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Abstract

The paper gives a solution to one of the problems of the analytical ap-
proximate method for one class first order nonlinear differential equations
with moving singular points in the real domain. The considered equation
in the general case is not solvable in quadratures and has movable singular
points of the algebraic type. This circumstance requires the solution of a
number of mathematical problems.

Previously, the authors have solved the problem of the influence of a
moving point perturbation on the analytical approximate solution. This so-
lution was based on the classical approach and, at the same time, the area of
application of the analytic approximate solution shrank in comparison with
the area obtained in the proved theorem of existence and uniqueness of the
solution.

Therefore, the paper proposes a new research technology based on the
elements of differential calculus. This approach allows to obtain exact bound-
aries for an approximate analytical solution in the vicinity of a moving sin-
gular point.

New a priori estimates are obtained for the analytical approximate solu-
tion of the considered class of equations well in accordance with the known
ones for the common area of action. These results complement the previ-
ously obtained ones, with the scope of the analytical approximate solution
in the vicinity of the movable singular point being significantly expanded.

These estimates are consistent with the theoretical positions, as evi-
denced by the experiments carried out with a non-linear differential equa-
tion having the exact solution. A technology for optimizing a priori error
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estimates using a posteriori estimates is provided. The series with negative
fractional powers are used.
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1. Introduction

In many areas of the problem: building optimal filters [1, 2], mathematical
physics, nonlinear optics [3,4], theory of evolutionary processes [5-10], the theory
of elasticity [11], nonlinear diffusion [12], in the theory of sustainability of build-
ing structures’ elements and in the analysis of buildings’ vitality [13-15] (both
of applied nature), are solved with the help of mathematical models, which are
differential equations. The latter have a problem in finding a solution associated
with the presence of movable singular points, which refer such equations to the
class of equations in the general case not solvable in quadratures.

Significant results in solving this problem have been achieved by the Belarusian
School of Analytical Theory of Differential Equations [16,17|. A great contribution
has been made by such well-known scientists as N. P. Erugin, A. I. Yablonskii,
N. A. Lukashevich, as well as their students A. V. Chichurin, A. A. Samodurov,
etc. However, it should be noted that the results were obtained only for special
cases of solvability in quadratures of nonlinear differential equations, as in the
works [18-20]. The lack of exact methods actualizes the development of analytical
approximate methods for solving this category of nonlinear differential equations.

In the works [21, 22|, the disadvantage of the classical theorem of existence
and uniqueness of the solution of differential equations was pointed out, the elim-
ination of which develops a new approach, which made it possible to construct an
analytical approximate method for solving nonlinear differential equations. This
paper presents a solution to one of six problems of an analytical approximate
method for solving one class of nonlinear differential equations of the first order,
with a polynomial part of the fourth degree. In [23|, the problem was solved —
the study of the influence of the perturbation of moving singular points on the
analytical approximate solution. As a result, the domain of representation of the
analytical approximate solution near the approximate value of the moving sin-
gular point was obtained, which significantly decreased in comparison with the
result of the previously proved existence and uniqueness theorem for the solution
of the considered nonlinear differential equation. The investigations in this work
made it possible to significantly expand the area of application of the approxi-
mate solution near the moving singular point, due to the constructiveness of the
method for obtaining a priori estimates. The results obtained not only supplement
the studies in [23|, but also allow to obtain the exact boundaries of the applica-
tion area of the approximate solution near the approximate value of the moving
singular point. Theoretical results are illustrated by calculations characterizing
their consistency with theoretical studies and adequacy with an exact solution.
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2. Methodology

Non-linear differential equation

4
Y'(2) =) ai(z)Y'(z),
=0

where ag(x), a1 (), az(x), ag(x), as(z) are functions of a real variable in a certain
domain, with the help of some transformations [23], is reduced to the normal form.
Consider the Cauchy problem

Y'(x) = Y(2) + (@), (1)
Y(.’Bo) = YQ. (2)

The perturbed value Z* of the mobile singular point affects the structure of
the analytical approximate solution, which takes the form

N
Yn(z) = (z— 373 Cu(w— a3, Co #£0, (3)
n=0

where C), are the perturbed values of the coefficients [23].

THEOREM. Let us suppose that:
1) r(z) € C* in the area {x : |z — &*| < r1}, in which T* is the perturbed
value of the movable singular point of solving the Cauchy problem (1), (2),
p1 = const > 0;
(n) (5
M, : @)
n!
¥ < a¥;
known is the error estimate of the value T*: |x* — T*| < Az*;
AF* < 1/Y/35(1+ M + AM)3.

Then for the approzimate solution (3) of the problem (1)—(2) in the area

\)

<M,,n=0,1,2,3,..., M, = const;

QU = W
= D =

F = FNFyN F;3,
true is the estimate ~
AYN($) < Ag+ AL+ Ag+ Ag,

i which

AT*

Ng= s,
VBl a |

i case N +1 =4n,

3IN=3)/4( 0 4 1)(N+1)/4 |y — x| N/3

Ay <
! 1—3(M + 1)|z — &+[4/3
X( 1 \x—:i’*|1/3 \x—:’i’*|2/3 \x—a?*|)
N +4 N+5 N +6 N+7 )

for the variants N+ 1=4n+1, N+ 1=4n+2, N + 1 = 4n + 3, respectively:
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SN/4_1(M + 1)N/4’IIZ‘ _ :i'*‘N/S

A1 < X
R T Ve
X( 1 |z — &*[1/3 |x—gz*y2/3+9(M+1)|x—:E*|>
N +4 N+5 N+6 N+7 ’

3(N—5)/4(M + 1)(N—1)/4‘x _ j*|N/3

A1 < X
! 1—3(M + 1)z — **73
( 1 lo — 2*Y3 QM +1)|x — &**/3 9(M—|—1)|a:—5:*|)
N +4 N+5 N +6 N+7 ’

3(N76)/4(M_'_ 1)(N72)/4‘$_j*‘N/3
1—3(M + 1)z — 7*[4/3
y < 1 9|z — z*|'/3 N (M +1)|x — z*[>/? 9(M+1)|x—§;*|>
N+6 N+7 N +38 N+9

Ay

X

N

9

A 37LAZ* (1 + M + AM)N/ 4|z — z5|1/3 y
2T 1 =3(1+ M+ AM)|x — 35|43

x (14 |z — 3" + |z — 333 + o — #3]);

AM(1+4 M + AM)|z — 75|
T 1-9(1+ M+ AM)|z — 3343

o1, 1, 1,
X (ﬁ gl =B+ e~ B+ sl —ny)

under the condition

B (n+1)

AM = A% = sup| = az,
nG n!
(n) (7%
M = max ||yo|, sup ! ('ac ) , where n=0,1,2,3,...,
n n!

Fir={z:2"—ppo <z <}, Fr={x:3]—p3<z<ii},
Fs={x:%5—ps <z <Z3}, p2=min {pl,l/\4/27(M—|—1)3},
p3 = min {p1,1/€/27(M+AM+1)3},

p1 = min { p1,1/(3/9(M + AM +1)%) },
=" - AT, =14+ Az*, G={z:|r—-7"| < A"}

Proof. When estimating the error of the analytical approximate solution (3)
AYn(z) = Y () = Yn(2)| < [Y(2) = Y (2)| + |V (2) = Yn(@)],
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for the expression we shall use the elements of differential calculus [24]:

Y (z)

¥ (@) =¥ (@) < sup| =

e N[OV ()| A
AT* + —|AC,
27+ 3% |
in which G = {z : |z — | < AZ}. We denote:

,',.(TL+].)(:L;)

n:

)

r) (&
!

)Ais, M = max
n

Iyo!,SUP‘
n

9

AM =AY, = sup(
n,G

where n =0,1,2,.... Further

15)% X o

()

In this case, we have:

lz —&|(HB n=0,1,2,3;

_ ax\(n—4)/3| _
sgpl(fc ") | {|$_j;|(n—4)/3, n=45,...

and

Sup‘a?(x)

oCy,

L=/ o
a I PNCRIVEIR (ot » =0
gl B e

where 7 = 2% — AZ*, 25 = 2* + AT*. As
sup |Cp| < Cp(|Ag+AAg|, [A1 +AAL],|Az+AAy|,...) < Co(1+M+AM) =9,
G

in which A,, are the expansion coefficients of r(x) function in the regular series,
then

¥ (2) = Y(2)| <

< ALY Z‘ i g L 9* sgp](:c - j*)("—4)/3’ + Z AC* sgp’(x - ;f*)(n_l)/3’.

Taking into account

Co=Co=—1/V3,
Cl=0y=03=C,=C4=C,=Cy=C3=0Cs5=Cg =0,
AC, =|C - Cyl,

this results in
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- AF* N
S Vol -l

+A~*Z‘

‘|I‘ |(n 4/3+ZAC ’fL‘* ;\(n—l)/f&

or

- - AT*
AYn(2)=|Y(z) = Yn(2)| < ——— +

V) = V@) @)l < g
+ Z ’C’on_i,*’(nfl)/?)_i_Ai,*

n=N-+1 n=4

n—1

o = 5|77 4

+ZAC |z — &} = Ao+ A1+ Ay + Ag,

in which Ag = AZ*/(V/3]x — #1|*/3). Next, we use the estimate of the coefficients
Cy [23]:

3n—1(M+ 1)n 3n—l(M 4 l)n
Con < —————— =1y, C < ——m—— =9 ,
4n in + 3 4n 4n+1 dn + 4 in+1
3n—1(M+ 1)n 3n—l(M 4 1)n
C <{<——mF =9 , C <—————— =9 .
An+2 in+5 4n+2 4n+3 An + 6 4n+3
When N + 1 = 4n, according to the result of [23], we have
(N-3)/4 (N+1)/4|p _ 5%|N/3
A < 3 (M+1) \Nx | "
1—3(M + 1)z — &*|*/3
y ( 1 |ZL‘ 53*|1/3 |$—§j*|2/3 |$—§j*|>
N +4 N+5 N+6 N+7/

For cases N+1=4n+1, N+ 1=4n+ 2, and N + 1 = 4n + 3, respectively:

3N/471(M + 1)N/4’$ _ 56*|N/3

A1 <
! 1—3(M + 1)|z — &+[4/3
< ( L ek A el 9<M+1>\x—f*\>
N+4'  N+5 N+6 N+7 ’

3(N—5)/4(M 4 1)(]\/—1)/4‘m _ CE*‘N/g

A1 < X
! 1—3(M + 1)z — |43
X( 1 |z — 25|13 (M +1)|z — #*|?/3 9(M—|—1)|x—5c*|>
N +4 N+5 N+6 N+7 ’
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AI . S(N_G)/4(M+ 1)(]\/—2)/4‘m _ j*‘N/ii y
h 1—3(M +1)|x — z*[4/3
X( 1 mx—fﬂﬂ+9m4+nu—fwﬁ 9U4+Dm—iﬂ>
N+6 N+7 N +38 N+9 ’

Moving on to the assessment As:

-1 ~dn — 1
Ay = A5 ‘ Oplz — 35|73 = Az Oanl — 35| 4n=0/3 4
n=4 n=1
[e.9] o0
4 dn + 1
+ AT S O ale — #0742 4
n=1 n=1

(0.9}
ek 4dn + 2 ok _
+ AZ E 3 Dangslz — &5|An=1D/3,

n=1
Or given the expressions for Y4, Van+1, Fant2, Fants finally we get
AZ*(M + AM +1) "
3(1—=3(M+ AM +1)|z — 575]4/3)

x (1+ |z — @53 + |z — 33 + |z — &3)).

Ag <

Based on the estimates AC,, [23]

3" IAM(1 4+ M + AM)" 3" TAM (14 M + AM)™

|ACyn| < . |AC ] <

i

dn 4+ 3 dn 44
~ 3" IAM(14+ M+ AM)” ~ 3" TAM(1+ M+ AM)"
A n < ] A mn <
’ Cy +2| dn + 5 ‘ Ca +3’ dn+6
we get

Ag = AC,|z — a5|Un D3 =

n=4

= ZACY4TL|$ _ j§|(4n—1)/3 + ZAé4n+1|x N i,;’(4n)/3_'_
n=1

n=1

+ Z Aé4n+2|l' _ j;|(4n+1)/3 + Z Aé4n+3|$ o j§|(4n+2)/3 <
n=1 n=1
AM(1+ M + AM)|z — 3|
T 1-9(1+ M+ AM)|z — 3343

1 1 - 1 - 1 N
X (ﬁ + ol =+ Sa - B+ e - 33 )

The estimate for A; is valid in the region F} = {z : * — py < < Z*},
where po = min{p1,1/y/27(M + 1)3}. The estimate for Ay is valid in the region
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By = {z: 3} — p3 < v < #}}, where p3 = min{p;,1/¢/27(M + AM + 1)3}. And
the estimate for Ag is valid in the region 3 = {x : 75 — ps < & < T3}, where

ps = min{py,1/(3Y/27(M + AM + 1)3)}. Therefore, the estimate for AYy(z) is
valid in the region F' = F} N F> N F3, which proves the theorem. O

3. Results

Example 1. We shall consider the Cauchy problem for the equation Y'(z) =
= Y*(z) +r(z), in which Y(1) = 1, 7(x) = 0 and find an approximate solution of
the problem (1), (2), near the movable singular point. The Cauchy problem has
the exact solution Y = 1/+/4 — 3z. The radius of the vicinity of the movable sin-
gular point, given the initial conditions of the Cauchy problem, is py = 0.114432.
The perturbed value of the movable singular point is z* = 1.3334. The distur-
bance value is AZ* = 0.0001. M = 1, we shall choose the value of x = 1.2375
from the vicinity of the movable singular point, its radius is p4. The value of the
argument is considered, for which, when obtaining an estimate of the error of the
approximate solution, one can use both the results of this study and the work [23].
The calculations are presented in Table 1.

Table 1
The comparative variant of the approximate solutions’ characteristics
T Y (x) V7 () A 11 51 AY
1.2375 1.515144 1.514793 0.000351 0.00456 0.00368 0.0008

Here, Y () is the exact solution; Y7(x) is the analytical approximate solution;
A is the absolute error; A is the a priori error obtained by this theorem; AY, is
the a priori error obtained by the theorem from [23], AY is the a posteriori error.
The theorem in [23| allows solving the inverse problem of the theory of error,
determining the N value for the given accuracy of the approximate solution e.
The case ¢ = 8- 10~* results in the value N = 17. For N = 8 + 17 we obtain
the clarification of the approximate solution, which in total does not exceed the
required accuracy € = 8 - 1074

Thus, we can restrict ourselves to the value of N = 7 in the structure of the
approximate solution. Thus, we obtain the value of the error for the approximate
solution Y7(z) equal to e = 8- 10~%. Note that the a priori estimates obtained
by the theorem of this paper and the theorem from [23] have values of the same
order.

Example 2. Let us find an approximate solution to the Cauchy problem (1),
(2) with the conditions of Example 1 in the case z* = 1.33334, Az* = 0.00001.
Calculated value py = 0.114432. The magnitude of the disturbance does not
exceed the value € = 0.000050. A point is considered, the value of which falls only
under the results of this work. The calculations are presented in Table 2.

Table 2

Calculation of the characteristics for the approximate solution of the nonlinear differential
equation on the theorem

xT

Y(z)

Y7 (CC)

A

Al

"
Al

1.21901

1.428613

1.428585

0.000028

0.003564

0.000067
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Here, Y is the exact value of the equation’s solution; Y7 is the approximate
solution; A is the absolute error; A] is the a priori error obtained by the theorem,
A is the a posteriori error.

Solving the inverse problem of the theory of error, we determine the value of N
for a given accuracy of the approximate solution €. For the case ¢ = 0.67 - 1074, the
resulting value is N = 20. For N = 8-+20, we obtain a more accurate approximate
solution, which in total does not exceed the required accuracy € = 8.99 - 10~%.

Limiting in the structure of the approximate solution to the value N = 7,
we get the elzlror value for the approximate solution 177(x) equal to the value
e =0.67-107".

4. Discussion

The theorem proved in the study allows to significantly expand the area of
application of the analytical approximate solution, which was obtained due to the
constructiveness of the proof technology. The presented theoretical provisions of
this study supplement the results of [23|. Calculations in Table 1 confirm that in
the general area of validity of the proved theorem and work [23] we have values
with an error of the same order of magnitude. The research used series with
negative fractional powers.

5. Conclusion

The results of this work are the completion of research on the analytical ap-
proximate solution of a nonlinear differential equation near a movable singular
point of algebraic type in a real domain. The obtained theoretical results are
tested on model problems.
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O TOYHBIX IpaHUIAX 00JIACTHU JIJIsi AHAJIUTUYIECKOTO
MPUOJIN>KEHHOT'O PellleHnsl OJHOro KJIacCa HeJIMHEMHBIX
nuddepeHInaIbHbIX YPaBHEHUT IIEPBOT0O MOPsIKa

B OKPECTHOCTH ITPUOJINXKEHHOT0 3HAYEHUS MOABU>KHOM
0co00ii TOYKM [JIsI BeIeCTBEHHOI obJiacTu

© B. H. Opaos, O. A. Kogaavuyx

HarmonaJibHbIi MCCIIe10BaTEIbCKII
MoOCKOBCKHMIA rOCY/TapCTBEHHBII CTPOUTENIBLHbBIN YHUBEPCUTET,
Poccus, 129337, Mocksa, fpociasckoe 1mocce, 26.

AHHOTaNNA

Jano perenne oJHOM U3 3329 aHAJTATHICCKOTO IPUOINKEHHOIO METOIA
JI7IsI OJTHOTO KJIacCa HEeJUHEMHBIX AuddpepeHnua bHbIX YPAaBHEHUN IepBOTO
TIOPSIZKA C TIOABMKHBIMIA OCOOBIMI TOUKAMU B BEIIECTBEHHOI obmacTu. Pac-
cMaTpUBaeMoOe ypaBHEHHe B OOIleM cjydae He Pa3pelirMo B KBaJpaTypax
U UMEET IIOJBUYKHBIE 0COObIE TOYKH aaredpandecKoro THUIIA. JTO 00CTOSITE Ib-
CTBO TpeOyeT pelreHne psja MaTeMAaTHIeCKUX 3a1a.

Panee aBropamu Oblia pereHa 3ajada BIUSHUS BO3MYIIEHUs [TOBUK-
HOI 0CO0OI TOYKM HA aHAJUTUIECKOE MPUOJIMZKEHHOE pPelleHne. DTo perre-
HMe OCHOBBIBAJIOCH Ha KJIACCUIECKOM ITOAXOMAE W, IIPH ITOM, CYIIECTBEHHO
YMEHBIINIACH 00JIaCTh MPUMEHEHUs] AHAJUTUIECKOrO ITPUOJINKEHHOIO pe-
IIIEeHNs, TT0 CPABHEHUIO ¢ 00JIACTDHIO, MOJYIEHHON B JIOKA3aHHOI TeopeMme Cy-
IECTBOBAHUS W €IMHCTBEHHOCTH PEIICHUSI.

TlosTomMy B crarbe mpejjaraercs HOBasi TEXHOJIOIUsSI UCCJIEIOBAHUS, OC-
HOBaHHAasl Ha 3JieMeHTaX IudepeHInaaIbHOI0 UCIUCIEHUT. DTOT IOIXO.
TTO3BOJISIET TOJIYIUTh TOYHBIE TPAHUIIBI I AHAJIUTHIECKOTO MPUOIMKEHHO-
IO pelleHnsI B OKPECTHOCTHU IOJIBUKHOI 0c000i TOUKM.

Tlonyaensr HOBBIE aIPUOPHBIE OIEHKN [ AHAJUTHIECKOTO TPUOJIMKEH-
HOTO pEeIIeHns pacCMaTPUBAEMOT0 KJIacca yPaBHEHNI, XOPOIIO COIIACYIOIIH-
ecsl ¢ U3BECTHBIMU JIJIst o0Imeit obacTu meiicrsus. IIpu sToM, mpeacTaBiieH-
HbIe Pe3yJIbTATHI JIOMOJHSIIOT paHee MOJIyUYeHHbIe, CYIIeCTBEHHO PaCIIupeHa
00JIaCTh TPUMEHEHHUs aHAJTUTHICCKOTO TPUOIHUKEHHOTO PEIeHns] B OKPEeCT-
HOCTH IIOJBUXKHOM 0CODOOII TOYKM.

Kpartkoe coobiienne

@® Konrenr nybmmkyercsa Ha yciaoBusix Jmnensun Creative Commons Attribution 4.0
International (https://creativecommons.org/licenses/by/4.0/deed.ru)
O6pa3ser a1 UTUPOBAHUS
Orlov V. N,, Kovalchuk O. A. Exact boundaries for the analytical approximate solution
of a class of first-order nonlinear differential equations in the real domain, Vestn. Samar. Gos.
Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.|, 2021,
vol. 25, no. 2, pp. 381-392. https://doi.org/10.14498/vsgtul843.

CBenenusi 06 aBTopax

Buxmop Huxoraesuw Opros R ® https://orcid. org/0000-0001-7606-5490
JOKTOD (DU3MKO-MATEMATUIECKUX HAYK; JAOIEHT; Kad. IPUKIIAIHON MAaTEMATHKY;
e-mail: orlovvn@mgsu.ru

Ounez Anexcandposuy Kosarvuyr & https://orcid.org/0000-0001-8942-4245
KaH/UIAT TEXHUYECKUX HAYK; JIOIEHT; Kad. IPUKJIATHON MaTeMaTHKN;
e-mail: kovalchuk@mgsu.ru

© Camapckuil rocyZjapCTBEHHBI TEXHUYIECKUI yHIUBEPCUTET 391


https://doi.org/10.14498/vsgtu1843
http://www.mathnet.ru/rus/org1427
http://www.mathnet.ru/rus/org1427
http://www.mathnet.ru/rus/org1427
https://creativecommons.org/licenses/by/4.0/deed.ru
https://creativecommons.org/licenses/by/4.0/deed.ru
https://creativecommons.org/licenses/by/4.0/deed.ru
https://doi.org/10.14498/vsgtu1843
http://www.mathnet.ru/rus/person148789
https://orcid.org/0000-0001-7606-5490
https://orcid.org/0000-0001-7606-5490
mailto:orlovvn@mgsu.ru
http://www.mathnet.ru/rus/person173301
https://orcid.org/0000-0001-8942-4245
https://orcid.org/0000-0001-8942-4245
mailto:kovalchuk@mgsu.ru

Opuaos B. H.,, Kopaapuyk O. A.

IIpuBenennbIe pacyeTsl COTVIACYIOTCS C TEOPETUIECKUMHU MTOJIOYKEHUSMIA,
0 YeM CBUJETEJIbCTBYIOT IKCIEPUMEHTHI, IIPOBEIEHHbBIE C HEJIMHEHHBIM JTud-
depeHnraabHbIM ypaBHEHHEM, 00/1aIaI0IUM TOTHBIM perenueM. /lana Tex-
HOJIOTUSI ONTUMHU3AINNA AIMPUOPHBIX OIEHOK ITOTPEITHOCTH C MOMOIIBIO aIlo-
CTEPUOPHBIX OIEHOK. B HMCC/IeIOBAHNSAX MPUMEHSINCh PSIbl C JIPOOHBIMUI
OTPHUIATEILHBIME CTEIIEHIMU.

KuroueBbie citoBa: moJIBMKHas 0ocobasi TOUKa, HeJmHeltHoe mud depenniu-
aJIbHOe ypaBHeHHe, 33ja4da Kormm, TouHble IpaHHIbI 00JIACTH, AIlPUOPHAsT
U aloCTEPHOPHAs OTPEINIHOCTH, AHAJUTUYECKOE IIPUOIMZKEHHOE PellleHue.
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Konkypupytoniye nHTepechl. KOHKYpPUDYIOIIUX NHTEPECOB HE UMEEM.

ABTOpCKUIT BKJIaJ 1 OTBETCTBEHHOCTH. Bce aBTOPHI IpUHUMAJIN yYacTHe B pa3pa-
6OTKe KOHIIEINU CTAThH U B HAIMCAHUH PYKOIUCH. ABTOPBI HECYT MTOJIHYIO OTBETCTBEH-
HOCTB 3a TPEIOCTABJICHNEe OKOHUYATEIbHON pyKomucu B medarb. OKOHYATE/bHAsT BEepCUst
pykorucu ObLIa 000peHa BCEMU aBTOPAMU.
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