Animal models of chronic pain. In vivo experiments

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


As a result of population aging and increasing of comorbide patients procent, chronic pain nowadays is the one of the most important medical problems and its treatment becoming one of progressive and popular researching topics. First part of acute or chronic pain research is a model that meets the specified criteria. First model of cronic pain – sciatic nerve damaging was founded and proven more than 30 years ago. Nowadays there is a lot of in vivo and in vitro models that matched with different pathologies and also mechanisms of chronic nociceptive and neuropathic pain on different levels have been learned. In this article we review the most effective and often used rat models of chronic pain its mechanisms and assessment methods. The information based on the most citated articles for 10 years.

Full Text

Restricted Access

About the authors

V. V. Khinovker

Federal Siberian Research Clinical Centre FMBA of Russia; Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky

Author for correspondence.
ORCID iD: 0000-0002-3162-6298

Russian Federation, Krasnoyarsk

к. мед. н., заведующий отделением анестезиологии и реанимации

E. V. Khinovker

Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky

ORCID iD: 0000-0002-8860-9480

Russian Federation, Krasnoyarsk


  1. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33(1):87–107. doi: 10.1016/0304-3959(88)90209-6.
  2. Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 2009;32:1–32. doi: 10.1146/annurev.neuro.051508.135531.
  3. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain. 2009;10(9):895–926. doi: 10.1016/j.jpain.2009.06.012.
  4. Interagency Pain Research Coordinating Committee. National pain strategy: a comprehensive population health-level strategy for pain. Washington, DC: US Department of Health and Human Services, National Institutes of Health; 2016.
  5. Goldberg DS, McGee SJ. Pain as a global public health priority. BMC Public Health. 2011; 11: 770. [Электронный ресурс. Режим доступа: doi: 10.1186/1471-2458-11-770 (дата обращения 12.07.2020).
  6. Gazenkampf AA, Khinovker VV, Pelipetskaya EYu, Pozharitskaya DV. Organization of chronic pain treatment on the example of the Spanish healthcare system. Sibirskoe meditsinskoe obozrenie. 2019;3:16–23. doi: 10.20333/2500136-2019-3-16-23 (in Russ).
  7. Treede RD, Rief W, Barke A et al. Chronic pain as a symptom or a disease: The IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain. 2019;160:19–27. doi: 10.1097/j.pain.0000000000001384.
  8. Raffaeli W, Arnaudo E. Pain as a disease: An overview. J. Pain Res. 2017;10:2003–8. doi: 10.2147/JPR.S138864.
  9. Yam MF, Loh YC, Tan CS et al. General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation.Int. J. Mol. Sci. 2018;19(8):2164. doi: 10.3390/ijms 19082164.
  10. Da Silva JT, Seminowicz DA. Neuroimaging of pain in animal models. PAIN Reports. 2019;4(4):e732. doi: 10.1097/pr9. 0000000000000732.
  11. Heinricher MM. Pain Modulation and the Transition from Acute to Chronic Pain. Adv. Exp. Med. Biol. 2016;904:105–15. doi: 10.1007/978-94-017-7537-3_8.
  12. Pujol J, Martínez-Vilavella G, Llorente-Onaindia J et al. Brain imaging of pain sensitization in patients with knee osteoarthritis. Pain. 2017;158(9):1831–8. doi: 10.1097/j.pain. 0000000000000985.
  13. Meacham K, Shepherd A, Mohapatra DP, Haroutounian S. Neuropathic Pain: Central vs. Peripheral Mechanisms. Curr. Pain Headache Rep. 2017;21(6):28. doi: 10.1007/s11916-017-0629-5.
  14. Meacham K, Shepherd A, Mohapatra DP, Haroutounian S. Neuropathic Pain: Central vs. Peripheral Mechanisms. Curr. Pain Headache Rep. 2017;21(6):28. doi: 10.1007/s11916-017-0629-5.
  15. Deseure K, Hans G. Behavioral study of non-evoked orofacial pain following different types of infraorbital nerve injury in rats. Physiology & Behavior. 2015;138:292–6. doi: 10.1016/j.physbeh.2014.10.009.
  16. Hirata H, Pataky A, Kajander K, LaMotte RH, Collins JG. A model of peripheral mononeuropathy in the rat. Pain. 1990;42(2):253-5. doi: 10.1016/0304-3959(90)91169-j.
  17. Imamura Y, Kawamoto H, Nakanishi O. Characterization of heat-hyperalgesia in an experimental trigeminal neuropathy in rats. Experimental Brain Research. 1997;116(1),97–103. doi: 10.1007/pl00005748.
  18. Henry MA, Freking AR, Johnson LR, Levinson SR. Sodium channel Nav1.6 accumulates at the site of infraorbital nerve injury. BMC Neuroscience. 2007;8(1):56. doi: 10.1186/1471-2202-8-56.
  19. Kernisant M, Gear RW, Jasmin L, Vit J-P, Ohara PT. Chronic constriction injury of the infraorbital nerve in the rat using modified syringe needle. Journal of Neuroscience Methods. 2008;172(1):43–7. doi: 10.1016/j.jneumeth.2008.04.013.
  20. Ahn DK, Lim EJ, Kim BC et al. Compression of the trigeminal ganglion produces prolonged nociceptive behavior in rats. European Journal of Pain. 2009;13(6):568–75. doi: 10.1016/j.ejpain.2008.07.008.
  21. Garry EM, Delaney A, Anderson HA et al. Varicella zoster virus induces neuropathic changes in rat dorsal root ganglia and behavioral reflex sensitisation that is attenuated by gabapentin or sodium channel blocking drugs. Pain. 2005;118(1):97–111. doi: 10.1016/j.pain.2005.08.003.
  22. Barbour KE, Boring M, Helmick CG, Murphy LB, Qin J. Prevalence of Severe Joint Pain Among Adults with Doctor-Diagnosed Arthritis — United States, 2002-2014. MMWR Morb. Mortal. Wkly Rep. 2016;65(39):1052–6. doi: 10.15585/mmwr.mm6539a2.
  23. Fischer, Bradford D et al. Animal models of rheumatoid pain: experimental systems and insights. Arthritis research & therapy. 2017;19:146. doi: 10.1186/s13075-017-1361-6.
  24. Berge O-G. Predictive validity of behavioural animal models for chronic pain. British Journal of Pharmacology. 2011;164(4):1195–206. doi: 10.1111/j.1476-5381.2011.01300.x.
  25. Butler SH, Godefroy F, Besson J-M, Weil-Fugazza J. A limited arthritic model for chronic pain studies in the rat. Pain. 1992;48(1):73–81. doi: 10.1016/0304-3959(92)90133-v.
  26. Wilson AW, Medhurst SJ, Dixon CI et al. An animal model of chronic inflammatory pain: pharmacological and temporal differentiation from acute models. Eur. J. Pain. 2006,10:537–49. doi: 10.1016/j.ejpain.2005.08.003.
  27. Roy S, Ghosh S. Animal models of rheumatoid arthritis: correlation and usefulness with human rheumatoid arthritis. Indo Amer. J. Pharm. Res. 2013;3:6131–42.
  28. Kalbhen DA. Chemical model of osteoarthritis – a pharmacological evaluation. J. Rheumatol. 1987;14 Spec No:130-131.
  29. Kim JE, Song DH, Kim SH et al. Development and characterization of various osteoarthritis models for tissue engineering. PLoS One. 2018;13(3):e0194288. doi: 10.1371/journal.pone.0194288.
  30. Hoyland JA, Brown KK, Hsieh LC et al. Moderation of iodoacetate-induced experimental osteoarthritis in rats by matrix metalloproteinase inhibitors. Osteoarthritis Cartilage. 2001;9:751–60. doi: 10.1053/joca.2001.0472.
  31. Fernihough J, Gentry C, Malcangio M, et al. Pain related behaviour in two models of osteoarthritis in the rat knee. Pain, 2004;112(1):83–93. doi: 10.1016/j.pain.2004.08.004.
  32. Janusz MJ, Hookfin EB, Heitmeyer SA et al. Moderation of iodoacetate-induced experimentalosteoarthritis in rats by matrix metalloproteinase inhibitors. Osteoar-thritis Cartilage. 2001;9:751–60. doi: 10.1053/joca.2001.0472.
  33. Taneja VD. Genetic Predisposition to Autoimmune Diseases Conferred by the Major Histocompatibility Complex: Utility of Animal Models. In: Rose N., Mackay I., eds. The Autoimmune Diseases (Fifth Edition). Elsevier; 2014.
  34. Choudhary N, Bhatt LK, Prabhavalkar KS. Experimental animal models for rheumatoid arthritis. Immunopharmacology and Immunotoxicology. 2018;40(3):193–200. doi: 10.1080/08923973.2018.1434793.
  35. Burma NE, Leduc-Pessah H, Fan CY, Trang T. Animal models of chronic pain: Advances and challenges for clinical translation. Journal of Neuroscience Research; 2016;95(6):1242–56. doi: 10.1002/jnr.23768.
  36. Adam B, Liebregts T, Gschossmann JM et al. Severity of mucosal inflammation as a predictor for alterations of visceral sensory function in a rat model. Pain. 2006;123:179–86. doi: 10.1016/j.pain.2006.02.029.
  37. Kimball ES, Palmer JM, D’Andrea M. et al.Acute colitis induction by oil of mustard results in later development of an IBS-like accelerated upper GI transit in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2005;288:G1266-G1273.
  38. Traub RJ, Tang B, Ji Y, Pandya S, Yfantis H, Sun Y. A rat model of chronic postinflammatory visceral pain induced by deoxycholic acid. Gastroenterology. 2008;135(6):2075–83. doi: 10.1053/j.gastro.2008.08.051.
  39. Birder L, Andersson KE. Animal Modelling of Interstitial Cystitis/Bladder Pain Syndrome. Int. Neurourol. J. 2018;22(Suppl 1):S3-S9. doi: 10.5213/inj.1835062.531.
  40. Song PH, Chun SY, Chung JW et al. Comparison of 5 Different Rat Models to Establish a Standard Animal Model for Research Into Interstitial Cystitis. Int. Neurourol. J. 2017;21(3):163–70. doi: 10.5213/inj.1734898.449.
  41. Gregory NS, Harris AL, Robinson CR et al. An overview of animal models of pain: disease models and outcome measures. J. Pain. 2013;14(11):1255–69. doi: 10.1016/j.jpain.2013.06.0.
  42. Sluka KA, Price MP, Wemmie JA, Welsh MJ. ASIC3, but not ASIC1, channels are involved in the development of chronic muscle pain. In: Dostrovsky J.O., Carr D.B., Koltzenburg M., eds. Proceedings of the 10th World Congress on Pain. Seattle: IASP Press; 2003:71–9.
  43. Rakel BA, Blodgett NP, Bridget ZM et al. Predictors of postoperative movement and resting pain following total knee replacement. Pain. 2012;153:2192–203. doi: 10.1016/j.pain.2012.06.021.
  44. Vance CG, Rakel BA, Blodgett NP et al. Effects of Transcutaneous Electrical Nerve Stimulation on Pain, Pain Sensitivity, and Function in People With Knee Osteoarthritis: A Randomized Controlled Trial. Phys. Ther. 2012;92(7):898–910. doi: 10.2522/ptj.20110183.
  45. Finan PH, Buenaver LF, Bounds SC et al. Discordance between pain and radiographic severity in knee osteoarthritis: Findings from quantitative sensory testing of central sensitization. Arthritis Rheum. 2013;65:363–72. doi: 10.1002/art.34646.
  46. Hsu MC, Schubiner H, Lumley MA et al. Sustained pain reduction through affective self-awareness in fibromyalgia: a randomized controlled trial. J. Gen. Intern. Med. 2010;25:1064–70. doi: 10.1007/s11606-010-1418-6.
  47. Larson CM, Wilcox GL, Fairbanks CA. The Study of Pain in Rats and Mice. Comparative Medicine. 2019;69(6):555–70. doi: 10.30802/aalas-cm-19-00006.
  48. Gabriel AF, Marcus MA, Honig WM et al. The CatWalk method: a detailed analysis of behavioral changes after acute inflammatory pain in the rat. J. Neurosc.i Methods. 2007;163:9–16. doi: 10.1016/j.jneumeth.2007.02.003.
  49. Castel D, Sabbag I, Nasaev E et al. Open field and a behavior score in PNT model for neuropathic pain in pigs. Journal of Pain Research. 2018;11:2279–293. doi: 10.2147/jpr.s172300.
  50. Seibenhener ML, Wooten MC. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J.Vis. Exp. 2015. doi: 10.3791/52434.
  51. Ennaceur A, Chazot PL. Preclinical animal anxiety research — flaws and prejudices. Pharmacol. Res. Perspect. 2016;4(2):e00223. doi: 10.1002/prp2.223.

Supplementary files

Supplementary Files Action
Segregation and ligation of sciatic nerve for neuropathic pain modeling

Download (163KB) Indexing metadata

Download (97KB) Indexing metadata
A few mm from the upper edge of the orbit

Download (50KB) Indexing metadata



Abstract - 14

PDF (Russian) - 0


Article Metrics

Metrics Loading ...


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies