Natural space of the micro-object

Abstract


The immutability of classical dynamical laws for the microscopic object in the space which coordinate axes are the transition matrix elements of the corresponding coordinates is proved. It is stated that measurement is a micro-object localization process in the classical space when it interacts with the device. The description of the wave function reduction is obtained using the path integrals. The mechanism of the probability arising on measurement is offered, where the hidden parameter that is the cause of the measurement randomness of microscopic characteristics relates to the interaction process of classical instrument with micro-object. Both types of quantum mechanics processes - evolution and reduction of the wave functions - are described in a unified approach

About the authors

Aleksey Yu Samarin

Samara State Technical University

Email: samarinay@yahoo.com
(к.ф.-м.н., доц.), докторант, каф. общей физики и физики нефтегазового производства; Samara State Technical University

References

  1. von Neumann J. Mathematical Foundations of Quantum Mechanics / Princeton Landmarks in Mathematics and Physics. Princeton, New Jersy: Princeton University Press, 1996. 464 pp.
  2. Griffits R. B. Consistent quantum theory. Cambridge: Cambridge university press, 2002. 391 pp.
  3. Hartle G. B. Spacetime quantum mechanics and the quantum mechanics of spacetime / In: Gravitation and Quantizations: Proceedings of the 1992 Les Houches Summer School (6 July - 1 Aug., 1992); eds. B. Julia, J. Zinn-Justin. North Holland, Amsterdam, 1995. Pp. 285-480, arXiv: gr-qc/9304006.
  4. Gell-Mann M., Hartle J. B. Classical equations for quantum systems // Phys. Rev. D., 1993. Vol. 47, no. 8. Pp. 3345-3382.
  5. Feynman R. P., Hibbs A. R. Quantum Mechanics and Path Integrals. New York: McGrawHill Companies, 1965. 365 pp.
  6. Zinn-Justin J. Path Integrals in Quantum Mechanics. Oxford: Oxford University Press, 2004. 332 pp.
  7. Самарин А. Ю. Описание процесса перехода между состояниями дискретного спектра // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2009. № 2(19). С. 226-230.
  8. Самарин А. Ю. Волновое уравнение перехода между состояниями дискретного спектра // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2010. № 1(20). С. 188-196.
  9. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. 3: Квантовая механика (нерелятивистская теория). М.: Физматлит, 2004. 800 с.
  10. Kac M. Probability and Related Topics in Physical Sciences / Lectures in Applied Mathematics Series. Vol. 1.1, American Mathematical Society, 1957. 266 pp.
  11. Колмогоров А. Н. Теория вероятностей и математическая статистика. Избранные труды / ред. Ю. В. Прохоров. М.: Наука, 1986. 535 с.
  12. Bell J. S. On the Einstein Podolsky Rosen Paradox // Physics, 1964. Vol. 1, no. 3. Pp. 195-200.
  13. Reid M. D., Drummond P. D. Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications // Reviews of Modern Physics, 2009. Vol. 81, no. 4. Pp. 1727-1751.
  14. Aspect A., Grangier P., Roger G. Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities // Phys. Rev. Lett., 1982. Vol. 49, no. 1. Pp. 91-94.
  15. Aspect A., Dalibard J., Roger G. Experimental Test of Bell's Inequalities Using TimeVarying Analyzers // Phys. Rev. Lett., 1982. Vol. 49, no. 25. Pp. 1804-1807.

Statistics

Views

Abstract - 8

PDF (Russian) - 0

Cited-By


Refbacks

  • There are currently no refbacks.

Copyright (c) 2011 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies