Study of the process of formation of copper oxide nanoparticles stabilized by glyceryl cocoate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In this work, samples of nanoscale copper oxide stabilised with glyceryl cocoate were prepared by chemical precipitation in aqueous medium. Scanning electron microscopy microstructure studies showed that the copper oxide sample is represented by irregularly shaped agglomerates of size from 1 to 30 μm, which consist of nanoparticles diameters from 5 to 50 nm. Phase composition studies showed that the obtained sample is copper (II) oxide with monoclinic-beta crystal lattice, in this case the space group corresponds to C2/c. As a result of computer quantum-chemical modelling of interaction between glyceryl cocoate and copper oxide, it was found that the presented compound is energetically favourable (∆E = 1714.492 kcal/mol) and the interaction occurs via the carboxylate anion. This compound possesses a chemical rigidity value η ≥ 0.050 eV, indicating its stability. Interaction between glyceryl cocoate and copper oxide was found to occur through the carboxyl group by IR spectroscopy. During optimisation of the synthesis technique, it was found that the optimal parameters for obtaining CuO nanoparticles with an average hydrodynamic radius of less than 200 nm are temperatures in the rage of 95 to 100 °C, mass of copper acetate from 3 to 4 grams and concentration of stabiliser PEG-7 from 1–3%.

Full Text

Restricted Access

About the authors

A. B. Golik

North-Caucasus Federal University

Email: zafrehman1027@gmail.com
ORCID iD: 0000-0003-2580-9474

Assistant

Russian Federation, Stavropol

A. A. Nagdalian

North-Caucasus Federal University

Email: zafrehman1027@gmail.com
ORCID iD: 0000-0002-6782-2821

Cand. of Sci. (Tech), Docent

Russian Federation, Stavropol

A. V. Blinov

North-Caucasus Federal University

Email: zafrehman1027@gmail.com
ORCID iD: 0000-0002-4701-8633

Cand. of Sci. (Tech), Docent

Russian Federation, Stavropol

R. Sh. Zakaeva

North Ossetian State Medical Academy

Email: zafrehman1027@gmail.com
ORCID iD: 0000-0002-9930-6055

Cand. of Sci. (Chemistry), Docent

Russian Federation, Vladikavkaz

P. S. Leontev

North-Caucasus Federal University

Email: zafrehman1027@gmail.com
ORCID iD: 0000-0001-6532-5816

Laboratory assistant

Russian Federation, Stavropol

M. A. Taravanov

North-Caucasus Federal University

Email: zafrehman1027@gmail.com
ORCID iD: 0000-0003-3243-3241

Laboratory assistant

Russian Federation, Stavropol

Z. A. Rekhman

North-Caucasus Federal University

Author for correspondence.
Email: zafrehman1027@gmail.com
ORCID iD: 0000-0003-2809-4945

Assistant

Russian Federation, Stavropol

A. S. Askerova

North-Caucasus Federal University

Email: zafrehman1027@gmail.com
ORCID iD: 0009-0002-9852-3055

Laboratory assistant

Russian Federation, Stavropol

References

  1. Махмутов Б.Б., Ким Ю.А. Биосенсоры глюкозы, основанные на реакции ее окисления наночастицами Сu, оксидов меди, их сплавов/композитов: краткий обзор // Международный журнал прикладных и фундаментальных исследований. 2021. № 4. С. 17–24.
  2. Данилаев М.П. и др. Капсулирование дисперсных частиц оксида меди (I) полилактидом // Конденсированные среды и межфазные границы. 2023. Т. 25. № 1. С. 27–36.
  3. Горлушко Д.А. и др. Синтез оксида меди для катализаторов конверсии монооксида углерода, 2019.
  4. Choi B.N. et al. Effect of morphological change of copper-oxide fillers on the performance of solid polymer electrolytes for lithium-metal polymer batteries // RSC advances. 2019. Vol. 9. No. 38. PP. 21760–21770.
  5. Zhou X. et al. Nano-catalytic layer engraved carbon felt via copper oxide etching for vanadium redox flow batteries // Carbon. 2019. Vol. 153. PP. 674–681.
  6. Подлеснов Е., Чиркунова Н.В., Дорогов М.В. Методика получения нановискеров оксида меди для литий-ионных аккумуляторов // ББК 1 А28. 2020. С. 112.
  7. Жуков Е.Е., Ильясов С.Г. Влияние способа сольватотермической модификации поверхности компонентов пиротехнических составов наноразмерным оксидом меди (II) на изменение скорости горения // Южно-Сибирский научный вестник. № 5. С. 102–107.
  8. Каракич Е.А., Самборук А.Р., Майдан Д.А. Термитная сварка // Современные материалы, техника и технологии. 2021. № 1 (34). С. 63–67.
  9. Badawy A.A. et al. Efficacy assessment of biosynthesized copper oxide nanoparticles (CuO-NPs) on stored grain insects and their impacts on morphological and physiological traits of wheat (Triticum aestivum L.) plant // Biology. 2021. Vol. 10. No. 3. P. 233.
  10. Naz S., Gul A., Zia M. Toxicity of copper oxide nanoparticles: a review study // IET nanobiotechnology. 2020. Vol. 14. No. 1. PP. 1–13.
  11. Waris A. et al. A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications // Inorganic Chemistry Communications. 2021. Vol. 123. P. 108369.
  12. Chakraborty N. et al. Green synthesis of copper/copper oxide nanoparticles and their applications: a review // Green Chemistry Letters and Reviews. 2022. Vol. 15. No. 1. PP. 187–215.
  13. Лейер Д.В. Использование нанотехнологий в строительстве // VII Международный студенческий строительный форум. 2022. P. 282.
  14. Блинов А.В. и др. Синтез и исследование влияния параметров дисперсионной среды на агрегативную устойчивость наночастиц оксида меди // Вестник Московского государственного технического университета им. Н.Э.Баумана. Серия "Естественные науки". 2022. № 4 (103). С. 95–109.
  15. Блинов А.В. и др. Синтез и исследование структуры наноразмерного оксида меди (II), стабилизированного полиэтиленгликолем // Вестник Московского государственного технического университета им. Н.Э.Баумана. Серия "Естественные науки". 2020. № 3 (90). С. 56–70.
  16. Cortés H. et al. Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses // Materials. 2021. Vol. 14. No. 12. P. 3197.
  17. Cheng K.C. et al. Design and performance optimisation of detergent product containing binary mixture of anionic-nonionic surfactants // Heliyon. 2020. Vol. 6. No. 5.
  18. Mahmoud D.B. et al. Scrutinizing the feasibility of nonionic surfactants to form isotropic bicelles of curcumin: a potential antiviral candidate against COVID-19 // AAPS PharmSciTech. 2022. Vol. 23. PP. 1–12.
  19. Мингазова А.Р., Большакова А.Ю. Исследования поверхностно-активных свойств эмульгаторов для создания эмульсионных растворителей АСПО // European Scientific Conference. 2019. PP. 88–90.
  20. Wuchner K. et al. Industry perspective on the use and characterization of polysorbates for biopharmaceutical products Part 1: Survey report on current state and common practices for handling and control of polysorbates // Journal of pharmaceutical sciences. 2022. Vol. 111. No. 5. PP. 1280–1291.
  21. Дрейпер Н., Смит Т. Прикладной регрессионный анализ / 3-е изд. М.: Вильямс, 2016.
  22. Блинов А.В., Пирогов М.А., Гвозденко А.А. [и др.] Компьютерное квантово-химическое моделирование взаимодействия наночастиц селена с четвертичными аммониевыми соединениями // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2023. № 15. С. 357–366. https://doi.org/10.26456/pcascnn/2023.15.357
  23. Gilbert A. Introduction to IQmol. Электронный источник: https://www.q-chem.com/Teaching%20Materials/IQmol-Intro-II_new.pdf
  24. Лунев В.А. Математическое моделирование и планирование эксперимента: Учебное пособие. СПб: Изд-во Политехн. ун-та, 2012.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Dependence of the average hydrodynamic radius of copper oxide nanoparticles on variable parameters: a – ternary surface; b – isolines of the surface section

Download (41KB)
3. Fig.2. SEM micrographs of samples of nano-sized copper (II) oxide stabilized with glyceryl cocoate

Download (55KB)
4. Fig.3. X-ray diffraction pattern of nano-sized copper (II) oxide stabilized with glyceryl cocoate

Download (16KB)
5. Fig.4. Results of modeling the interaction of the glyceryl cocoate molecule and copper oxide through the carboxylate anion: a – model of the molecular complex; b – electron density distribution; c – gradient of electron density distribution; d – highest occupied molecular orbital (HOMO); e – lowest unoccupied molecular orbital (LUMO)

Download (31KB)
6. Fig.5. IR spectra: 1 – glyceryl cocoate, 2 – CuO nanoparticles stabilized with glyceryl cocoate

Download (16KB)

Copyright (c) 2024 Golik A.B., Nagdalian A.A., Blinov A.V., Zakaeva R.S., Leontev P.S., Taravanov M.A., Rekhman Z.A., Askerova A.S.