Modeling of phase transformations and superelastic hardening of unstable materials

Abstract


The article presents models of superelastic hardening of materials with unstable phase structure at a constant temperature. The kinetic equation of the process of formation and growth of spherical nuclei of a new phase is formulated depending on the level of development of inelastic structural deformations, according to which the new phase first represents separate inclusions from embryos, developing it forms the structures of the matrix mixture in the form of interpenetrating skeletons, and finally the new phase is transformed in a matrix with separate inclusions from the material of the remains of the old phase. The influence of structural deformations on the features of phase transformations and nonlinear hardening of inhomogeneous unstable materials with different degree of connectivity of the constituent phases is studied. Various variants of the microstructure material formed in the conditions of the phase transition in the form of separate inclusions and in the form of interpenetrating components are considered. New macroscopic determining relationships for unstable microinhomogeneous materials are established and their effective elastic moduli are calculated. Macroscopic conditions of direct and inverse phase transitions are obtained, their effective limits and hardening coefficients are calculated. It is shown that the values of the macroscopic elasticity moduli of the obtained models lie inside the fork of the lower and upper Hashin-Shtrikman boundaries. Numerical analysis of the developed models has shown good agreement with known experimental data.

Full Text

Введение. Развитие методов расчета деформирования элементов конструкций, изготовленных из формозапоминающих материалов, представляет собой актуальное направление современной механики и материаловедения. Необычные уникальные механические свойства таких материалов широко применяются в машиностроении, в теплоэнергетическом комплексе, медицине и других отраслях экономики. Подобные материалы служат основой для создания самостоятельно трансформирующихся элементов автоматически разворачивающихся космических антенн. Из них изготавливаются специальные муфты для аварийного соединения трубчатых деталей подводных конструкций на больших глубинах. Специальные стопоры, изготовленные из формозапоминающих сплавов, позволяют осуществлять крепления элементов конструкций только с внутренней стороны в тех случаях, когда внешняя сторона изделия недоступна. Такие материалы используют для создания устройств силовой блокировки, для специальных прессов, домкратов, имплантов, стентов и т.д. Деформирование нестабильных материалов и формозапоминающих сплавов сопровождается образованием в них внутренней развивающейся сложной структуры из-за фазовых переходов первого рода. Для адекватной оценки механических свойств таких материалов, их сверхупругого поведения и эффектов памяти формы требуется разработка структурных математических моделей превращений фазовых структур. С помощью феноменологического подхода к решению такого рода задач разработан ряд моделей, в которых механическое поведение материалов с памятью формы описывается с помощью реологических соотношений. Здесь непрерывное изменение структуры среды, находящейся в условиях фазовых превращений, задается набором параметров определяющих соотношений, который приходится определять экспериментальным путем [1-5]. В более сложном структурно-феноменологическом подходе задаются физико-механические константы и геометрические параметры для составляющих фаз, а макроскопические определяющие уравнения для нестабильных и формозапоминающих сред устанавливаются методами механики композитов. Разработкам различных вариантов моделей нестабильных материалов сплавов с памятью формы посвящен ряд работ отечественных [6-9] и зарубежных авторов [10-17]. В настоящей работе предполагается, что под воздействием внешних нагрузок в объеме старой фазы образуется новая фаза, внутри которой из-за трансформации кристаллической и доменной структуры материала возникают и развиваются необратимые структурные деформации. Уровень этих деформаций всегда ограничен предельными сдвигами двойниковых доменов. 408 Моделирование фазовых превращений. . . Целью работы является разработка новых структурно-феноменологических моделей сверхупругого упрочнения материалов с нестабильной фазовой структурой. Особенность этих моделей и их научная новизна заключаются в том, что рост новой фазы описывается не только ростом ее относительного объема, но и изменением внутренней структуры этого объема. В начале процесса новая фаза представляет собой отдельные включения из зародышей, развиваясь далее, она образует структуры матричной смеси в виде взаимопроникающих каркасов, и, наконец, новая фаза превращается в матрицу с отдельными включениями из материала остатков старой фазы. 1. Постановка задачи. Рассмотрим однородный упругий материал, в котором под воздействием внешних напряжений образуются зародыши новой фазы сферической формы и происходит фазовый переход первого рода. Объем возникающей и развивающейся новой фазы

About the authors

Elena A Ilyina

Samara National Research University

Email: elenaalex.ilyina@yandex.ru
34, Moskovskoye shosse, Samara, 443086, Russian Federation
Cand. Phys. & Math. Sci.; Associate Professor; Dept. of Mathematics and Business Informatics

Leonid A Saraev

Samara National Research University

Email: saraev_leo@mail.ru
34, Moskovskoye shosse, Samara, 443086, Russian Federation
Dr. Phys. & Math. Sci., Professor; Head of Dept.; Dept. of Mathematics and Business Informatics

References

  1. Исупова И. Л., Трусов П. В. Математическое моделирование фазовых превращений в сталях при термомеханической нагрузке // Вестник ПНИПУ. Механика, 2013. № 3. С. 126-156.
  2. Мишустин И. В., Мовчан А. А. Моделирование фазовых и структурных превращений в сплавах с памятью формы, происходящих под действием немонотонно меняющихся напряжений // Изв. РАН. МТТ, 2014. № 1. С. 37-53.
  3. Мишустин И. В., Мовчан А. А. Аналог теории пластического течения для описания деформации мартенситной неупругости в сплавах с памятью формы // Изв. РАН. МТТ, 2015. № 2. С. 78-95.
  4. Казарина С. А., Мовчан А. А., Сильченко А. Л. Экспериментальное исследование взаимодействия фазовых и структурных деформаций в сплавах с памятью формы // Механика композиционных материалов и конструкций, 2016. Т. 22, № 1. С. 85-98.
  5. Мовчан А. А., Сильченко А. Л. Казарина С. А. Экспериментальное исследование и теоретическое моделирование эффекта перекрестного упрочнения сплавов с памятью формы // Деформация и разрушение материалов, 2017. № 3. С. 20-27.
  6. Трусов П. В., Волегов П. С., Исупова И. Л., Кондратьев Н. С., Макаревич Е. С., Няшина Н. Д., Останина Т. В., Шарифуллина Э. Р. Многоуровневая модель для описания твердотельных фазовых превращений в многокомпонентных сплавах // Вестник Пермского научного центра УРО РАН, 2016. № 4. С. 83-90.
  7. Тихомирова К. А. Изотермическое деформирование сплава с памятью формы в разных температурных интервалах. Случай одноосного растяжения // Механика композиционных материалов и конструкций, 2017. Т. 23, № 2. С. 263-282.
  8. Тихомирова К. А. Феноменологическое моделирование фазовых и структурных деформаций в сплавах с памятью формы. Одномерный случай // Вычислительная механика сплошных сред, 2018. Т. 11, № 1. С. 36-50. doi: 10.7242/1999-6691/2018.11.1.4.
  9. Тихомирова К. А. Экспериментальное и теоретическое исследование взаимосвязи фазовой и структурной деформаций в сплавах с памятью формы // Вестник ПНИПУ. Механика, 2018. № 1. С. 40-57. doi: 10.15593/perm.mech/2018.1.04.
  10. Mutter D., Nielaba P. Simulation of the shape memory effect in a NiTi nano model system // J. All. Compounds, 2013. vol. 577. pp. S83-S87, arXiv: 1202.1078 [cond-mat.mtrl-sci]. doi: 10.1016/j.jallcom.2012.01.095.
  11. Auricchio F., Bonetti E., Scalet G., Ubertini F. Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation // Int. J. Plasticity, 2014. vol. 59. pp. 30-54. doi: 10.1016/j.ijplas.2014.03.008.
  12. Yu C., Kang G., Kan Q. Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation // Int. J. Plasticity, 2014. vol. 54. pp. 132-162. doi: 10.1016/j.ijplas.2013.08.012.
  13. Elibol C., Wagner M. F.-X. Investigation of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression-shear // Mat. Sci. Eng. A, 2015. vol. 621. pp. 76-81. doi: 10.1016/j.msea.2014.10.054.
  14. Lobo P. S., Almeida J., Guerreiro L. Shape memory alloys behaviour: A review // Procedia Engineering, 2015. vol. 114. pp. 776-783. doi: 10.1016/j.proeng.2015.08.025.
  15. Yoo Y.-I., Kim Y.-J., Shin D.-K., Lee J.-J. Development of martensite transformation kinetics of NiTi shape memory alloys under compression // Int. J. Sol. Struct., 2015. vol. 64-65. pp. 51-61. doi: 10.1016/j.ijsolstr.2015.03.013.
  16. Cisse C., Zaki W., Zineb T. B. A review of constitutive models and modeling techniques for shape memory alloys // Int. J. Plasticity, 2016. vol. 76. pp. 244-284. doi: 10.1016/j.ijplas.2015.08.006.
  17. Fabrizio M., Pecoraro M., Tibullo V. A shape memory alloy model by a second order phase transition // Mech. Res. Com., 2016. vol. 74. pp. 20-26. doi: 10.1016/j.mechrescom.2016.03.005.
  18. Сараев Л. А. Математическое моделирование упругопластических свойств многокомпонентных композиционных материалов. Самара: СНЦ РАН, 2017. 222 с.
  19. Ильина Е. А., Сараев Л. А. Влияние кинетики фазовых превращений на сверхупругое упрочнение нестабильного материала // Современные материалы, техника и технологии, 2017. № 7(15). С. 28-38.
  20. Christensen R. M. Mechanics of composite materials. New York: Wiley & Sons Inc., 1979. xiv+348 pp.
  21. Шермергор Т. Д. Теория упругости микронеоднородных сред. М.: Наука, 1979. 399 с.
  22. Сараев А. Л., Сараев Л. А. Макроскопические модули упругости многокомпонентных композитов с изменяемой микроструктурой // Математика, экономика и управление, 2015. Т. 1, № 3. С. 35-40.
  23. Steurer W. Crystal Structures of Metallic Elements and Compounds / Physical Metallurgy. vol. 1; eds. David E. Laughlin, Kazuhiro Hono. Elsevier Inc., 2014. pp. 1-101. doi: 10.1016/B978-0-444-53770-6.00001-0.
  24. Murakami Y. Lattice softening, phase stability and elastic anomaly of the
  25. Nakanishi N., Mori T., Miura S., Murakami Y., Kachi S. Pseudoelasticity in Au-Cd thermoelastic martensite // Philosophical Magazine, 1973. vol. 28, no. 2. pp. 277-282. doi: 10.1080/14786437308217452.

Statistics

Views

Abstract - 26

PDF (Russian) - 3

Cited-By


PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2018 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies