O metode Rimana-Adamara dlya odnoy sistemygiperbolicheskogo tipa vtorogo poryadka

Abstract


Построена матрица Римана-Адамара задачи Коши-Гурса. Методом Римана-Адамара получено классическое
решение задачи Коши-Гурса для гиперболических уравнений второго порядка в случае, когда
матрица коэффициентов имеет комплексно - сопряженные корни.

About the authors

V L Spitsyn

References

  1. Андреев А. А. Об одном классе систем дифференциальных уравнений гиперболического типа // Дифференциальные уравнения : Сб. науч. тр. пед.ин-тов РСФСР. Рязан. гос. пед. ин-т. 1980. Вып. 16. С. 9-14.
  2. Бейтмен Г., Эрдейн А. Высшие трансценденгные функции. М.: Наука, 1965. Т.1.
  3. Беллман Р. Введение в теорию матриц. М.: Наука, 1969.
  4. Бцадзе А.В. Уравнения смешанного типа. М.: АН СССР, 1959,
  5. Бщадзе А. В. Некоторые классы уравнений в частных производных. М,: Наука, 1981.
  6. Векуа И.Н. Новые методы решения эллипгических уравнений. М.: Гостехиздат, 1948.
  7. Соболев С. Л. Уравнения математической физики. М.: Гостехиздат, 1947.

Statistics

Views

Abstract - 13

PDF (Russian) - 3

Cited-By


Refbacks

  • There are currently no refbacks.

Copyright (c) 1970 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies