Journal of Samara State Technical University, Ser. Physical and Mathematical SciencesJournal of Samara State Technical University, Ser. Physical and Mathematical Sciences1991-86152310-7081Samara State Technical University2063710.14498/vsgtu1690Original ArticleStability and convergence of difference schemes for the multi-term time-fractional diffusion equation with generalized memory kernelsKhibievAslanbek Khakkhibiev@gmail.comInstitute of Applied Mathematics and Automation1509201923358259714022020Copyright © 2019, Samara State Technical University2019In this paper, a priori estimate for the corresponding differential problem is obtained by using the method of the energy inequalities. We construct a difference analog of the multi-term Caputo fractional derivative with generalized memory kernels (analog of L1 formula). The basic properties of this difference operator are investigated and on its basis some difference schemes generating approximations of the second and fourth order in space and the $(2{-}\\alpha_0)$-th order in time for the generalized multi-term time-fractional diffusion equation with variable coefficients are considered. Stability of the suggested schemes and also their convergence in the grid $L_2$-norm with the rate equal to the order of the approximation error are proved. The obtained results are supported by numerical calculations carried out for some test problems.fractional derivativegeneralized memory kernela priori estimatesfractional diffusion equationfinite difference schemestabilityconvergenceдробная производнаяобобщенная функция памятиаприорные оценкиуравнение диффузии дробного порядкаразностные схемыустойчивостьсходимостьOldham K. B., Spanier J., The fractional calculus; Theory and applications of differentiation and integration to arbitrary order, Mathematics in Science and Engineering, 111, Academic Press, New York, London, 1974, xiii+234 pp.Podlubny I., Fractional Differential Equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198, Academic Press, San Diego, 1999, xxiv+340 pp.Applications of Fractional Calculus in Physics, ed. R. Hilfer, World Scientific, Singapore, 2000, viii+463 pp.Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006, xvi+523 pp.Jiao Z., Chen Y., Podlubny I., Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives, Springer Briefs in Control, Automation and Robotics, Springer-Verlag, London, 2012, xiii+90 pp.Luchko Y., "Boundary value problems for the generalized time-fractional diffusion equation of distributed order", Fract. Calc. Appl. Anal., 12:4 (2009), 409-422Luchko Y., "Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation", J. Math. Anal. Appl., 374:2 (2011), 538-548Gao G. H., Alikhanov A. A., Sun Z. Z., "The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations", J. Sci. Comput., 73:1 (2017), 93-121Sandev T., Chechkin A., Kantz H., Metzler R., "Diffusion and Fokker-Planck-Smoluchowski equations with generalized memory kernel", Fract. Calc. Appl. Anal., 18:4 (2015), 1006-1038Алиханов А. А., "Априорные оценки решений краевых задач для уравнений дробного порядка", Дифференц. уравнения, 46:5 (2010), 658-664Alikhanov A. A., "Boundary value problems for the diffusion equation of the variable order in differential and difference settings", Appl. Math. Comput., 219 (2012), 3938-3946Alikhanov A. A., "A time-fractional diffusion equation with generalized memory kernel in differential and difference settings with smooth solutions", Comput. Methods Appl. Math., 17:4 (2017), 647-660Alikhanov A. A., "A new difference scheme for the time fractional diffusion equation", J. Comput. Phys., 280 (2015), 424-438Alikhanov A. A., "Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation", Appl. Math. Comput., 268 (2015), 12-22Алиханов А. А., "Устойчивость и сходимость разностных схем для краевых задач уравнения диффузии дробного порядка", Ж. вычисл. матем. и матем. физ., 56:4 (2016), 572-586Таукенова Ф. И., Шхануков-Лафишев М. Х., "Разностные методы решения краевых задач для дифференциальных уравнений дробного порядка", Ж. вычисл. матем. и матем. физ., 46:10 (2006), 1871-1881Sakamoto K., Yamamoto M., "Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems", J. Math. Anal. Appl., 382:1 (2011), 426-447Luchko Y., "Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation", Fract. Calc. Appl. Anal., 15:1 (2012), 141-160Alikhanov A. A., "A difference method of solving the Steklov nonlocal boundary value problem of second kind for the time-fractional diffusion equation", Comput. Methods Appl. Math., 17:1 (2017), 1-16Stynes M., O'Riordan E., Gracia J. L., "Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation", SIAM J. Numer. Anal., 55:2, 1057-1079Jin B., Lazarov R., Zhou Z., "An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data", IMA J. Numer. Anal., 36:1, 197-221Jin B., Lazarov R., Sheen D., Zhou Z., "Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data", Fract. Calc. Appl. Anal., 19:1, 69-93Gao G. H., Sun Z. Z., Zhang H. W., "A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications", J. Comput. Phys., 259 (2014), 33-50Samarskii A. A., The Theory of Difference Schemes, Pure and Applied Mathematics, Marcel Dekker, 240, Marcel Dekker Inc., New York, 2001, 786 pp.Gao G. H., Sun Z. Z., "A compact finite difference scheme for the fractional sub-diffusion equations", J. Comput. Phys., 230:3 (2011), 586-595