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Abstract

Quantum particles are considered as continuous media having peculiar
properties. These properties are formulated so that all main quantum me-
chanics postulates can be strictly derived from them. A deterministic de-
scription of the process of position measurement is presented. The mecha-
nism of occurrence of randomness in the measurement process is shown and
the Born rule is derived. A realistic interpretation of the wave function as a
component of a peculiar variable force acting on the apparatus is introduced,
and the wave equation is derived from the continuity equation of the peculiar
continuum. The deterministic view on the phenomena of the microcosm al-
lows us to eliminate the limitations caused by the uncertainty principle and
to describe dynamically those processes that cannot be considered using
conventional quantum mechanics.
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Introduction

The solving problem of the local realism [1] is a prerequisite for any funda-
mental microcosm theory. We sure that the nonrealistic attitude is unacceptable
for any physical theory and the wave function has to be interpreted, in accor-
dance with Srodinger’s view [2] “... as giving somehow the density of the stuff of
which the world is made” [3]. This means, inter alia, that any physical quantity
is an attribute of a material object (as material objects quantum particles' will
be considered). Therefore the substance generating the wave function should be
distributed in space. The type of this distribution, first of all, must satisfy the
principle of locality. Then the simultaneous transformation of the wave function
in the remote points in space, as the resulting of a local external effect on the
quantum particle, forces us to suppose that there is no empty space between the
parts of the substance. Thus, we have the continuum (hereinafter referred to as
a physical continuum), which is not only a mathematical abstraction, but also a
physical reality. In this sense, the concept of a material point (the term of indi-
vidual particle will not be used here) of continuum mechanics should be taken
literally as an element of the substance corresponding to a point in space, i.e. the
set of the matter points that forms any particular body has the cardinality of
the continuum. These material points can play the role of intermediaries in the
instantaneous interaction between the material points that are remote in space.
This assumption allows us to eliminate the violation of relativistic requirements [4]
when interpreting the non-unitary processes (including the EPR paradox) while
maintaining the principle of local realism.

1. Attributes of the physical continuum

The first property of the physical continuum is analogous to the classical one
and consists in the fact that material points move in accordance with the principle
of least action [5].

In addition, the physical continuum has some extraordinary properties. The
second property is that there are no interaction forces between the material points
forming the continuum of an elementary particle (there are no stresses within ho-
mogeneous physical continuum).? This means that more than one of the material
points can have the same position, i.e. the continuous medium can be a collection
of continuous media. Taking into account the quantum superposition principle, it
is logical to assume that these continuous media are formed, ultimately, by ma-
terial fields. The fact of the interaction of remote in space particles in entangled
states gives each of these fields its own physical reality, i.e., they exist even in
those spatial regions where the wave function is zero.

Suppose that a quantum particle (hereinafter referred to as a quantum ob-
ject or simply an object) is a homogeneous, inseparable object within quantum
mechanics. This gives rise to the following specific features of the dynamics:

— the inertia property of each material point is determined by the total mass of

the object, and not by the mass density, as in classical continuum mechanics

'We suppose that a quantum particle obeys the laws of conventional quantum mechanics.
Immediately after measuring position it is described by the wave function in the form of a
position delta-function, but it is not a point-like particle.

2This does not mean that there is no interaction between the material points at all. In the
paper [6], the normalizing procedure required to describe the non-unitary process is considered
as a mathematical image of a real physical process. Such a process is impossible without a
peculiar interaction between material points.
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Quantum evolution as a usual mechanical motion of peculiar continua

(the third property);

— any change in the measure of one of the material points subset in a local
volume of space, instantly changes the measures of all the rest of other
subsets in the whole space, which physically means that any local external
effect on the quantum object result in the simultaneous transformation of
the state of the entire continuous medium everywhere (this property have
been considered in detail in [6]).

To introduce the spatial distribution of the physical continuum, define the

measure dM of the material point set occupying an infinitesimal volume dV as

dQ

Q’

where @ is any additive conservative quantity such as electric charge, gravitational
mass of the quantum object etc; d@ is the value of this quantity for a substance
in the volume dV. Therefore, for the density of the measure, we have

dM

av’

dM =

p(x7 Y, Z) =

and for normalization condition

/_Z/_Z/_Zp(x,y,z)dwdydz:l. (1)

Taking into account the forth property of the physical continuum, the formal
normalisation procedure (1) should be considered as a mathematical image of the
real transformation of a continuous medium that accompanies any non-unitary
processes in conventional quantum mechanics, such as the wave function collapse
in the measurement process. In accordance with the definition the measure M is
an additive quantity having a positive real value.

Suppose, in accordance with the second property, that the continuous medium
of any quantum object is formed by a set of the matter fields. Denote by &; = x(0),
& = y(0), &3 = 2(0) are the referential coordinates of the material particle (here-
inafter, the notation &; will be used as material coordinates (in this case index
j corresponds to the coordinate axes) whereas coordinate variables of the fields
at time t; will be denoted by x;,y;, z;. In accordance with the second property,
material points can not uniquely be identified only by material coordinates (in
general, their initial velocities are necessary), however, in the case of matter fields,
material coordinates uniquely identify material points. We introduce the notion of
the complex density of a measure (or simply a complex density) as a characteristic
of a material point, such that

(€1, &2, &3, v0,t) = p(&1, 82,83, Vo, t) exp %5[$(€1,§2,€3,50,t)at,to],

where the action S[z(&1,&2,E3,00,1t),t,to] is an attribute of the material point;
material points move along the path x(&1, &2, &3, U9, t) corresponding to the prin-
ciple of least action; tg is an initial time. For the one-dimensional motion, which
will only be considered, we have

/-l“(g) Vo, t) = p(§> o, t) €xp %S[x(ga o, t)v ta tO]
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And for a closed system, we obtain

n(& E,t) = p(& E,t) exp%s[x(&E,t),t, to]. (2)
where E is the energy of the material point. If the material points of the matter
field have the same moving direction and the same energy, then the continu-
ity property conserves in time (see the next section for details). The function
pFe(€,t) (the energy dependence and the motion direction are indicated by a
superscript®) for a matter field can be rewritten in form of the field

1Bz, 1) = / TP 08— 2P (1)) de,

—00

where 2%%(¢,t) is the path corresponding to the least action of the material
point & having the energy E and the motion direction a.. Suppose that the complex
density determines the summation law of the measure densities of those particles,
that are in the same point in space in the form

ot = [ gul B o,1) B 3)

wu(z,t) is a complex density of the measure. The complex weight g, (F) of the
fields forming a continuous medium is determined by the history of the formation
of the continuum mechanical state. Thus, for the measure density, we obtain

pz,t) = ’,u(ac, t)‘

Since the measure (1) of objects conserves in the processes considering in quan-
tum mechanics, for the measure density the continuity equation can be written.
Dependence (2) allows us to write corresponding equation for the strength of a
physical continuum .

2. The continuity equation

First of all, it is necessary to determine the conditions under which a continu-
ous medium remains continuous in time. In accordance with the second property
of the physical continuum, this means that the mater fields that formed it at some
initial time remain fields in the subsequent time. Suppose F(x) is a stationary
external force field. By & = z1(to) and & = xa(to) (w2(to) > x1(to)) denote the
material coordinates (Lagrange variables) of two specified material points of the
continuous medium. At the time ¢ their positions is expressed as

t

2(6r,1) = 1 (to) + / o(Er, 7)dr,
to
t

x(&2,t) = x2(to) +/ v(&, T)dT.

to

3The direction index o has only two values “4” for the motion along the axis and “—" for
the motion in the opposite direction. For brevity, it will be used only if necessary (in the cases
of finite motion, when there are two continua moving in opposite directions).
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where T is a time variable; ¢ denotes fixed points in time, such as the initial time
to and the current time ¢; v(&1,7), v(&2, T) are respectively the velocities of the
first and the second material points. Then the distance between the considered
points at an arbitrary time is determined by the expression

t
Az = Axg +/ (v(&,7) —v(&, 7)) dr =

to

t 1 T
= Azg + / (U(fg,to) — ’U(fl,to) + m/ (F(fg,@) — F(fl, 9)) d9> dr,
to to
where Axg = xa(tg) — x1(to); 6 is a time variable; F'(&1,0), F(&2,0) are the forces
acting on the points.* In order for the one-to-one correspondence between the
material points £ and positions x to take place all the time, it is necessary that

lim Az =0. (4)

A(JC()HO

Suppose, that the spatial interval Az is small. By ¢ denote the time interval
Azo/v(&1,t0); by n denote the spatial variable. Then

% o F(gl) Q)dT ~ ;(/;0+E F(gl, 0)d9 + 6F(£1,t0)> _
B i x(€1,7) F(W) Awo )
om </$(52¢o) v(€1,m) nt v(§1,t0)F(x(€1’t0))
and

rr F(&,0)dr ~ ;(/TE F(&,0)d0 + eF (&, r)) =

m to to

_ 1 #enn) F(n) Axg
om </z(52¢o) v(&2,7) dn + 0(517t0)F(x(§2’T))>‘

Thus, for Az we obtain

Az = (1 + mv(;,to) (F(fﬁ)x:z(§27t)5 — F(2)p=¢ (t — t0)>>A:Uo+

t

+ /(U(fz,to) —v(&1,t0) + % /x;(i: <vf§ii77)7) - Ué?jz?)) d?7> dr,

to

To satisfy condition (4) it is necessary that

lim ((’Ug(to) - ’Ul(to)) =0

Axg—0

4These are concentrated forces which act on a matter point as a whole quantum object. This
does not result in infinite acceleration, since, as supposed above, the inertia of each material
point is characterized by the mass of the entire object.
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(velocity field continuity), and

v(€1,m) = v(&2,m)

(velocity field stationarity). For the last identity to be satisfied with the conditions
under consideration, it is necessary and sufficient to have

F Az(r)
mv(&r, )

v(&2,7) = (&1, 7 +e) =06, 7) +

As Ax — 0, the last expression takes the form

ov  OU(x) 0F
(50 “ae )4 =5

where F is the total mechanical energy of the material point. This means that
the material points of the matter field involved in the formation of the physical
continuum have the same energy.

Consider the one-dimensional motion of the matter field described above. The
infinitesimal individual body having the volume d¢ at time ¢ = 0 and identified
by the material coordinate £ = x(0) generates the density measure field at time ¢
in the form

—dz

o0
P t) = [ b ale”))dm. (5)
—0o0

where dm = pP(£)d¢ is the measure of the matter particles set occupying the
volume d¢ at point in time to; 6(z — 2 (&, ¢)) is the Dirac’s d-function; =¥ (¢, t)
is the the least action path of a material particle having the energy FE. This
expression can be considered as a continuous equation, since together with the
condition (4) it guarantees the conservation of the measure in the form

pE(£’ t) dﬂj‘(é, t) = pE(g’ tO) d€ = pE(gu tO) d{L‘(g, tO)a

where dz(&,t) denote the volume occupying a particular set of the material par-
ticles at point of time ¢. In accordance with (2) the complex density p(&,t)
expressed in terms of the density measure as follows

WE(E 1) = pP(E 1) exp 1 STaP (6,1, 7).

The actions in the last expression depend on arbitrary point in time in the past 7,
which cancel in the continuity equation in the form (5). Then for the continuity
equation in term of the complex density p(z,t), we get

uE(x,t):/oouE(xo,to) exp — (SE(x t,tP)— SE(x,to,tp)>5(w—xE(a?0,t)) dxg =

—00

= / 1E (0, t0) exp %SE(:E, t,t0)0(z — o (xg, t)) dxo,

—00
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where zg = 2(¢,t9) = ¢ and for the complex density of an arbitrary physical
continuum, as a set of the matter fields, we obtain

wu(zx,t) —Z/OOO 9a(E) </oo 1 (z0,t0) eXp%SE(w,t,to)(S(:c—xE(xo,t)) dx()) dE

—0o0
(6)
If ambient conditions do not change with time, then the velocity fields cor-
responding to the matter fields forming a homogeneous (non-compound in terms
of [7]) object are stationary. Therefore the field of Lagrangian is stationary too,
and the field of the action S¥(x,t) has the form

SE(x,t) = LF(x)t + SF(x,19).

Then for the continuity equation for the field of the complex density uf (z), we
obtain

HE (1) = / " exp(LLE @)t~ 10) ) — " (wo, )" (o, to) v

—0o0

and

w(z,t)= /Oooga(E) (/Ooexp(;iLE(x)(t—to))é(x—xE(:vo, t)),uE(aco, to) daco) dF,

—00
(7)
The equation (7) describes the evolution of the complex density p(z,t) of a
homogeneous object under stationary ambient conditions.

3. The wave function

The complex density p was introduced regardless of the measurement process,
and the classical quantities characterizing material points (and, therefore, deter-
mining the function ) are not observables. The wave function is determined by
observables generated during the special measurement process. On other hands,
both the complex density and the wave function, in accordance with the assump-
tion made, describe the same spatial distribution of the physical continuum. This
means that the complex density is a more general quantity and it should display
itself as a wave function in the measurement process.

According to the paper [6] the measurement process consists of two stages.
On the first of them, the quantum object interacts with the active elements of
the apparatus. As the result of this interaction, the energy of the active element
increases up to a threshold value. Then a macroscopic registering process is initi-
ated, and spatial distribution of the continuous medium instantly changes, what
is formally expressed in the collapse of the wave function. Since the wave function
of the of the system reveal itself at the first stage, we consider this stage only.

Let the system consisting of the object and one of the active element be closed
(such a consideration is possible if the interaction energies of the active elements
each others anothers are negligible compared with their interaction energies with
the object). Then the interaction of the object with the active element must obey
the equation (6). This equation will be used to determine the dependence of the
energy transfer rate from the object to the active particle on the complex density.

13
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Let = be the position of the object. In general the active element consist of
a set of elementary particles. Since, the size of an element is assume to be small
compared to the spatial size Ax ~ pdx/Jp, the active element can be considered
as a quantum particle, whose position we denote by X®. In the considered case,
the active element is a composite continuous medium described by the functlon
w(X), which differs from zero inside a much smaller spatial volume than the
function u(x).

Let the active element be a harmonic oscillator. By U(X) denote correspond-
ing potential energy. By U (z, X) ~ U™ (x,X) (here X a mean value of the
active element position) denote the interaction energy of the object with the ac-
tive element. We cannot use the equation (7) because of time dependence of the
interaction energy U (x — X ), which depends on the position of the moving ma-
terial points of the object. We have a non-homogeneous system. The equation (6)
is usable in this case. It takes the form

pla, X, t) = / G(E“)( / exp %S“(X,t,toﬂ[f,u(wn),tmi“()f, to) X
x §(X — X' (Xo,7)) dX0> dE“, (8)

where E“ is the energy of the active element matter field; G(E®) is the com-
plex weight of the fields forming the continuous medium of the active element;
XE"(Xo, 1) is the least action path of the active element material point having
the energy E%; SP°(X,t) = SE°[XF"(Xy,7), X, 1] is the action on the paths of
the active element, excluding the action part corresponding to interaction with
the object. The functional

11X, 7). 1] = /OOO o(E°) (/_Z exp<; /t: (L7 (@) — U (z — X)) dT) «
x §(x — %" (w0, 7)) p®’ (w0, to) da:0> dE° (9)

describes the effect of the object on the active element; E° is the total mechanical
energy of the object material point; L°(z) is the spatial field of the object’s
Lagrangian; g(FE°) is the complex weights of the matter fields of the object.

By € = (t —t9)/N denote an infinitesimal time interval (N is an infinitely
large integer); by tx = to + ke denote the digital time variable. By R denote
interaction radius of the object with the active element and suppose that the
interaction energy U™ differs from zero only for the range of positions of the
object from X — R to X + R. If the time integral on the right hand side of (9)
is represented as an integral sum, then for the matter field having energy E° we
obtain

X ot = [~ [ st

5The condition limiting the size of the interaction field with the active element, expressed
through a change in the density p is a considerably less strict than the similar condition expressed
through a change in the complex density of . The last condition, practically, cannot be realised.
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N . .
X H exp(%Lj(xj)E) exp (—%U;”t(xj)s)é(xjﬂ —xj)dx;j,
=0

Expand the exponents containing the interaction energy in a Taylor series. Holding
the first-order term, we get

11X, p™* / / uy (o) x

X HT (z5) (1 - *Umt( j)e )5(%‘+1 — xj) dzj,

where i (x0) = 4" (20, 0); Ty(2y) = exp 1 Ly(ay)e.
Taking into account that

J
pi(xs) = ] Tr(zr)ug” (w0),
k=0

the last equation takes the form

11X,y (x), N] =
/ / H/’/’j (x; ( —%U}nt(xj)5>5($j+1—mj) dxj ~

. i (KR
%[LNO(.%N)eXp(—hZ/ ,UjoUznt(X—ZL‘j)dxj>.

S0 /X-R

Integrating over all energies E° for ¢ — 0, we obtain

11X, u(z, 7), 8] = p°(, t) exp<;Z /tt (/X:R 10z, U™ (X — z) dm) d7>.

Thus, according to (8), the complex density of the continuum of the active particle
varies with time as

“(X, 1) / G(E) </ exp}i{/( (X) = U(X)—
/ (z,7) U™ (z — X) da:) dt] x
1 (Xo,t0)d (X — Xo) dXO) dE".

From the classical point of view, the last term of the action in this equation is
generated by the the work of the force with which the object acts on the active
particle, having the position X. For this force we have

15
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R
ﬁﬂ&ﬂzﬁi/;M%X+QﬂUm@MC=
:QﬂY+Rm%4ﬂY—R%ﬂﬁKm%

~ 0°(X) (exp +5°(X + R) —exp 1 5°(X — B))U(R) ~

h h
~ p°(X) exp % (po (X)X - EOT) <exp %po (X)R - exp(—%po (X) R))U(R) =
= 2iU(R) sin(i&R) )M(Y, 7), (10)

where ( =z — X ; p°, S°, p°, E° are respectively the density, action, momentum
and energy of the object (it is supposed, that the momentum p does not depend
on the position in the interaction region); A(X) = h/p(X).

Let the active particle is a harmonic oscillator having the cyclic eigenfrequency
wp. Material points of the oscillator move in accordance with the dynamic equation
in the form

.. 1
X+ wiX =—FX,7).
m

In accordance with (10) the forces F(X,7) are the same for all matter points of
the active particle continuum and does not depend on the coordinate X. Then the
energy received by a harmonic oscillator under the action of an external variable
force is determined by the expression |8|

2
1
E(WO) = m

/ F (1) expiwgT dT

Taking into account (10), we get

2
2

A

2
E(wo) = % 2iU(R) sin( (7;1;)>| ‘/Oo (X, ) expiweT dr

Since the duration of the measurement process is less than the time 7', when the
complex density field is nonzero at the observation point, the energy E should
be limited not by the time of the force (as in [8]), but by the interaction time
At =t — ty. Then the the last expression must be rewritten in the form

2

9

E(t,tg,wp) = ﬁ‘/oo h(t — 7)h(T — to)pu(X, T) expiwoT dT

where h(t — 7), h(T — to9) are Heaviside functions; tg, t are the moments of the
beginning and end of the interaction; 5 is a constant characterizing the sensitivity
of the active particle. The time interval At must be large enough so that

0o At [
/ h(t — 7)h(T — to)u(X, T) expiwoT dT ~ lim — / w(X, T) expiwoT dr,

oo T—oo T — o0

16
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where T is the time when the field of the function }M(Y, 7')’ does not depends on
time. Then, for the rate of increase of an active particle energy, we have

2
/ w(X, 1) exp(—iwor) dr

—0o0

AE B

At T

The completion stage of the measurement process is the macroscopic registering
process [6], which is initiated when the energy one of the active particles increases
up to a threshold value.The values of the initiation threshold for the different
active particles have a statistical straggling (as well as the sensitivity ). Macro-
scopic changes are initiated by only one active particle, for which the threshold
is exceeded before the others. By EX* denote the threshold energy value for the
the active element n. This is a random quantity. Then, the random time ¢,, of the
“triggering” of the active particle n is determined by the condition

2

bn tn = B

T / (X, 7) exp(—iwoT) dT

—0o0

Thus, the registration process is initiated in that active particle for which the

value of )

1 B

T Eh

/ (X, 7) exp (—iwoT) dr

—00

is maximum. The coefficient before the module in the last expression has a random

value from 0 to oo with the probability density function f (%), which does not
depend on the positions of active particles. This coefficient converts the measure
into the registration probability P, by the particle n having the eigenfrequency

wp. This probability has the form

2
C

)

/ (X, 7) exp(—iwoT) dr

—0o0

where C' is a normalization constant. Then, integrating over all wp, for the inter-
action radius R — 0 and N — oo, the registration probability density pP(X)°

takes the form
o0 o 2
/ </ w(X, ) expiwyT d7‘> dwyo
0 —00

If to follow to the Born interpretation of the wave function, then we should suppose

that
o0 oo 2
/ </ w(X, ) expiwgT d7'> dwyo
0 —00

SHowever, there is a remark: the limit R — 0 is incorrect physically for R < AX, because,
in this case, the force (9) becomes zero; thus, we suppose that the Born interpretation has the
corresponding spatial limit.

pP(X) ~

~

(11)

17
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This equality will be satisfied if the wave function is the superposition of the
harmonic components of the force (10). Supposing this and taking into account
that

U, (X) —/ (X)) exp(—%w) de,
0
where € is a observable energy(hwy = €), we obtain
PI(X) = / p(x, ) exp %67’ dr. (12)

Using the expression for the complex density (3), we have

P(X) = /OOO (72 9o (Bl (2, 7) dE> exp %GT dr.
) o

For infinite one-dimensional motion, the parameter « has a unique value. In
this case, the spectral density of the complex measure p”(z,7) is a travelling
wave, that is, ¥ = ¢, and it is not quantized. In a finite one-dimensional motion,
two waves travelling in opposite directions form a stationary wave only for the
discrete energy values E,. In this case, the superposition of travelling waves pf
with energies close to E,, also contributes to the stationary wave function ¢¢(X),
so that 1P £ b,

The proposed representation of the wave function (11) is based on the equal-
ity (12) and is not unique. To confirm this representation, we derive the quantum
evolution law from the equation (6).

4. The wave equation
The continuity equation for the complex density according to eqrefeq:math:ex8

has the form
ue(z) = / (/ Kfto(m’,xo)ug(xo) da;()) dE,
0 —00

where for the kernel of the integral operator tho (z,x0), we have

E 5 E
Kt,to (7,20) = exp ﬁSt,to (:c,xo)(S(a? —x(¢ 7t))-
The wave function is expressed in terms of the complex density - (z) as follows

U (X) = /000 (/00 e (x) exp ;ddt) exp(—%et) de =

—00

:/Ooo</_z </Oo° (/_Z KE, (1, 20)p (v0) o) dE> exp %et dt) exp(—%et) de.

For fixed final time, initial and final positions, tg is different for material fields
corresponding to different energies and motion directions. Then, changing the
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order of integration with respect to the position xy and the energy E in the last
expression, we obtain the convolution function (K * u) (t). Using the convolution
theorem, we finally obtain

\I/t(;v):/ Ky 1o (2, 20) ¥y, (z0) dxo,

where

o 7
Ky (x,20) = / exp ﬁSEtO (x)d(x — m({E, t)) dE.
0

In accordance with [5] this expression is equivalent to the path integral 9]

Kigo(a,0) = [ exp (Slao(r)]) dao(r).

Thus we obtained the integral wave equation with the kernel in the form of a
path integral. For infinitesimal time intervals this equation takes the form of
Schrodinger equation [10,11]. Schrodinger steady-state equation is the direct con-
sequence of the fact that the stationary wave function is factorized. This formal
mathematical reason for quantization has a physical basis in the observability (in
the sense of the possibility of macroscopic registration) of the physical continuum.

Conclusion

The approach to the description of the phenomena of the microcosm consid-
ered here is fundamentally different from the approach of conventional quantum
mechanics. First of all is that the quantum mechanics assertion “. .. all occurrences
of an atomic and molecular order of magnitude, obey the “discontinuous” laws of
quanta” [7] is correct only for directly observable processes. Directly observable
processes are those that can be detected at any stage by a macroscopic apparatus.
As have been shone, this requirement implies a harmonic time dependence of the
complex density at the detector location. In the case of finite motion, this, in
turn, means that only such mechanical motion can be detected that generates a
standing wave of complex density, which result in the quantization of energy. I.e.
a superposition of only a stationary states is detectable. But it is not means that
other mechanical states do not exist. Thus, there is no reason to consider quantum
as a fundamental object and the principle of continuity “natura non facit saltus”
is correct for microscopic phenomena.

If complex density waves is generated by the mechanical motion of physical
continua definitely, then the set of the matter fields corresponding to the different
energies of this motion has the cardinality of continuum. Like energy quantization,
countability of the wave functions set is the result of the observability requirement.

Since the waves of complex density are generated by the movement of material
fields, the latter can exist even if the superposition of these waves (the complex
density p of the continuous medium) is equal to zero and the concept of physical
vacuum acquires a concrete mathematical image. In turn, the Fourier components
of complex density ¥ becomes a mathematical image corresponding to the ma-
terial waves in a physical vacuum. In accordance with [6] such a possibility is
indirectly confirmed by the interaction of particles in entangled states.

Thus all main quantum mechanics phenomena can be described using the
simple mechanical model based on the motion of a peculiar continuous medium.
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Moreover, such a representation avoids the problems associated with causality
principle, non-epistemic nature of quantum probability, contradiction with the
special relativity and so on. This approach is based on the local reality principle.

However, the theory under consideration is not reduced to quantum mechan-
ics representation. It can describe phenomena, that cannot be described by the
methods of conventional quantum mechanics . These are, first of all, phenomena
connected with the processes are “masked” by uncertainty principle. Really, sub-
ject to the description of micro-phenomena by the proposed method of mechanical
motion of material fields, we proceed to a deterministic mechanical description
and thereby avoid the quantum principle of uncertainty.

Another type of problem that can be solved by the theory under considera-
tion is a description on the fundamental level of the dynamics of open quantum
systems [6].

Competing interests. I declare that I have no competing interests.

Author’s Responsibilities. I take full responsibility for submitting the final manuscript
in print. I approved the final version of the manuscript.

References

1. Einstein A., Podolsky B., Rosen N. Can quantum mechanics description of physical reality be
considered complete?, Phys. Rev., 1935, vol. 47, no. 10, pp. 777-780. doi: 10.1103/PhysRev.
a7.777.

2. Schrodinger E. Der stetige Ubergang von der Mikro- zur Makromechanik, Naturwissen-
schaften, 1926, vol. 14, no. 28, pp. 664-666. doi: 10.1007/BF01507634; eng. transl.: Schro-
dinger E. The continuous transition from micro- to macro mechanics, In: Collected papers
on wave mechanics. New York, Chelsea Publishing Co., 1982, pp. 41-44.

3. Bell J. S. Against 'measurement’, In: Speakable and Unspeakable in Quantum Mechanics:
Collected Papers on Quantum Philosophy. Oxford, Oxford Univ. Press, 2004, pp. 213-231.
doi: 10.1017/CB09780511815676.025.

4. Maudlin T. What Bell did, J. Phys. A: Math. Theor., 2014, vol. 47, no. 42, 424010. doi: 10.
1088/1751-8113/47/42/424010.

5. Samarin A. Yu. Quantum particle motion in physical space, Adv. Studies Theor. Phys., 2014,
vol. 8, no. 1, pp. 27-34, arXiv: 1407.3559 [quant-ph|. doi: 10.12988/astp.2014.311136.

6. Samarin A. Yu. Nonlinear dynamics of open quantum systems, Vestn. Samar. Gos. Tekhn.
Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018,
vol. 22, no. 2, pp. 214-224. doi: 10.14498/vsgtulb82.

7. von Neumann J. Mathematische Grundlagen der Quantenmechanik, Grundlehren der mathe-
matischen Wissenschaften, vol. 38. Berlin, Heidelberg, New York, Springer, 1996, ix+262 pp.
doi: 10.1007/978-3-642-61409-5.

8. Landau L. D., Lifshitz E. M. Mechanics, vol.1, Course of Theoretical Physics. Oxford,
Pergamon Press, 1969, vii+165 pp., https://archive.org/details/Mechanics_541.

9. Feynman R. P. Space-time approach to non-relativistic quantum mechanics, Rev. Mod.
Phys., 1948, vol. 20, no. 2, pp. 367-387. doi: 10.1103/RevModPhys.20.367.

10. Feynman R. P., Hibbs A. R. Quantum Mechanics and Path Integrals. New York, McGraw-
Hill, 1965.

11. Kac M. Probability and related topics in physical sciences, Lectures in Applied Mathematics.
Proceedings of the Summer Seminar (Boulder, Colo., 1957), vol. 1. Lonodon, New York,
Interscience Publ., 1959, xiii4266 pp.

20


https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1007/BF01507634
https://doi.org/10.1017/CBO9780511815676.025
https://doi.org/10.1088/1751-8113/47/42/424010
https://doi.org/10.1088/1751-8113/47/42/424010
http://arxiv.org/abs/1407.3559
https://doi.org/10.12988/astp.2014.311136
https://doi.org/10.14498/vsgtu1582
https://doi.org/10.1007/978-3-642-61409-5
https://archive.org/details/Mechanics_541
https://doi.org/10.1103/RevModPhys.20.367

BecrH. Cawm. roc. texH. yu-rta. Cep. ®us.-mar. Hayku. 2020. T. 24, Ne 1. C.7-21
ISSN: 2310-7081 (online), 1991-8615 (print) d  https://doi.org/10.14498/vsgtul724

YAK 517.958:530.145

MexaHnndyecKoe JaBHKeHUe crelnduyiecKoii CIIJIOIIHOM cpeabl
KaK pu3mdeckasi OCHOBa KBAaHTOBOII 3BOJIIOIINI

A. 0. Camapun

Camapckuil rocyJapCTBEHHBIH TEXHUYECKUN YHUBEPCUTET,
Poccusi, 443100, Camapa, yin. Mosogorsapaeiickast, 244.

AnHOTanUs

KsanToBast qacTuma paccMarpuBaeTcsi Kak CILIOIIHAS Cpefa, 00J1a a0~
Masi PSAJIOM CIEIUPUIECKAX CBONCTB. DTU CBOUCTBA CHOPMYIUPOBAHBI TAK,
9TOOBI OCHOBHBIE MTOCTYJIATHI TPAIUITUOHHON KBAHTOBON MEXaHUKHN OBLIN TIPsi-
MBIM CJIEJICTBUEM MEXAHUYIECKOTO JIBUYKEHUsT TAKON CIIONTHOM cpebl. [Ipes-
CTaBJIEHO JIETEPMUHUCTUYIECKOE OIMCAHKE IIPOIECCa B3aMMOJIEHCTBHS KBAH-
TOBOIl YaCTHUIBI C M3MEPUTEIbHBIM TPUOOPOM IPU M3MEPEHUU KOOPINHA-
Tel. [lokazana mpupoa BOSHUKHOBEHUsI CJIyYailHOCTH B IIPOIECCE M3Mepe-
HUsl U BBIBEJEHO MPAaBWIO BOpHA [jIs TPOCTPAHCTBEHHON IJIOTHOCTH BEPO-
araoctr. BorHOBass DYHKINS UHTEPIPETUPYETCS KaK Crenmduaeckass 00b-
eMHasl CHJIa, C KOTOPOU CILJIONTHAS CpeJia KBAHTOBOTO 00HEKTa BO3/IEHCTBYeT
Ha M3MEpPUTEIb, & KBAHTOBOE BOJIHOBOE YPABHEHNE BBIBOJINUTCS U3 YPaBHEHUsI
HEIPEPBIBHOCTY JjIsI 3TOM cpebl. [IpenioKeHHbI T0IX0/ K [IPEICTABIEHUIO
MUKPOSIBJICHU ITO3BOJISIET UCKJIIOUATH OTPDAHWYEHNs, CBsI3aHHBIE C IIPUHIIN-
IIOM HEOIPEIEIEHHOCTH, U OIUCHIBATH JUHAMUKY ITPOIECCOB HEIOCTYITHBIX
JITsT PACCMOTPEHUsI METO/IAMHU KBAHTOBOI MEXaHUKU.

KuroueBble ciioBa: JeTEpPMUHUCTUYIECKOE ONMCAHNE KBAHTOBBIX SIBJICHHUIT,
CILJIONITHAS Cpea, IIPUHITUIL JIOKAJIBHOI'O pean3Ma, MaTepruaJibHOe 10JIe, YPaB-
HEHUE HEIPEPBIBHOCTH, PEAJMCTHIECKOE IIPEICTABJICHIE BOJHOBON (DYyHK-
uu, TpaBuao BopHa, TPUHIUIT HEOIPEIEIeHHOCTH.

Honyuenue: 21 miona 2019 r. / Ucnpasnenne: 12 okradpa 2019 r. /
pungarue: 11 noabpa 2019 r. / IlyGuukanus owsaiin: 7 dbespasa 2020 r.

Konkypupyomiye nHTepecsl. { 3agBiId0, YTO y MeHs HeT KOHKYPHUPYIOIIUX UHTEPe-
COB B OTHOITICHUU JIAHHOMW CTaThU.

ABTOpCKaﬂ OTBETCTBEHHOCTD. $1 HECy IIOJIHYIO OTBETCTBEHHOCTDL 3a IIPEeICTaBJICHUE
OKOHYATEJbHOM’ PYKOIIICHU B II€e9aTHOM BH/JIE. a OﬂO6pI/IJI OKOHYAaTEeJIbHBINI BapUuaHT PYKO-
II1CH.
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