Journal of Samara State Technical University, Ser. Physical and Mathematical SciencesJournal of Samara State Technical University, Ser. Physical and Mathematical Sciences1991-86152310-7081Samara State Technical University2076110.14498/vsgtu1342Original ArticleA method of extended normal equations for tikhonov’s regulatization problems with differentiation operatorZhdanovAlexandr I(Dr. Phys. & Math. Sci.; zhdanovaleksan@yandex.ru), Dean, Faculty of the Distance and Additional Educationzhdanovaleksan@yandex.ruMikhaylovIvan A(mikhaylovivan90@mail.ru; Corresponding Author), Postgraduate Student, Dept. of Higher Mathematics & Computer Sciencemikhaylovivan90@mail.ruSamara State Technical University1509201418313214218022020Copyright © 2014, Samara State Technical University2014This article is devoted to a new method of ill-conditioned linear algebraic systems solving with the help of differentiation operator. These problems appear while solving the ﬁrst kind integral Fredholm equations. The most difficult thing about this method is that differential operator discrete analogue matrix is rank deﬁciency matrix. The generalized singular value decomposition methods are used to solve those problems. The approach has high computational complexity. This also leads to additional computational error. Our method is based on the original regularized problem transformation into equivalent augmented regularized normal equation system using differential operator discrete analogue. The problem of spectrum matrix investigation of augmented regularized normal equation system with rank deﬁciency differential operator discrete analogue matrix is very relevant nowadays. Accurate eigenvalue spectrum research for this problem is impossible. That is why we estimated spectrum matrix bounds. Our estimation is based on a wellknown Courant-Fisher theorem. It is shown that estimated spectrum matrix bounds are rather accurate. The comparison between the proposed method and standard method based on the solving of normal system of equations is done. As shown in the paper, the condition number of normal method matrix is bigger than the condition number of augmented normal equations method matrix. In conclusion test problems description is given which proves our theoretical background.spectrum of matrixextended regularized normal equations systemcondition numberспектр матрицырасширенные регуляризованные нормальные системычисло обусловленности[Abdelmalek N. N. A program for the solution of ill-posed linear systems arising from the discretization of the Fredholm integral equation of the ﬁrst kind // Computer Physics Communications, 1990. vol. 58, no. 3. pp. 285-292. doi: 10.1016/0010-4655(90)90064-8.][Delves L. M., Mohamed J. L. Computational Methods for Integral Equations. Cambridge: Cambridge University Press, 1985. 376+xii pp. doi: 10.1017/CBO9780511569609.][Hansen P. C. REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems // Numerical Algorithms, 1994. vol. 6, no. 1. pp. 1-35. doi: 10. 1007/BF02149761.][Bouhamidi A., Jbilou K., Reichel L., Sadok H. An extrapolated TSVD method for linear discrete ill-posed problems with Kronecker structure // Linear Algebra and Its Applications, 2011. vol. 434, no. 7. pp. 1677-1688. doi: 10.1016/j.laa.2010.06.001.][Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М.: Наука, 1979. 286 с.][Phillips D. L. A technique for the numerical solution of certain integral equations of the ﬁrst kind // JACM, 1962. vol. 9, no. 1. pp. 84-97. doi: 10.1145/321105.321114.][Björck Å., Eldén L. Methods in numerical algebra for ill-posed problems: Technical Report LiTH-MAT-R33-1979. Linköping, Sweden, 1979. 267 pp.][Wing G. M. A Primer on Integral Equations of the First Kind / Other Titles in Applied Mathematics. Los Alamos, New Mexico: Los Alamos National Laboratory, 1991. 141+xiv pp. doi: 10.1137/1.9781611971675.][Bauer F., Lukas M. A. Comparingparameter choice methods for regularization of ill-posed problems // Mathematics and Computers in Simulation, 2011. vol. 81, no. 9. pp. 1795-1841. doi: 10.1016/j.matcom.2011.01.016.][Liu C.-S. A dynamical Tikhonov regularization for solving ill-posed linear algebraic systems // Acta Applicandae Mathematicae, 2013. vol. 123, no. 1. pp. 285-307. doi: 10.1007/s10440-012-9766-3.][Hansen P. C. Regularization Tools version 4.0 for Matlab 7.3 // Numer. Algor., 2007. vol. 46, no. 2. pp. 189-194. doi: 10.1007/s11075-007-9136-9.][Жданов А. И. Метод расширенных регуляризованных нормальных уравнений // Ж. вычисл. матем. и матем. физ., 2012. Т. 52, № 2. С. 205-208.][Stor N. J., Slapničar I., Barlow J. L. Accurate eigenvalue decomposition of real symmetric arrowhead matrices and applications // Linear Algebra and its Application, 2015. vol. 464, no. 1. pp. 62-89, arXiv: 1302.7203 [math.NA]. doi: 10.1016/j.laa.2013.10.007.][Demmel J. W. Applied Numerical Linear Algebra / Other Titles in Applied Mathematics. Berkeley: University of California, 1997. 416+xi pp. doi: 10.1137/1.9781611971446.]