Issledovanie problemy sushchestvovaniya begushchikh volnv sisteme uravneniy Nav'e-Stoksa metodami teoriisingulyarnykh vozmushcheniy

Abstract


Проанализирована проблема существования решений вида плоской волны для системы дифференциальных
уравнений Навье-Стокса, описывающей экзотермический процесс химического превращения
идеального газа, В предположении о температуре воспламенения доказывается существование
детонационных и дефлаграционных воли, близких к соответствующим волнам так называемой
ZND-модели, при условии малой вязкости, теплопроводности и диффузии. Примененный в исследовании
метод конструктивен, поскольку классические решения ZND-модели служат сингулярными
решениями в контексте геометрической теории сингулярных возмущений. Сингулярные решения
состоят из траекторий, на которых движение происходит медленно под воздействием химической
реакции, и траекторий, на которых движение происходит быстро под воздействием газодинамических
ударов. Такой геометрический подход приводит к ясной, полной картине существования
структуры и асимптотического поведенш детонационных и дефлаграционных волн.

About the authors

A I Gol'dshteyn

References

  1. Courant R, Friedrichs К. О. Supersonic Flow and Shock waves // Applied Mathematical Sciences. 21. Springer. New York. 1948.
  2. Fenichel N. Geometric singular perturbation theory // J. Differential Equations. 31. 1979. P, 53-98.
  3. Gilbarg D. The existence and limit behavior of the one-dimensional shock layer // Amer. J. Math. 73.1951. P. 256-274.
  4. Smoller J. Shock Waves and Reaction-Diffusion Equations // Grundlehren Math. Wiss. 258. Springer. New York. Berlin. 1983.
  5. Szmolyan P. Transversal heteroclinic and homoclinic orbits in singular perturbation problems // J. Differential Equations. 92.1991. P. 252-281.
  6. Wagner D. H. The existence and behavior of viscous structure for plane detonation waves // SIAM J. Math. Anal. 20. 1989 P. 1035-1054.
  7. Wagner D. H. Detonation waves and deflagration waves in the one-dimensional ZND-model for high Mach number combustions // IMA-preprint 498. Institute for Mathematics and its Applications, University of Mmnesota, MinneapoHs, MN. 1989.
  8. Williams F. A. Combustion Theory. Benjamin - Cummings, Menlo Park, OA, 1985.

Statistics

Views

Abstract - 11

PDF (Russian) - 7

Cited-By


Refbacks

  • There are currently no refbacks.

Copyright (c) 1970 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies