On the compatibility of the corpuscular and wave properties of a particle in the two-slit experiment


A new quantum-mechanical model of the two-slit experiment is presented, in which the wave properties of a particle are compatible with its corpuscular ones. The model is based on the idea which also underlies our previous model of a one-dimensional completed scattering. Its essence is that quantum processes, in which the systems state represents a coherent superposition of microscopically distinct substates (CSMDS), must be considered as complex random processes consisting of alternative subprocesses. Only with a new approach to CSMDSs quantum theory admits a consistent statistical interpretation and becomes free from the paradoxes associated at present with CSMDSs.

About the authors

Nikolay L Chuprikov

Tomsk State Pedagogical University

Email: chnl@tspu.edu.ru
(д.ф.-м.н., доц.), доцент, каф. теоретической физики; Томский государственный педагогический университет; Tomsk State Pedagogical University


  1. Ballentine L. E. The statistical interpretation of quantum mechanics // Rev. Mod. Phys., 1970. Vol. 42, no. 4. Pp. 358-381.
  2. Khrennikov A. Yu. The principle of supplementarity: a contextual probabilistic viewpoint to complementarity, the interference of probabilities and incompatibility of variables in quantum mechanics // Found. Phys., 2005. Vol. 35, no. 10. Pp. 1655-1693.
  3. Хренников А. Ю. Эксперимент ЭПР-Бома и неравенство Белла: квантовая физика и теория вероятностей // ТМФ, 2008. Т. 157, № 1. С. 99-115.
  4. Accardi L. Urne e camaleonti. Dialogo sulla realtà, le leggi del caso e l'interpretazione della teoria quantistica. Milano: Il Saggiatore, 1997. 507 pp.
  5. Khrennikov A. Yu. Contextual approach to quantum formalism / Fundamental Theories of Physics. Vol. 160. New York: Springer, 2009. 353 pp.
  6. Accardi L. Snapshots on quantum probability // Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2008. no. 8/1(67). Pp. 277-294.
  7. Leggett A. J. Testing the limits of quantum mechanics: motivation, state of play, prospects // J. Phys.: Condens. Matter, 2002. Vol. 14, no. 15, R415.
  8. Chuprikov N. L. On a new mathematical model of tunnelling // Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2008. no. 8/1(67). Pp. 625-633.
  9. Winful H. G. Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox // Physics Reports, 2006. Vol. 436, no. 1-2. Pp. 1-69.
  10. Olkhovsky V. S., Recami E. and Salesi G. Superluminal tunnelling through two successive barriers // Europhys. Lett., 2002. Vol. 57, no. 6, 879.
  11. Nimtz G. On Virtual Phonons, Photons, and Electrons // Found. Phys., 2009. Vol. 39, no. 12. Pp. 1346-1355.



Abstract - 14

PDF (Russian) - 1



  • There are currently no refbacks.

Copyright (c) 2011 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies