Numerical simulation of modified Perona-Malik equantion in digital image denoising applications


Classical Perona-Malik model is modified and adapted for digital color image filtering. An advantage of the proposed scheme is the use of perceptual color difference metrics to measure the distance between pixels, and the modification of diffusion coefficients calculation formulas. Numerical simulation shows that the proposed scheme has a high quality and performance.

About the authors

Alexander A Yudashkin

Samara State Technical University

; Samara State Technical University

Dmitry A Zausaev

Samara State Technical University

аспирант, каф. прикладной математики и информатики; Самарский государственный технический университет; Samara State Technical University

Igor S Ryabtsov

Samara State University

; Samara State University


  1. Hwu W. W. GPU Computing Gems Emerald Edition. San Francisco, CA: Morgan Kaufmann, 2011. 886 pp.
  2. Felsberg M. On the Relation Between Anisotropic Diffusion and Iterated Adaptive Filtering // LNCS, 2008. Vol. 5096. Pp. 436-445.
  3. Rumpf M., Strzodka R. Nonlinear Diffusion in Graphics Hardware / In: Proceedings of EG/IEEE TCVG Symposium on Visualization (VisSym '01), 2001. Pp. 75-84.
  4. Schenke S., Wünsche B. C., Denzler J. GPU-based volume segmentation / In: Proceedings of IVCNZ '05, 2005. Pp. 171-176.
  5. Howison M. Comparing GPU Implementations of Bilateral and Anisotropic Diffusion Filters for 3D Biomedical Datasets: Technical Report LBNL-3425E. Berkeley, CA: Lawrence Berkeley National Laboratory, 2010. 9 pp.
  6. Perona P., Malik J. Scale space and edge detection using anisotropic diffusion / In: Proceedings of the IEEE Computer Society Workshop on Computer Vision. Miami, FL, 1987. Pp. 16-27.
  7. Perona P., Malik J. Scale-Space and Edge Detection Using Anisotropic Diffusion // Pattern Anal. Mach. Intell., 1990. Vol. 12, no. 7. Pp. 629-639.
  8. Gilboa G., Zeevi Y. Y., Sochen N. Image enhancement segmentation and denoising by time dependent nonlinear diffusion processes / In: Image Processing' 2001. Vol. 3, 2001. Pp. 134-137.
  9. Melgosa M. Testing CIELAB-Based Color-Difference Formulas // Color Research and Application, 2000. Vol. 25, no. 1. Pp. 49-55.
  10. Sharma G., Wu W., Dadal E. N. The CIEDE2000 Color-Difference Formula: Implementation Notes, Supplementary Test Data, and Mathematical Observations // Color research and application, 2005. Vol. 30, no. 1. Pp. 21-30.



Abstract - 14

PDF (Russian) - 8



  • There are currently no refbacks.

Copyright (c) 2011 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies