Solution parallelization of softening plasticity problems


Parallelization of deformation-damage coupling boundary value problem solution is considered. In definition the equations of the strength we used the principle of equivalence of deformations in a real and relatively undamaged structures. Principle of real and hypothetical undamaged structure strain equivalence is applied. An iterative procedure characterized by successive solutions of plasticity and damage problems at each iteration step, is proposed. The approach to parallelization of softening plasticity boundary value problem solution is based on the conception of generalized nonlinear structural models and on the method of decomposition.

About the authors

Iakov M Klebanov

Samara State Technical University

(д.ф.-м.н., проф.), зав. кафедрой, каф. механики; Самарский государственный технический университет; Samara State Technical University

Igor E Adeyanov

Samara State Technical University

(к.т.н.), ст. преподаватель, каф. механики; Самарский государственный технический университет; Samara State Technical University


  1. Klebanov I. M., Davydov A. N. A non-linear domain decomposition method:
  2. Klebanov I. M., Davydov A. N. A parallel computational method in steady power-law creep // Int. J. Num. Methods Eng., 2001. Vol. 50, no. 8. Pp. 1825-1840.
  3. Yagawa G., Yoshioka A., Soneda S. A parallel finite element method with a supercomputer network // Comput. Struct., 1993. Vol. 47, no. 3. Pp. 407-418.
  4. Asta M., Fischera R., Labartab J., Manza H. Run-time parallelization of large FEM analyses with PERMAS // Adv. Eng. Soft., 1998. Vol. 29, no. 3-6. Pp. 241-248.
  5. Aifantis E. C. On the role of gradients in the localization of deformation and fracture // Int. J. Eng. Sci., 1992. Vol. 30, no. 10. Pp. 1279-1300.
  6. Lemaître J. A course on Damage Mechanics. Berlin: Springer, 1996. 228 pp.
  7. Shu J. Y., Barlow C. Y. Strain gradient effects on microscopic strain field in a metal matrix composite // Int. J. Plast., 2000. Vol. 16, no. 5. Pp. 563-591.
  8. Geers M. G. D., de Borst R., Peerlings R. H. J. Validation and internal length scale determination for a gradient damage model: application to short glass-fibre-reinforced polypropylene // Int. J. Solids Struct., 1999. Vol. 36, no. 17. Pp. 2557-2584.
  9. Nygårds M., Gudmundson P. Numerical investigation of the effect of non-local plasticity on surface roughening in metals // Eur. J. Mech., A, Solids, 2004. Vol. 23, no. 5. Pp. 753-762.
  10. Baaser H., Tvergaard V. A new algorithmic approach treating nonlocal effects at finite rate-independent deformation using the Rousselier damage model // Comput. Methods Appl. Mech. Eng., 2003. Vol. 192, no. 1-2. Pp. 107-124.
  11. Botta A. S., Venturini W. S., Benallal A. BEM applied to damage models emphasizing localization and associated regularization techniques // Eng. Anal. Bound. Elem., 2005. Vol. 29, no. 8. Pp. 814-827.
  12. Качанов Л. М. Теория ползучести. М.: Физматгиз, 1960. 390 с.
  13. Boyle J. T., Spence J. Stress analysis for creep. London: Butterworth, 1983. 284 pp.
  14. Клебанов Я. М., Самарин Ю. П. Вложенные поверхности мощности диссипации в пространстве сил и скоростей перемещений при установившейся ползучести неоднородных и анизотропных тел // Механика твердого тела, 1997. № 6. С. 121-125.
  15. Клебанов Я. М., Давыдов А. Н. Параллелизация нелинейных задач при произвольной диаграмме деформирования // Вестн. Сам. гос. техн. ун-та. Сер. Техн. науки, 2000. № 10. С. 21-25.
  16. de Borst R., Pamin J., Geers M. G. D. On coupled gradient-dependent plasticity and damage theories with a view to localization analysis // Eur. J. Mech., A, Solids, 1999. Vol. 18, no. 6. Pp. 939-962



Abstract - 16

PDF (Russian) - 1



  • There are currently no refbacks.

Copyright (c) 2011 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies