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Abstract

The paper considers the necessity of constructing exact solutions to the
equations of dynamics of a viscous fluid stratified in terms of several physical
characteristics, with density and viscosity taken as an example. The applica-
tion of the families of exact solutions constructed for stratified fluids to mod-
eling various technological processes dealing with moving viscous fluid media
is discussed. Based on Lin’s exact solutions, linear in some coordinates, a
class of exact solutions to the Navier—Stokes equations is constructed for
viscous multilayer media in a mass force field. The class is then extended to
the case of the arbitrary relation of kinetic force fields to all three Cartesian
coordinates and time. The issues of overdetermination and solvability of the
reduced (based on the families under study) Navier—Stokes equation system
supplemented by the incompressibility equation are discussed. The case of
isobaric shearing flow outside the mass force field is considered in detail as
an illustration. Three approaches to obtaining consistency conditions for the
overdetermined reduced system of motion equations are discussed, and their
interrelation is shown.
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Introduction. When exact solutions to the Navier—Stokes equations are
sought, the main attention is given to homogeneous incompressible fluids with
a constant density [1-12|. These theoretical results describe a very wide class of
hydrodynamic phenomena for various time and spatial scales and enable viscome-
ters and chemical engineering devices to be designed [13-18]. The construction of
mathematical models of film flows [19-23|, the analysis of processes in chemical
engineering devices [19,24,25], and the solution of problems in astrophysics, aero-
physics and geophysical hydrodynamics are based on the use of stratified fluids
[26-32].

Multilayer structures in isothermal flows of viscous incompressible fluids arise
from density stratification. Fluid incompressibility means that density is a La-
grangian invariant [32-35|. In other words, the characteristics of velocity field
distribution vary in time and space. The most essential variation of fluid flow at a
constant temperature manifests itself with respect to the vertical (transverse) co-
ordinate. Density stratification along the vertical coordinate affects the dynamics
of large structures and the energy exchange between vortices of different magni-
tudes, and it generates the appearance of internal waves [32,36-39]. Note that the
presence of density gradients with respect to the horizontal (longitudinal) coordi-
nates induces various convections [1,4-7]. Undoubtedly, the density stratification
is determined by a continuous time and coordinate function. However, this depen-
dence may prove unknown, or its value may be obtained rather approximately,
and this may eventually lead to studying ill-defined problems of hydrodynamics
and mathematical physics. In this case, researchers use models of a step density
function; i.e., density and, strictly speaking, the coefficient of dynamic viscosity
are specified for each fluid flow layer. This approach is applied, e.g., to study the
instability of large-scale circulation. The study of hydrodynamic instability is in
this case associated with the substitution of continuous stratification by multilayer
models, two-layer ones being the most widespread [36,40-44]. Another example
of using two-layer and three-layer fluids is their application to the description of
equatorial flows [31,32,45,46]. The discussion found in [47-58] is based on the
numerical integration of motion equations.

Thus, it seems urgent to construct a class of exact solutions to the Navier—
Stokes problems for describing stratified fluid flows with a step density function.
This paper constructs several families of exact solutions.

1. Problem statement. We consider a flowing fluid consisting of n layers
(Fig. 1). Each i-th layer is characterized by density p;, dynamic viscosity 7;, and
thickness h;. The motion equations for each layer can then be written in the
invariant form as

dv @ . Y s
pi=g = ~VPY 4y A VO 4 FO (1)

vV =o. (2)
Here, the velocity vector V(® has the coordinates V(® = (Vgc(i), Vy(i), Vz(i)), and the
mass force vector () has the coordinates F(1) = (Féz), Fz,(,z), F Z(Z)). The differential
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Figure 1. Schematic flow of a stratified fluid

operator & = % + (V(i) - V). Note that the equation system (1), (2) is closed

since the number of equations in it coincides with the number of required functions
which here are the projections of the velocity vector V® and pressure P(). Note
that the function P is introduced for the convenience of the analytical and
numerical integration of the system (1), (2), which consists of the Navier—Stokes
equation (1) and the incompressibility equation (2).

2. The families of exact solutions for describing three-dimensional
flows. To study the properties of stratified fluid flows, it is necessary to have a
store of exact solutions to the Navier—Stokes equations satisfying the incompress-
ibility equation. The exact solution to the system (1), (2) will be sought within
the Lin-Sidorov—Aristov family [1|. For each layer (i = 1,...,n) the velocity field
is representable as

VO =UD (2, 4) +ul? (2, )7 + ul? (2, 1)y,

VO =vO(zt) + o (2,002 + 0 (2, 1)y, (3)

VO = w®(z,1).

z

Note that Egs. (3) can be treated as a Taylor series expansion of the velocity
vector components, restricted to only linear terms. '
The structure of Eq. (1) suggests that the pressure P and some projections

of the mass force vector F() needs to be treated as quadratic forms of the same
spatial coordinates,

PO = P (z,6) + PP (z,0)z + PV (2, t)y +
i z? i i §
+ POz, g + PO (z, )y + PO (2, t)%,

FO = A0 (z,6) + AV (2, )z + AY (2, 1)y,

F) = B (z,t) + B (z,t)x + B{ (2, )y,
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F = c(z,8) + O (2, )0+ O (2, )y +

y2

2
z : :
+ O} (2,8) 5 + O3 (. ey + O (2. ) -
Substitute the representations (3), (4) in turns into each scalar equation of the
system (1), (2), starting with the projection of the Navier-Stokes equation (1)

onto the Ox axis:

Ve oV v ot
(i) Ve (1) Ve @V’ _
o (e H VO S oy TV o)
opP® 92 92 92 ,
= _ i =\ 4 p@
oz +’7’(ax2+a + )V ELD.

Substituting the expressions for velocity, pressure, and mass forces into the latter
equation, we obtain

0 (i) )a(U(i)Jrugi)erugz‘)y)

[B(U(Z) + uﬁ% + u; )y)

pi ot + (U9 + uta +uyy ox *
i (@) () i (@) (@)
(V(l)—i-v()x—i-vé)y)a(U()—i_ul T+ uy’y) +w(i)8(U()+ul T + Uy y)} _
oy 0z
AP+ PYa+ Py + PYE + PRay + PYY) .\
N ox

82 82 62 7 7 [ 7 % 4

+m<a s+ 3y 2+W>(U()+u()x+u() )+ (AD + A% 4 Ay,

Then, by calculating the partial derivatives involved in this equation, we can
simplify the latter relationship as follows:

) + (U9 + 0l +ufy)ul) +

ou®  oul”  oul)
pi[( o T o T
o o N O MO0
() 4 () @ N, 0 @) (U Uy Uy _
+ (VO +ole+ o))+ (S + e+ Sy
92U @) N a2u§1)x+ 92u (l) >+
922 | 022 R

(P4 P+ P 4
+ (AP + AWz 4+ ADy).

Note that both the left- and right-hand sides of this equation are linear forms in the
z- and y-coordinates. Taking into account that these coordinates are independent
parameters and applying the principle of undetermined coefficients, we arrive at
the following partial differential system:

oU @ ‘ 82U @
w® ) = _pl) b
) Pyt 022

oU @ )
. u () (1), ()
,02< ot +VE 0z

o e oo, @y e Y
pi( 5t + (uy )" + vy uy’ +w W)__PH + ~ + A7, (5)
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@, @ @, )

Fuy uy + vy Uy +w +AY.

8U§Z) ) 3u§z) P(') a?u(l)
o (%5 52 ) = P 0
The functions involved in the equations of system (5) depend only on the vertical
variable z and time ¢, with respect to which the differentiation is performed. In
the case of steady-state flows, system (5) becomes an ordinary differential system
preserving nonlinearity and inhomogeneity.

Acting the same way, we obtain the following consequences from the second
and third Navier-Stokes equations (1). Having substituted Egs. (3) and (4) into
these equations and calculated the corresponding derivatives, we arrive at the
following two equations:

v aul) gy
) (4) (2) (7) ()
,01[( T + Bt T+ 5 )—l— (U w4+ uy’y) vy +

+ (VO 4 v( Vo + v(l)y)vél)

ava a9 9l
(@) 1 2
tw ( 0z + 0z T 0z y)}
o2V 92l g2
072 + 022 T 022 y) *

+ (B + Bz + BYy),

= — (P + PR+ PRy) +mi(

pi(aw(z‘) N (i)aw(i)> _

w

ot 0z

I EE) ) ) = L) o e CON) < R

__< 0z + 0z T 0z v+ 0z ?—i_ 82 Y+ 0z 5>+
92w(®

. A A y>
i+ (8 + P+ Py + = Wy + )Y )
By equating the coefficients of identical powers of the variables x and y in these
equations, as well as their various nonlinear combinations, we arrive at the fol-

lowing relationships:

oV (@ LoV (@ . 921/ (@) A
. ONONRFOMONING _ _p ()
pz< ot +V +V =+ w 82’) P2 +n; 822 +B0,
RO INCNG ()%Y) o, PP (i)
(T + T 5r) =~ o+ B, (6)
o0 i ol @ 5200 i
pz( 8? (&), (8 (())2+w()82)__P2(2)+i8222 +B§),
A S Aw) P\ 920 -
. () __Y1o ) (4)
pl( a Y o ) 9. Tz TG
or” _ oo oRY _
0z Lo 0z 20
(i) (i) (i) (7)
ory —c Py —c Py, — oW
Oz 11> Oz 12> Oz 22
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Consideration of Egs. (3) and (4) in the incompressibility equation (2) results in
the following conditions:
A N ow®
A0 uf? 1 2
System (5)—(8) contains thirteen equations with respect to thirteen coefficients in
Egs. (3) and (4) for the velocity field and the pressure field in the i-th layer under
study. Thus, the reduced system (5)—(8) inherits nonlinearity and closedness from
system (1), (2).
Besides, in view of system (7), the linear and nonlinear terms in the represen-
tation of pressure in Eq. (4) can be considered unknown functions uniquely deter-
mined from the boundary condition for pressure and the boundary conditions at

~0. 8)

the layer boundaries. The constant term in Eqs. (4) (background pressure Péz)) is
determined by the integration of the first equation in system (7) after the vertical
velocity w® is found.

The formulae in system (5)—(8) determine the class of exact solutions to the
Navier—Stokes equations with the linear dependence of velocities on the spatial
coordinates x and y. These variables are often referred to as horizontal in applied
research. Recall that the pressure field (4) is a quadratic form. Exact solutions to
the Navier—Stokes equations for the velocity field quadratically dependent on two
spatial variables were presented in [59] as

2 y?
Ve = Ui(z,t) + zUa(z,t) + yUs(z,t) + §U4(z,t) + zyUs(z,t) + ?Uﬁ(Z,t),

2 2
%:VM@Q+MM@0+MM%&+%WM%@+xﬂﬁ40+%¢ﬁzm

V, =W+ xWs + yWs.

In this case, the pressure field and the mass force field are described by a polyno-
mial relationship as

2
P = Pi(z,t) + xPy(z,t) + yP3(z,t) + %P4(z,t) + zyPs(2,t) +
2 3 2 2 3
X X X
+%&@n+gﬂ@o+3%ummu%&@w+%mﬁﬁ+

{174 Z'Sy $2y2 .’L'y3 y4
— P, t —= P t — P, t — P, t P, t
+ 57 11(z,t) + 6 12(2,t) + 1 13(2,t) + 6 14(2,t) + ol 15(2,t),

112 y2
A= Al(zat) + xAZ(Z’t) + yA3(th) + ?A4(Zut) + IyAg)(Z,t) + ?AG(Z?t) +

3 2 2 3
ez, 0) + S Ag(2, ) + T Ag(z, 1) + L Aoz, ),

2 2
B:&@o+ﬁmmmw&@ﬂ+%&@w+w&@w+%&@w+
.%'3 $2 T 2 3
+ T Be(2,0) + 5 By(2,t) + “2-Bo(z, 1) + % Buo(z,),
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2 2
O = Ca(z1) + 2Ca(z 1) + yOa(z,t) + - Calz ) + ayCs (=) + - Colz, ) +

3 2 2 3
+ £C7(z,t) + @08(,2 t) + %Cg(z,t) + y—Clo(z,t) +
4 3 $2y2 3 4
—i— 011(2’ t) + 7012(2’ t) + 7013(2 t) + 7014(2’ t) —i— 015(2 t)

The equation system describing the unknown functions consists of thirty-eight
equations for the determination of thirty unknown functions [59]. Thus, there is
great arbitrariness in the construction of exact solutions to the Navier—Stokes
equations. The route of finding “excess” equations when obtaining a partial dif-
ferential system of the heat-conduction type was shown in [59].

By analogy, other solutions with an arbitrary dependence of the velocity field
on the horizontal coordinates can be constructed. System (1), (2) is linear in this
case; therefore, the following exact solution is valid:

n n n—1
V=Y Uk, Vy=> Vi, V=) Wi,
k=0 k=0 k=0

n?—n n2—n n?2—n+1 n2—n+1

A= ZAk, B = ZBk, C = Z Cp, P= Z P.

Here, the forms Uk, Vi, Wy, Ak., Bk, C}, and Py are determined by the expressions
15 . 15 .
Up = 2l Z Cilie—i (1) 2’y Vi = il Z; CiVige—i) (z:t) 2"y,
. 1 F o
Wi, = T ch (i) 2"y, Ay = 2l Z Crlih—iy (z:1) 2'y",
i=0
. 15 .
Br = ch iy () 'y T Oy = o Z;C}ici(k—i) (z:t) a'y* ",

Py = T Z CiPihiy (z:1) 2y,
=0

where C’,i is the number of combinations without repetition. Note that, if the
crawling (slow) flow of a viscous incompressible fluid is considered, the exact
solution is transformed as follows:

n n n—1
V= Us, Vy=> Vi, V=) Wi,
k=0 k=0 k=0

n+1 n+1 n+1 n+1

A=Ay, B=) By, C=> G, P=) P
k=0 k=0 k=0 k=0

9)
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3. Exact solutions for shearing flows. Let us now consider shearing flows
outside the mass force field, i.e., an important particular case of isothermal flows

of stratified fluids defined by Eqgs. (3)—(8). Assume further that Vi =0, PO =0,
F@ = 0. System (5)—(8) then becomes

Ouy @ )\ 2 JINC 0*ur
+ (D)2 4 0, D@ = o
5 922’
Q) . ‘ ‘ 2400 (®)
algt + ug® (@ 4 0,0 = ”i%7
z
0 D P00 !
agt + (D + 0Dy D = Vi88012 ’ v
2
vy i 02 00,
5 u2( )7)1( )+ (UQ( )) =l 922
w1 + v = 0;
@ v
agt + UDy O 4 vy = ViaaUZ’
2
V) v o

U0y, 0 4 @@ —

ot 022
Here v; = n;/p; is the kinematic viscosity of the i-th layer.

These flows are of interest due to the fact that the equations of system (10),
(11) enable one to study the balance of convective and viscous forces. This is why
incompressible fluid flows under constant pressure arouse great interest when they
occur in large currents [1].

The slope of isobaric surfaces relative to isopotential (sea-level) surfaces gener-
ates gradient flows in the global ocean. In a rotating fluid, the Coriolis force makes
the gradient flow deviate from the direction of gradient pressure, the direction of
this deviation being different in different hemispheres. Thus, we have something
like the geostrophic wind studied in meteorology [60]|. The study of these flows is
necessitated by practical considerations.

Note that changing to shearing flows, on the one hand, facilitates the problem
due to a reduced number of unknown functions to be determined and, on the other
hand, complicates it since the system of constitutive relations (10), (11) becomes
overdetermined. The overdetermination lies in system (10). If the latter system is
solved, i.e. if a nontrivial simultaneous solution is found, a single integration of
the equations in system (11) will yield the homogeneous components of Eq. (1)
for the velocity field.

Let us now discuss three ways of deriving consistency conditions for construct-
ing exact solutions to the Navier-Stokes equations (1) and the incompressibility
equation (2).

Approach I is the most general [2|. It allows us to obtain consistency conditions
without reference to the solution structure (without using Egs. (3) and (4). We
write the Navier—Stokes equation (1) for isobaric shearing flows in the coordinate
form as

oV, (@ LoV (@)
z @2z
ot Ve ox

NVA 92v. @ 921 (O g2y ()
(7,) T _ Vi( x x T

+Vy a2 "o T oz ). a2
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3\/y(i) 0 a%(i) 0 avy(i) 32\/y(i) 52vy(i) 32vy(i)
; 7 N2y ; (1
o Ve o TV, i 022 " oy T o ) (13)
Equations (12) and (13) close with the continuity equation

ov.@ gy ()
Oz oy

We now differentiate Eqgs. (12) and (13) with respect to the variables x and y,
respectively, and stratify the obtained expressions. Some simple transformations
and the use of the incompressibility equation (14) result in the following relation-
ship (consistency condition):

= 0. (14)

v, ov, @ a1, oy, @
or Oy Oy Ox

Approach II to the derivation of the consistency condition for the overde-
termined system (12)—(14) is also general (i.e. not tied to the selected solution
structure) and based on the use of the stream function and Eq. (15) [2]. Let us
now consider the scalar stream function ® = w(i) (x,y,z,t) has the following
property:

. (15)

N Q) 4 o
(1) — (@) — _
Va g Vy e (16)

Note that, substituting Eqs. (16) into the incompressibility equation (14), due to
the commutativity of the derivatives with respect to the spatial variables x,y, we
arrive at a correct identity.

The expressions of Egs. (16) are also substituted into the consistency condi-
tion (15),

o (0N 9 oyl o oy 8 1 oW

Again, due to the commutativity of the derivatives, the consistency condition (15)
acquires the form of the homogeneous Monge-Ampére equation

2pD\Z  §2p(0) 920
<8:r8y) 022 oy?

Approach IIT appeals to the structure of the exact solution (3). We decrease the
number of unknowns in system (10), express the spatial acceleration vél) = —ugl)
from the equation ugl) + vg) = 0 in system (10) and substitute it into the other
equations of this system. Some simple transformations result in the following

system:

(17)

() | ) G Zuy ¥
alcf)lt + (@) 4 oy Dy = ”iaailz ’
0 o 4 24, (0
8Ualt _ (UQ(Z)UI(Z) + (ul(z))z) = l/iaatg ) (18)

aUQ(l) QQUQ @) 8vl(i) o 821}1@)

= v
ot 92 ot b 022
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The comparison of the first two equations in system (18) infers that

(u1(i))2 + v Du @ = 0. (19)

The algebraic condition (19) is the consistency condition for the nontrivial solu-
tions of the overdetermined system (10). In view of Eq. (19), we rewrite Eqgs. (18)
in the operator form as

L(i)ul(i) —0= —L(i)vg(i), L(i)u2(i) =0, LWy, ) =0, (20)

Here, the linear operator L is determined by the expression L@ = 5 — Vigz
The solution of system (20) can be written as

ugi) = u®(z,t) cos 99 sin 99| ugi) = u(2,t) cos? 9, 1)
21
vgl) = —u(z,t)sin? 9, vg) = —u(z,t) cos 9 sin 9®),

The angle 9 is an arbitrary constant, and the function u( = u("(z,t) satisfies
the linear operator equation of the heat-conduction type

LWy = 0.

Note that, if the flow under study is steady-state, the linear operator L@ de-
generates simply into the operation of double differentiation with respect to the
variable z, and the function w in the general solution (21) becomes simply a z-
linear function with constant coefficients.

Additionally, note that the consistency condition (19) for class (3) can be
easily obtained from Eq. (17). To do this, it would suffice to find the form of the

stream function () for class (3) from Egs. (16),

(4 . . , ,
(9;)& =V =y 4 ugl)ac + ug)y,
Y (22)

0 ® i i J i
(;pa: = -V = —(V()—i-vpm—l—vé)y).

The independent integration of Eqgs. (22) yields the following expressions:

P = Uiy 4 :Uyug) + 4% ug) + \If(i) (z, 2),
09 = VO — aef) — 20 4 99,2,
Equating these relationships and taking into account the relation u; = —vo be-

tween the velocity gradients V, and V,, we arrive at a quadratic (in terms of the
variables x,y) representation with the coefficients determined by the z,¢ depen-
dences of an arbitrary form

2 , 2
@ =yUWy 4+ wyug) + y2 ug) — Vg — %vy) =
: 4 2 ' 2
= UWy — xyvéz) + %ug) — Vg — %’UY). (23)
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Then, Eq. (23) is substituted into the consistency condition (17),

This expression coincides with the consistency condition (19) obtained from
absolutely different reasonings. Note that the operator equations (20) are solved
by standard methods, e.g., by variable separation. After finding their solution
and satisfying the consistency condition (19), the nonlinear equations (11) are
integrated.

The class of exact solutions (3) for system (10), (11) can be extended similarly
to the results reported in [2]. It can be easily shown that the velocity field

n k
i i Y i i
Va:(): § :Ulg)(zvt)ﬁ¢ V;J():V()(Zat)
k=0

satisfies the reduced Navier—Stokes equation system and the incompressibility
equation (system (10), (11)). By rotational transformation of the coordinates and
velocities

T —xcosp—ysiny, Yy — xsinp 4+ ycosy,

VO = v cosp — Vy(i) sin ¢, Vy(i) — VD sinp + Vy(i) cos @,

we obtain a family of exact solutions of the form (9) with a nonlinear dependence
on two coordinates.

Conclusion. The paper discusses a family of exact solutions to the Navier—
Stokes equations for describing flows of stratified viscous fluids in various force
fields. The reported solutions are based on the known Lin—Sidorov—Aristov fam-
ily of exact solutions, and they enable us to take into account the difference of
the physical characteristics of the stratified fluid layers (viscosity, density) from
the geometrical ones (thickness). An algorithm for a subsequent extension of the
family to the case of arbitrary dependence of the velocity field on the horizontal
coordinates has been shown.

A particular case of the family has been separately discussed, namely, the class
of solutions for describing shearing isothermal flows of stratified fluids outside
the mass force field. It has been demonstrated that the reduced overdetermined
Navier—Stokes equation system has a simultaneous solution determined by the in-
tegration of a system of operator equations like the nonstationary heat conduction
equation.

Besides, the paper has shown the transformation undergone by the discussed
families of exact solutions when the coordinate system is rotated. This is a key
issue, e.g., in the description of stratified fluid flow in an inclined layer, where
gravitation affects the flow structure in all three orthogonal directions determined
by the magnitude of the flow surface slope.
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Tounsie pentenus ypaBHenuii HaBbe—CToKca a5 onucanms
Te4YeHUiI MHOTI'OCJIOMHBIX >KNIKOCTEl
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AHHOTaMA

Crarbsl MOCBSIIEHA PACCMOTPEHUIO BOIPOCOB HEOOXOIMMOCTHU IIOCTPOE-
HU< TOYHBIX PelleHUl 1 ypaBHEHAN TUHAMUKY BA3KOHN >KUJIKOCTH, CTPATH-
bunupoBaHHOI 110 HECKOIBKUM (DU3NIECKUM XapaKTepUCTUKaM (Ha IpuMe-
pe wiorHOCTH U BsizkocTh). OBCYKIAAI0TCs BOIIPOCHI IIPIMEHEHHs! CeMeficTB
TOYHBIX PENIeHNH, HOCTPOEHHBIX JJISI MHOI'OCJIOMHBIX KUJIKOCTe, IIpu Moze-
JINPOBAHUU PA3JIUYHBIX TEXHOJIOI'MYECKUX IIPOLECCOB, UMEIOIIUX JeJI0 C JABU-
KYIIUMUCH BSA3KUMU KUAJIKAME cpenamu. B pabore HA OCHOBE TOYHBIX De-
mennit JInHs, TUHETHBIX M0 YaCTU KOOPAWHAT, ITIOCTPOEH KJIACC TOUYHBIX pe-
mennit ypasaennit Hapre—CroOKCa J1jIsi BA3KUX MHOTOCJIONHBIX CPEJl B II0JI€
MaccoBbIX cuil. Jlasee mpom3BOaUTCsT 0OOOIEHNE TPUBEIEHHOTO KJIACCa Ha
ciy4dai IIPOU3BOJILHOM 3aBUCUMOCTU KUHETUKO-CAJIOBBIX IOJIEH OT BCeX TPex
JIEKAPTOBBIX KoopauHaT u BpeMeHu. OOCYyXKIal0TCsi BOIIPOCHI IIEPeoIpeie-
JICHHOCTU U Pa3pelInMOCTH PE/ly[IMPOBAHHON (Ha OCHOBE JIAHHBIX CeMeiiCTB)
cucrembl ypasraenuit HaBbe-CroOKCa, JOMOJTHEHHBIX YPABHEHUEM HECXKIMAE-
MocTu. B KadyecTBe HAITISJHON MIITIOCTPAINH IIOAPOOHO pa3bupaeTcs ciaydait
M300apPUIECKUX CJIBUTOBBIX TEUYEHUI BHE TOJIsI MacCOBBIX cmil. O6CyKIamoT-
Ccd TPHU IOAXOJA K IIOJIYyYEeHUIO YCJIOBHUI COBMECTHOCTH I€peOolpedesIeHHON
PeAyIUpOBaHHOIl CUCTEMBl YpaBHEHUI JBUKEHUd, IIOKA3blBaeTCs UX B3aH-
MOCBSA3b.

KumroueBbie cioBa: ypashenusi Habe—CTokca, TOUHOE DeIlleHre, MHOTO-
cJIOfHAS YKUJKOCTh, TI0JIE MAaCCOBBIX CHUJI, TEPeolpeaeeHHasd TpUBEIeHHAST
cHucTeMaA.
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