Application of the modified boundary element method for the solution of parabolic problems

Abstract


An algorithm for finding numerically-analytical solution of parabolic problems (diffusion and heat conduction) is proposed. The problem is solved by the proposed algorithm in three steps. At the first step the one-dimensional problem is solved for a base interval of integration. This problem is of independent significance as well as the basis for the second step. At the second step the two-dimensional parabolic problem is considered. Its solution is performed using the modified boundary elements method. At the third step, the method of step-by-step integration over time is used.

About the authors

Vladimir P Fedotov

Institute of Teoretical Engineering, Ural Branch of RAS

Email: fedotov_vp@mail.ru
д.т.н., проф.), главный научный сотрудник, лаб. прикладной механики; Институт машиноведения УрО РАН; Institute of Teoretical Engineering, Ural Branch of RAS

Olga A Nefedova

Institute of Teoretical Engineering, Ural Branch of RAS

Email: nefedova@imach.uran.ru
младший научный сотрудник, лаб. прикладной механики; Институт машиноведения УрО РАН; Institute of Teoretical Engineering, Ural Branch of RAS

References

  1. Бреббия К., Теллес Ж., Вроубел Л. Методы граничных элементов. М.: Мир, 1987. 526 с.
  2. Бенерджи П., Баттерфилд В. Методы граничных элементов в прикладных науках. М.: Мир, 1984. 494 с.
  3. Федотов В. П., Спевак Л. Ф. Модифицированный метод граничных элементов в задачах механики, теплопроводности и диффузии. Екатеринбург: УрО РАН, 2009. 161 с.
  4. Лыков А. В. Теория теплопроводности. М.: Высш. шк., 1967. 600 с.

Statistics

Views

Abstract - 20

PDF (Russian) - 3

Cited-By


Refbacks

  • There are currently no refbacks.

Copyright (c) 2011 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies