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Abstract

An exact solution that describes steady flow of viscous incompressible
fluid with coupled convective and diffusion effects (coupled dissipative Soret
and Dufour effects) has been found. To analyze shear fluid flow an over-
determined boundary value problem has been solved. The over-determination
of the boundary value problem is caused by the advantage of number of equa-
tions in non-linear Oberbeck—Boussinesq system against number of unknown
functions (two components of velocity vector, pressure, temperature and con-
centration of dissolved substance). Non-trivial exact solution of system con-
sisting of Oberbeck—Boussinesq equations, incompressibility equation, heat
conductivity equation and concentration equation has been built as Birich—
Ostroumov class exact solution. Since the exact solution a priori satisfies
the incompressibility equation the over-determined system is solvable. FEx-
istence of stagnation points is shown both in general flow and in secondary
fluid motion without vorticity. Conditions of countercurrent appearance are
found.
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Introduction. The most frequent reason to induce and support fluid motion
is known to be convection [1-5]. Convective mixture principles depend on the
nonhomogeneous distribution of temperature and impurities of the dissolved sub-
stance or solid inclusions, on the presence of magnetic and electric fields, me-
chanical impacts (vibrations, mixing, rotation) and other reasons [1-5|. Studying
convective flow, two principles of force field (especially temperature field) stratifi-
cation is distinguished. The vertical temperature field stratification corresponds to
Rayleigh convection |1, 3]. The Marangoni effect that excites horizontal convection
was ignored in the classical Benard experiments under heating of the spermaceti
layer (sperm whale brain fat). The selection of convection from the two trends is
enough conditionally because due to the Onsager principle they complement each
other [1, 6].

Horizontal convection analysis began later than the study of Rayleigh prin-
ciple of impulse moment transfer in fluids. However, the non-homogeneity of the
exciting force field is frequent in nature. Water and air mass flow, astrophysical
interstellar medium motion, crystal growing, biological fluid flow, and other pro-
cesses are caused by horizontal (longitudinal) density gradients. These gradients
may be a sequence of density dependence upon temperature, upon the concen-
tration of dissolved substances, upon pressure, upon magnetic and electrical fluid
properties [3—6].

Experimental study of convection is difficult as it is seen in the theoretical de-
scription. The Navier—Stokes equations and the continuity equation together with
transfer correlation are written in Boussinesq approximation [1-6]. The Oberbeck—
Boussinesq equations are constructed due to the principle of density linear depen-
dence upon the scalar field in normal gravitation conditions, neglecting the density
variance in mixing forces and low compressibility [1].

To understand the convection mechanism, it is important to have an extensive
library of exact Oberbeck—Boussinesq equations. Theoretical study in this scien-
tific direction begins with the pioneer publications of Ostroumov and Birich [7, 8]
where the unidirectional convective flows take its origin. By now, several classes of
exact solutions of three-dimensional Oberbeck—Boussinesq equation system have
been built to describe viscous incompressible fluid flow [3-6, 9-16]. The main idea
in the construction of classes of exact solutions of Navier—Stokes equations is based
on velocity field modification with linear dependence on spatial acceleration. The
generalization of Ostroumov-Birich exact solution for layered and shear flows is
realized in [3, 4, 9, 17-25].

The essential gap in the horizontal convection study is found in binary liquid
investigations. The coupled dissipative Soret and Dufour effects prevail in this case
[1,6,18,21,25]. Dufour effect is neglected in the majority of analyses [1,18,21,25].
This research work deals with the large-scale flow where one geometric variable
is negligible in comparison to the other ones. Hence, a plain horizontal layer can
be taken as a hydrodynamic model where the fluid motion represents Couette
flow class. The exact solutions for different boundary value problems taking into
account the convection effect were built earlier in works [3, 4, 8, 10-16, 19-21, 23].
The exact solution class published in [18] was taken as the foundation of articles
[3, 4, 8, 10-16, 19-21, 23| and remains the most wide-expanded solution among
the famous polynomial exact solutions of hydrodynamic equations in our day. The
literature review of this equation class construction is presented in [18] and its
references.
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The analyses within the exact equation class [18] to study binary liquid flows
regarding Soret effect and ignoring the cross Dufour effect were published in ar-
ticles [1, 2, 4, 6, 21, 25]. The diffusion processes were added in the development
of the mentioned exact equation class [18] to enable a sufficient and more accu-
rate description of fluid flow and evaluation of its influence on the formation of
whirling fluid countercurrents.

Motion equations and their exact solution. The steady shear flow of a
binary viscous incompressible fluid is studied between two parallel planes where
the lower one forms the coordinate plane Oy and the Oz axis is normal to the
upper one (Fig. 1).

The lower plane is considered absolutely solid and unmovable and the upper
one is free with no deformation. The deformation neglecting of the free surface of
the fluid layer can avoid from consideration the fluid flow with scale matching to
layer depth. Due to this approach, we cannot consider, for example, surface waves
of different origin (gravitation waves, thermos-capillary waves, etc.) [1-4]. Fluid
layer depth (distance between planes) is equal to h. Hence, the lower boundary
of the infinite horizontal fluid layer is related to z = 0, and the upper boundary
equation is z = h.

Equation system of viscous incompressible fluid in Boussinesq approximation
for thermos-diffusive shear flow is written as [1, 18]:

v, oV, ap 8V, &PV, 8%,
Vogw TV, T " an +U<8x2 Tz T o )

av, oV, oP  (V, OV, 0%,
Vgt Vgt =g+ (G T ot et
oP
2% (61T + B20),
or _ or o, T T 9T
Vege TV, —xte d”)<ax2 tog Tt 822) (1)
+ adn O + C + oo
ox2  Oy? 022 )’
oC oC 9*’C  9*C  9*C *T  0°T O°T
Vx%—i_vy(@ _O‘(ax2 + Oy? + 822> +ad(8x2 * Oy? + 822)’
v, oV,
A
7
)

-
>
T,y

Figure 1. Fluid flow (the Oz and Oy axes are coincided on the figure, although we mean the
three-dimensional space)
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Here V,, V,, are the velocity vector components, P is the pressure related to the
constant average fluid density p; v is the kinematic (molecular) mixture viscosity;
C, T are the concentration of light component and fluid temperature, respec-
tively, deviated from equilibrium value; g is the gravity acceleration; y, d, a are
the temperature conductivity, diffusion, thermo-diffusion coefficients, respectively;

n = [%(%)T,P]O is the thermo-dynamical parameter.

The system of equations (1) is overdetermined. It consists of six equations
to determine two velocity components, related pressure, temperature, and con-
centration. We will use a further approach based on the method of differential
correlations [18, 25, 26|. It is necessary to find correlation between hydrodynamic
fields that enables to eliminate “extra” equation in the system (1) [18, 25, 26].

The analysis of the solvability of thermodiffusion equations (1) will be made
in the exact solution class presented in articles [18, 25, 26]:

Vo =U(z), V,=V(2),

P = Py(z) +zPi(z) + yPa(z2),
T =To(z) + 2T1(2) + yTa(z),

C = Co(z) + zCi(2) + yCa(z).

(2)

The velocity field (2) depend only upon the vertical (transversal) coordinate z.
Other hydrodynamic fields depend on three coordinates and are expressed linearly
in the coordinates z and y. Thus, the formulae (2) generalize the class of Ost-
roumov—Birich exact solutions proposed for the first time to solve Marangoni
convection problems [7, 8]. The hydrodynamic field presentation (2) describes
horizontal convection induced by special gradients of pressure, temperature, and
concentration [18].

Substitution of the exact solution class (2) into the incompressibility equation

ov, av,

oz "oy 0

turns it into identity. In this case, we have a system of eleven ordinary differential
equations to determine eleven unknown functions:

(x + a2dn)Ty + adnCy = 0,
(x + adn)Ty + adnCY = 0,
C{+dl! =0, aCy+adly =0,
P| = gB1T1 + gBaCh,
Py = gB1 Ty + gBaCa, (3)
vU" = P, vV = Py,
UTy + VTy = (x + &®dn) T} + adnCy),

UCi+V(Cy = aC(/]' + adT},

Py = gb1To + gB2C0.

Hence, the choice of exact solution (2) enables to avoid overdetermination of
the initial Oberbeck—Boussinesq system (1).
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Derivation stroke means z variable derivation in the system (3). To calculate
the exact solution of the ordinary differential equations system (3) we consider a
subsystem:

(x + a2dn)T{ + adnCy =0, (x + o?dn)Ty + adnC¥

4

CY +dTy =0, aCy+ adly =0. )

The subsystem (4) is studied separately because it consists of differential equa-

tions concerning horizontal gradients of temperature 77, To and concentration

C4, Cy with different dissipation coefficients. In this case, the situation is possi-

ble when the differential equations system (4) can have no exact equation with

explicit physical interpretation.

We rewrite the system (4) in vector-matrix view for convenience:

X + a?dn 0 adn 0 Ty
0 x+a2dn 0 adn /10N
d 0 10 cr | =0 (5)
0 ad 0 a cy

We analyze the equations (5) as the system of linear algebraic equations concern-
ing second derivatives. The matrix determinant is not equal to zero. Consequently,
due to the Kronecker—Capelli theorem, the solution of the system of linear alge-
braic equations (5) is trivial (null solution):

T/ =0, C!=0, T/=0 CJ=0.

In this case, the horizontal temperature and concentration gradients are presented
as linear polynomial functions:

Ty =ciz+co, Th=c3z++ cy,

(6)

Ci=cs5z+cg, Co=crz+cs.

The linear form coefficients in the correlations (6) are the constants of inte-
gration. Regarding the integration of the system (3) due to the formulae (6) we
obtain the exact solution for horizontal pressure and velocity gradients:

2 2

z z
Py =gp <01§ + 022) + 9B (055 + CGZ) + ¢y,
22 z2
Py =gp <C35 + C4Z> + 952 (075 + 08z> + c10,
_ 9By 2 9B 2 3 2 (7)
> (le—l- 2*)4‘7( 24+666)+C9?+011Z+0127
4 4 3 2
z z z z
V= %(03 —1—04*) + @( + cg— ) + c10— + c132 + c14.
v v 24 6 2

The last three system equations give us the exact expressions for Ty and Cj as
seventh power polynomial functions of z and P, is presented as eighth power
polynomial function of z. As the expressions for the background field components
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of Ty, Cp and Py are bulky, they are not presented. Furthermore, we will consider
only the field of velocity.

Boundary value problem. The boundary conditions are needed to be writ-
ten to calculate the constants of integration in formulae (6) and (7). The adhesion
condition is realized on the lower boundary (bottom) z = 0:

V,(0) = V,(0) = 0.

The homogeneous velocity distribution is given on the upper boundary (it moves
as a solid surface):

Vi(h) = Wecosv, Vy(h) =Wsin.

Here W is the velocity value on the upper boundary, v is the angle formed by the
velocity vector and abscises axis. Boundary condition for the pressure is written
as

P(h) =S,

where S is the atmosphere pressure on the free surface. The conditions of impen-
etrability and ideal heat exchange are given for concentration and temperature
on the border z = 0, respectively:

88Sz:0:0’ (ZZZ=0:0'
The temperature on the upper boundary is defined as
T(h) = az + by,
and concentration is determined as
C(h) = mz + ny.
Using the formulae (2) and the linearity of the boundary conditions, we obtain
the following relations at z = 0:
[ SR U =RU B il UL
The next equalities are defined at z = h:
U=Wcosyp, V=Wsiny, Tp=0, Ty=a, To=0>b,
Ph=S P =0, Pb=0, Cy=0, Ci=m, Cy=n.

U=V =0,

(9)

The written boundary conditions (8) and (9) describe Couette type fluid flow
(horizontal pressure gradients are not regarded).

Boundary value problem solution. The exact solution for the boundary
value problem is obtained using boundary conditions (8) and (9) for the formulae
(6) and (7). The velocity field is described by the following correlations:

h?gF W hF F
V, = U(z) = D9t Weosy g +g 2,

h?gE W siny ghE gE 3
Vy=Vie) = = mad —— e = S et
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Two designations are introduced for the coefficients:
E=p1b+ Bon, F = pra+ Bom.

The temperature field stratification along the vertical coordinates and hori-
zontal variables is expressed in a linear form:

T =1Ty(z) + ax + by.
Background temperature
To(z) =T9 + T2 + Tyt + 15 2° (11)
is formed by several components:

AgFh>  AWh? cos ) B MgER® B W Mh? sin 4

=~ 450K 6K 45K v 6K
T8 _ AgFh? AW cos®) N MgEh? N W M sin 1)
07 18K 6Kh 18Kv 6Kh
4 _ —AgFh ~ MgEh T5 — AgF n MgFE
0 24vK 24Kv’ O 7 1200K ' 120KV’

where K = —d?na + x + a?dn, A =a —mnd, M = b — dn?.
The concentration distribution has the similar correlation

C = Cy(z) + mz + ny, (12)
where Cy(2) = CJ + C323 + Ciz* + C§2° with components

5 2 5 2
C(()):_BQFh _ BWh=cos¢p IgER>  WIh smz/;7

450K 6K 45K v 6K
o8 — BgFh? BWecosy IgEh*> WIlsin
07 18vK 6Kh 18K v 6Kh
04__Bth_IgEh 5 BgF IgE
07 24vK  24Kv’ 07 1200K 120KV

Here we add the designations B = m(xa~'4+adn)—da, I = —(nxa~'4+adn®—bd).
The pressure distribution has the sixth power polynomial function of the co-

ordinate z:
P = Py(2) + 2P1(2) + yPa(2), (13)

where Py(z) = P + Pgz + Pyz* + P32° + PS2° with components

po_g_ (_lngFh6 _ DWh3 cos 1) _ 11LgERS _ W Lh3 sin1/1>
0 200K 8K 720K v 8K ’
pl_ _Dth5 B DW h? cos B LgEhR® B W Lh? sin 1
07 450K 6K 45Ky 6K

pi _ DgFh?> DWecosty  LgER? N W L sin 1)
O 7K 24Kh T2Kv 24Kh

9
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5_ DgFh B LgEh 6 _ DgF n LgE
0 1200K 120KV’ O 7 700K ' 720KV’
Py(z) = gFz — gFh, Py(z) = gEz — gEh.

We add the designations

D =pA+ (B, L=pM+pl
to get the final recording of the exact solution (10)—(13) of the boundary value
problem (3), (8) and (9) and it is written in polynomial function class.

Velocity field analysis.To analyze velocity field, we introduce dimension-
less values w = U/W, v = V/W, and Z = z/h (0 < Z < 1). The third power
polynomial functions are written to analyze the cinematic characteristics of hy-
drodynamic flow:

3

h®gF
u = Z|cosy + Z —1)(Z —2)|,
[cos v ,‘},WE( )(Z - 2)] "
v:Z[Sin¢+ 6qu (Z—1)(Z—2)}.

One can note that the dimension of two-dimensional velocity field (10) reduces
due to the turning transformation

B B1b + Ban
tant) = T~ Biat Bym’ (15)

In this case, the fluid motion transforms from shear motion into a layered (one
direction) one.

Every component of the velocity vector can have maximally one null point
where the sign change of velocity and it corresponds to the direction change of
fluid flow. The fulfilment of the following correlations for each velocity component
is needed to find this null point:

[uw(0)] - [u(D)] <0, [0(0)] - [v(1)] <0,

where [u( - )], [v(-)] describe the expressions in square brackets for each velocity.
Using the correlations for the exact solution (14) we get

h?’gF . . h3gE
31/W) <0, smw(smw+ 3VW) < 0.

We can note that if F' = 0 (f1a = —fam) or E = 0 (f1b = —fan), the coun-
tercurrents do not happen in fluid flow as the velocity profile within the given
values of the parameters F' and F is described by the classical exact Couette
solution [26,28]. Hence, the fluid countercurrents can be found due to the super-
position of the temperature and concentration effects on the structure of hydro-
dynamic flow.

The velocity u(z) profiles for the cases of countercurrent absence and presence
are shown on the Fig. 2. The velocity profile (14) is not monotonous. The velocity
function can have the extremum and depending on the coefficient values, the

cos 1 (cos (S
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extremum can be maximum or minimum. Analyzing the formulae (14) it can
be easily shown that the countercurrent formation is connected with the mutual
influence of the boundary conditions of velocity, temperature, and concentration
on physical fluid constants characterizing the flow of dissipation processes in fluid.

The velocity hodographs are presented on the Fig. 3 with the conditions £ = F'
and v = 0 (a), v = w/4 (b), ¥ = 37/4 (¢), ¥ = 7 (d). The velocity hodograph
shows that the flows are said to be locally spiral (Fig. 3, a, ¢, d). The hodograph
loop formation in stable motion is typical for two-dimensional velocity field. If
the fluid flow has one direction due to the fulfilment of correlation (15) then the
velocity hodograph becomes a segment (Fig. 3, b).

0.8 0.4
0.6 0.2
— —~ 01
N 041 3
0.2
0.2
—-04
0 } } } } —0.6 } } } }
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
7 7
Figure 2. Velocity profiles without countercurrent (left figure) and with countercurrent (right
figure)
0.4 1.0
031 0.8 1
— — 067
N o021 S
N S 044
0.1+
0.2
0 b b b b 0 b b b b
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
u(Z) u(Z)
a b
1.0 0.4
N 05 N 02
= =
0 b b b v b 0 b b b . b
—1.0 —-0.5 0 0.5 —1.0 —-0.5 0 0.5
u(Z) u(Z)
c d

Figure 3. Velocity hodographs with the conditions £ = F and ¥ = 0 (a), v = w/4 (b),
Y =3m/4(c), ¥ =7 (d)
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Such effect was noticed in the classical Couette solution for rotating liquid
and its generalizations [3,4,27].

Conclusion. The exact solution to describe large-scale stationary Couette
flow is presented. The solution is calculated in the class of velocities distributed
due to the certain dependence on the transversal coordinate and linearly on one
horizontal value. The distribution of zeroes of the regarded polynomial functions
is studied. The connection of zeroes with the fluid countercurrent formation is
shown.
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YcranoBuBIieecsa TepMoanddy3nOHHOE CABUTOBOE TeYEHUE
KysTrTa Hecckumaemoii xkujikoctu. McciegoBanume moJist
CKopocTeii

B. B. Bawypos'?, E. FO. ITpocseupsaxos'?

I Uncruryr mammuosenenus YpO PAH,

Poccusi, 620049, ExarepunOypr, yi. Komcomosnbcekast, 34.
YpasbCKuii rocy1apCTBEHHBIH YHUBEPCUTET IIyTEl COODIIECHUS,
Poccusi, 620034, Exarepunbypr, yia. Koamoroposa, 66.

2

Annoranus

Haiineno TouHoe perierne, OMUCHIBAIOIIEE YCTAHOBUBIIEECS] TE€ICHUE Bsi3-
KOl HEeCXKUMAaeMON YKUJIKOCTH C y9YeTOM IEePEKPECTHOrO BJIUSIHUSI KOHBEK-
tusHOrO 1 Juddy3noHHOro 3HdeKTOB (MepeKpeCcTHOE BIMSIHUE JMCCHUIIA-
tusabix 3¢ dexroB Cope u Hodopa). s uccienoBanus CIBUTOBOIO II0-
TOKa 2KMJIKOCTU ObLIa PellleHa IepeorpeieiieHHas KpaeBas 3aaaqda. [lepe-
OTIPEJICIEHHOCTD KPaeBoil 3ajadr 00yCIOBJIEHA T€M, 9TO KOJMIECTBO yPaB-
HeHuit B HesimHeNHO# cucteme ypaBueHuii Obepbeka—byccunecka 6osbire,
YeM KOJIMYECTBO HEM3BECTHHIX (DYHKIuUil (JBe KOMIIOHEHTBI BEKTOPA CKOPO-
CTH, JaBJIEHHE, TeMIIepaTypa U KOHIIEHTDAIUs PACTBOPEHHOI'O BEINECTBA).
Herpusnanabnoe TounOe pereHne CucTeMbl, cocTosmeil n3 ypasaeanit Obep-
6eka—byccunecka, ypaBHEHUs HEIIPEPBIBHOCTH, yPABHEHMS TEILIOIIPOBOIHO-
CTH W ypaBHEHUs] KOHIEHTPAIUH, ObLIO MOCTPOEHO B KJIACCE TOYHBIX pe-
mennit Bupuxa—OcTpoymosa. PazpemmmocTs mepeonpeeieHHOi CHCTeMbI
yPaBHEHH{I 00YCJIOBJICHA TE€M, 9TO TOYHOE PElIeHIe aBTOMATUYIECKH YI0BJIe-
TBOpSIET YPABHEHUIO HEIPepbIBHOCTH. [10Ka3aHO CyIIeCTBOBAHNE 3aCTOWHBIX
TOYEK Kak B OOIEM TeYeHUN, TaK U BO BTOPUIHOM JIBUYKEHUU >KUJTKOCTH 6e3
3aBUXpeHHOCTU. HaliieHbl yCI0Bus, IPU KOTOPBIX BO3MOXKHBI IIPOTHBOTEYE-
HUS.

KiroueBnbie cioBa: YpaBHEHUA HaBbe*CTOKCa, TOYHOE pelienue, MHOI'o-
cJIofiHaA KHJKOCTD, II0JI€ MaCCOBBLIX CHJI, IIepeonpeae/IeHHad IIPUBEICHHAA
CHUCTEMa.
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