressibility equation. The components on the right-hand sides of expres-
sions (3) can nonlinearly depend on the vertical (transverse) coordinate z.

The solution for the pressure field is also sought in the form of a complete
linear function of the horizontal (longitudinal) coordinates x and y:

P = PO + Plfl,‘ =+ ng. (4)

Note that the coefficients of the longitudinal coordinates in formula (4) (unlike
expressions (3)) do not depend on the vertical coordinate z due to the penultimate
equation of system (2), meaning they are constants. The values of the pressure
field components are determined from the boundary conditions or from a point
in the flow region where the pressure is known.
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In [10,18,19], it was shown that the overdetermined system (2) is solvable in
the class

Ve =U(2) +ui(2)x +u2(2)y, Vy,=V(z)+vi(z)r+ va(2)y,
2

2
X
P = Py(z) + Pi(2) + Pa(2)y + Pra(2)ay + Pu(2) 5 + PQQ(z)%,

()

which generalizes the class (3), (4).

Note that the attractiveness of the class (3) (besides identically satisfying the
incompressibility equation in system (2)) also lies in the fact that the class (3)
reduces to the Lin—-Sidorov—Aristov class (5) by a coordinate transformation (ro-
tation):

T — xcosy + ysiny ot T, y— —xsiny 4 ycosy ot 7,
or (due to the invertibility of the rotation transformation)
r=7Tcosy —ysiny, y =Tsiny + ycosy.
Then
Vi = Vycostp + Vysingy = (U + uy) cosp + Vsing =

= (U + u(Tsiny +ycosz/))) cosp + Vsiny =
= Ucost + Vsint 4+ usin ¢ cos YT + u cos? ¥ = U + UIT + Uay;
Vy = —Vysing + Vycosp = —(U + uy) siny) + V cosyp =
= —(U+4u(@siny + ycosy)) sing + Vcosyp =
= —Usinty + V cos ) — usin® T — usiny cos ¢y = V + 01T + 2.
Next, we substitute the class (3), (4) into the first two equations of system (2)

(the last two equations of this system are automatically satisfied by the choice of
the class (3), (4)):

O(U(2) + u(z)y) O(U(z) +u(z)y)

(U(2) +u(z)y) +V(2) —fV(z) =

R 3
0P+ P+ Pay) |
+ V<32 (U?% b u(z)y) | (U o] - u(=)y) | & (U(zg + u(2)y) )
(U(2) + u(z)y)m(;f) + V(z)mg;z) LU +ulz)y) =
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Computing the necessary partial derivatives, we arrive at the following system
of equations:

uV — fV =-P +vU" +u"y),
fU+uy) =—Py+vV".

Here, the prime denotes the derivative with respect to the vertical coordinate z.
Applying the method of undetermined coefficients to the equations of the last
system, we obtain the following equivalent system:

(u—f)V==-P+vU0", v =0,

6

fU=-P,+vV" u=0. (©)

The fulfillment of the last equation in system (6) automatically ensures the

fulfillment of its second equation. Furthermore, the class (3) can now describe
only a homogeneous velocity field:

Ve =U(2), V,=V(2), (7)

which corresponds to the classical Ekman solution for a rotating coordinate sys-
tem [4].

Expressions (7) are fully consistent with the conclusions presented in [10] for
the class (5). According to the theorem proved in [10], system (2) is solvable in
the class (5) only if the spatial accelerations are constant and determined by the
expressions:

Py u2:P11—P22—fa _Pu—Pyu+fa UQZE
[ 2f 2f ' f

For the considered form (4) of the pressure field, equalities (8) lead to the
expressions:

Uy = s V1 (8)

« «
5, V1 = 5 (9)

Within the representation (3) for the velocity field of the flow, the last two
equalities in system (9) can be satisfied only when o = 0, i.e., only in the case of
a homogeneous velocity field.

up =v2 =0, u=—

2. Construction of an Exact Solution. We now construct an inhomoge-
neous exact solution of system (2) for the velocity field, taking into account the
pressure field structure (4). We reiterate that the class (4) is fully consistent with
the third equation (the pressure equation) of the considered system (2).

In this case, the spatial accelerations are described by dependencies (9), where
the parameter « is a nonzero solution of the following equation (see [10], formula
(2.9)):

22422 =0 = aff(a+2f)=0,

i.e., a« = —2f. Therefore, solution (9) takes the form:
ur=v2=0, uw=f v=-f (10)
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This means that the class (5), with expressions (4), describes a velocity field of
the form:
Ve=U(2)+ fy, Vy,=V(z)— fz. (11)

The inhomogeneous solution (11) for the rotating coordinate system generalizes
the classical Ekman solution, in which the velocity field in the rotating system
was assumed to be homogeneous [4]. The solution (11) in the fixed coordinate
system becomes:

i j k
V=>V,V,,00 = V4+Qxr=(V,V,,0+[0 0 f/2|=
T Yy z
= (anvyao) + (_%5%7()) = (U(Z) +fy,V(Z) _f‘/EvO) + (_%7.]“27'%.’ ) =
= () + 30,V () — 5f2,0).

Using the previously obtained result for the class (5) (see [10], system (3.1)):
Z/U” — Uu1 — (UQ — f)V = Pl,
vV 4+ Vu — (’01 + f)V =P,

and substituting expressions (10) into this system, we obtain:
vU" —U-0—(f — f)V = Py,
wW'+V-0—(=f+ )V = B

This results in the following decoupled system of equations:
I/U”:P1, I/V”:PQ.

Integrating each equation independently, we find the general solution:

P, P,

U= —122+clz+02, V= —222+032+C4. (12)
2v 2v

Consequently, the velocity field in the moving coordinate system is described by

the following pair of functions:

Ve=U+uy = iz'z—i—clz—i—cz—i-fy: iz'Q—i—clz—l—cQ—i—j"y,
2v 2v

2 (13)

Vy=V +vz= 2—5272—{—032—{—04—]“1’.

The obtained formulas (12) (and accordingly, expressions (13)) represent an

exact solution to the overdetermined system to which system (2) reduces within

the class (4)-(5) of hydrodynamic fields that are linear in part of the coordinates.

Both background velocities (12) define a linear combination of independent power

functions of different orders. This solution structure potentially opens up a wide

scope for various variations in the flow profile structure and for investigating
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velocity field stratification. We will subsequently consider possible fluid flow pro-
files using the example of a classical boundary value problem for steady flows in
geophysical hydrodynamics. Thus, the obtained exact solution (13) describes a
gradient solid-body rotation of the fluid.

3. Selection of Boundary Conditions. Consider the flow of a solid-body
rotating fluid in an infinitely extended horizontal layer of constant thickness h. As-
sume that the lower boundary z = 0 is solid and non-deformable. Let us examine
the behavior of solution (13) at this boundary:

P,
VQC(O):Q—;-02+cl-0+62+fy:02+fy,

2 (14
Vy(O):2—5-02+03~0+C4—fx204—fx.

Expressions (14) clearly demonstrate that the no-slip condition for the shear
flow (U(z),V(z),0) can be satisfied at the lower boundary. The physical meaning
of the exact solution (13), according to formulas (14), corresponds to a shear flow
over a rotating substrate (an infinitely extended disk or plate). Therefore, when
illustrating the obtained solution (13), we impose the no-slip condition for the
background velocities of the shear flow (12) as the first boundary condition:

U)=0, V(0)=0,
which gives:
Cy) = Cq = 0. (15)

Based on similar considerations, the second boundary condition is also applied
not to the full velocity field (13), but to its homogeneous components (12). We
assume that the distribution of background velocities is specified at the upper
rotating boundary of the layer z = h:

U(h) =Wcosyp, V(h)=Wsine.

This represents a translational wind velocity at the upper boundary of the rotating
fluid layer.

Taking into account the previously obtained expressions (12) and (15), we
obtain the system of two conditions:

P P
U(h) = 2*1}‘2 +eth=Wecosp, V(h)= 2*2’12 +csh =Wsine.
v v

Solving this system yields:

P w P
€1 = —-cosp — 2—;h, c3 = %singo— 2—Zh. (16)
Consequently, the solution to the boundary value problem takes the form:
P P;
U= z[—lz—i- (Kcoscp — ih)},
2v h 2v (17)
v [Pz +(Ws' P2h)}
=z|—z —ginp — == ;
2v h o))
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Vi :z[%z—l— (%COSCP— %h)] + fv,

Vy = z[%z—l— (% sin ¢ — %h)} — fax.

(18)

The obtained solution (18) represents a pair of functions, each being a super-
position of a linear combination of linearly independent power functions of the
vertical coordinate z and an inhomogeneous field that is linear in the longitudinal
coordinate x (or y, respectively).

4. Results and Discussion. The structure of the velocity vector projections
allows us to obtain profiles of varying curvature by modifying the fluid character-
istics and boundary condition parameters.

The coincidence of stagnation points for both velocities (17) is possible under
two conditions:

0<— . Y <h for PL#£0
1
(i.e.,0<h—2w,‘f¥<h} and
Py 2vW cos w . Py _
ﬁ(h*T)+<%SIH¢*5h>—O

(i.e., tanp = P/ Py).

Figures 1 and 2 show the profiles (17) of the homogeneous components U and
V of the velocity field, calculated using the same parameter values that define
the boundary value problem (15), (16). For the graphical illustration of the ob-
tained exact solution in Figs. 1-11, the following flow parameters were used: f =
1079571, v =10"%m?/s, W = —0.15m/s, p = 7/2.01, P, = —0.03x 10~® Pa/m,
P,=2P,h=1m.

The substantially nonlinear character of the velocity vector projections deter-
mines the nonlinear (spiral) nature of the hodograph profile in the cross-section
x =y =0 (Fig. 3).

Changes in the hodograph when considering different cross-sections are illus-
trated in Figs. 4 and 5.

Similar nonlinear dependencies are also observed when constructing the spe-
cific kinetic energy profile (Fig. 6).

Changes in the specific kinetic energy profile across different cross-sections are
illustrated in Figs. 7 and 8.

Figures 9-11 show the level curves of specific kinetic energy in various cross-
sections (both along the longitudinal coordinates x and y, and along the transverse
coordinate z).

The inhomogeneity of the level curve shapes presented in Figs. 9-11 is ex-
plained by the asymmetry of the exact solution (13) (taking into account boundary
conditions (15) and (16)) with respect to the coordinates of the chosen Cartesian
system.
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Conclusion. This paper presents a new exact solution for inhomogeneous
distributions of velocity and pressure fields in the problem of isothermal steady
shear flow of a viscous incompressible fluid. The derived exact solutions remain
valid when turbulent viscosity is substituted for kinematic viscosity in the Navier—
Stokes equations.

Our analysis demonstrates that within the class of functions that are linear
in some coordinates, joint inhomogeneous solutions for the velocity field must
exhibit specific structural characteristics with constant spatial accelerations. The
solution space is restricted to two distinct cases: either only two specific accel-
erations vanish, or all four spatial accelerations equal zero (corresponding to the
homogeneous velocity field in the Ekman solution). No other joint solutions exist
within the specified function class.

We provide a detailed analysis of the case with two nonzero spatial accel-
erations, presenting the complete exact solution. To elucidate the fundamental
properties of this solution, we examine the corresponding boundary value prob-
lem and provide comprehensive graphical illustrations.
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IIpencraBiierno HOBOE TOYHOE PEIIeHNE, OMUCHIBAIOINIEE HEOTHOPOIHOE PAC-
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