Fluorescence optical nanotomography: combining the techniques of total internal reflection fluorescence microscopy and ultramicrotomy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A method of 3D-TIRF microscopy is proposed, based on combination of ultramicrotomy and total internal reflection fluorescence microscopy techniques of the sample surface after cutting, which allows reconstructing the three-dimensional ultrastructure of objects.

Full Text

Restricted Access

About the authors

K. E. Mochalov

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: antefimov@gmail.com
ORCID iD: 0000-0001-8157-9613

Doct. of Sci. (Physics and Mathematics), Senior Researcher

Russian Federation, Moscow

O. I. Agapova

Shumakov National Medical Research Center of Transplantology and Artificial Organs of Ministry of Health of the Russian Federation

Email: antefimov@gmail.com
ORCID iD: 0000-0002-4507-1852

Cand. of Sci. (Biology), Senior Researcher

Russian Federation, Moscow

I. I. Agapov

Shumakov National Medical Research Center of Transplantology and Artificial Organs of Ministry of Health of the Russian Federation

Email: antefimov@gmail.com
ORCID iD: 0000-0002-0273-4601

Doct. of Sci. (Biology), Prof., Head of Laboratory

Russian Federation, Moscow

D. S. Korzhov

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS; National Research Nuclear University MEPhI

Email: antefimov@gmail.com
ORCID iD: 0009-0006-2626-1278

Technician

Russian Federation, Moscow; Moscow

D. O. Solovyeva

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: antefimov@gmail.com
ORCID iD: 0000-0002-2590-4204

Cand. of Sci. (Biology), Researcher

Russian Federation, Moscow

S. V. Sizova

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: antefimov@gmail.com
ORCID iD: 0000-0003-0846-4670

Cand. of Sci. (Chemistry), Researcher

Russian Federation, Moscow

M. S. Shestopalova

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS; National Research Nuclear University MEPhI

Email: antefimov@gmail.com
ORCID iD: 0000-0001-6543-4289

Engineer Researcher

Russian Federation, Moscow; Moscow

V. A. Oleinikov

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS; National Research Nuclear University MEPhI

Email: antefimov@gmail.com
ORCID iD: 0000-0003-4623-4913

Doct. of Sci. (Physics and Mathematics), Prof., Head of Department

Russian Federation, Moscow; Moscow

A. E. Efimov

Shumakov National Medical Research Center of Transplantology and Artificial Organs of Ministry of Health of the Russian Federation

Author for correspondence.
Email: antefimov@gmail.com
ORCID iD: 0000-0002-0769-301X

Doct. of Sci. (Biology), Chief Researcher

Russian Federation, Moscow

References

  1. Dongre A., Weinberg R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer, Nat. Rev. Mol. Cell Biol. 2019. Vol. 20. PP. 69–84. https://doi.org/10.1038/s41580-018-0080-4
  2. Finkenstaedt-Quinn S.A., Qiu T.A., Shin K., Haynes C.L. Super-resolution imaging for monitoring cytoskeleton dynamics, Analyst. 2016. Vol. 141. PP. 5674–5688. https://doi.org/10.1039/C6AN 00731G
  3. Axelrod D. Total Internal Reflection Fluorescence Microscopy in Cell Biology, Traffic. 2001. Vol. 2. PP. 764–774. https://doi.org/10.1034/j.1600-0854.2001.21104.x
  4. Poulter N.S., Pitkeathly W.T.E., Smith P.J., Rappoport J.Z. The physical basis of total internal reflection fluorescence (TIRF) microscopy and its cellular applications, in: P. Verveer (Eds.), Advanced Fluorescence Microscopy. Methods in Molecular Biology, Humana Press, New York. 2014. PP. 1–23. https://doi.org/10.1007/978-1-4939-2080-8_1
  5. Martin-Fernandez M.L., Tynan C.J., Webb S.E.D. A ‘pocket guide’ to total internal reflection fluorescence, J. Microsc. 2013. Vol. 252. PP. 16–22. https://doi.org/10.1111/jmi.12070
  6. Mattheyses A.L., Simon S.M., Rappoport J.Z. Imaging with total internal reflection fluorescence microscopy for the cell biologist, J. Cell. Sci. 2010. Vol. 123. PP. 3621–3628. https://doi.org/10.1242/jcs.056218
  7. Stabley D.R., Oh T., Simon S.M., Mattheyses A.L., Salaita K. 2015. Real-time fluorescence imaging with 20 nm axial resolution. Nat. Commun. Vol. 6. P. 8307. https://doi.org/10.1038/ncomms9307
  8. Trexler A.J., Sochacki K.A., Taraska J.W. Imaging the recruitment and loss of proteins and lipids at single sites of calcium-triggered exocytosis, Mol. iol. Cell. 2016. Vol. 27. PP. 2423–2434. https://doi.org/10.1091/mbc.E16-01-0057
  9. Allikalt A., Purkayastha N., Flad K., Schmidt M.F., Tabor A., Gmeiner P., Hübner P., Weikert D. Fluorescent ligands for dopamine D2/D3 receptors. Sci. Rep. 2020. Vol. 10. P. 21842. https://doi.org/10.1038/s41598-020-78827-9
  10. Tabor A., Möller D., Hübner Y., Kornhuber J., Gmeiner P. Visualization of ligand-induced dopamine D2S and D2L receptor internalization by TIRF microscopy. Sci. Rep. 2017. Vol. 7. P. 10894. https://doi.org/10.1038/s41598-017-11436-1
  11. Sankaran J., Wohland T. Fluorescence strategies for mapping cell membrane dynamics and structures. APL Bioeng. 2020. Vol. 4. P. 020901. https://doi.org/10.1063/1.5143945
  12. Lukeš T., Glatzová D., Kvíčalová Z., Levet F., Benda A., Letschert S., Sauer M., Brdička T. Lasser T., Cebecauer M. Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging. Nat. Commun. 2017. Vol. 8. P. 1731. https://doi.org/10.1038/s41467-017-01857-x
  13. Efimov A.E., Agapov I.I., Agapova O.I., Oleinikov V.A., Mezin A.V., Molinari M., Nabiev I., Mochalov K.E. A novel design of a scanning probe microscope integrated with an ultramicrotome for serial block-face nanotomography. Rev. Sci. Instrum. 2017. Vol. 88. P. 023701. https://doi.org/10.1063/1.4975202
  14. Mochalov K.E., Chistyakov A.A., Solovyeva D.O., Mezin A.V., Oleinikov V.A., Vaskan I.S., Molinari M., Agapov I.I., Nabiev I., Efimov A.E. An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography, Ultramicroscopy. 2017. Vol. 182. PP. 118–123. https://doi.org/10.1016/j.ultramic. 2017.06.022
  15. Мочалов К., Чистяков А., Соловьева Д. и др. / Инструментальное объединение конфокальной микроспектроскопии и 3D-сканирующей зондовой нанотомографии // НАНОИНДУСТРИЯ. 2016. Т. 7. № 69. С. 60–71.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Model of a specialized upright fluorescence microscope for implementing the 3D-TIRF technique. a – side view; b – back view. Designations: 1 – objective lens, 2 – precise angular positioner, 3 – axial micro- positioner for precise focusing, 4 – cube with fluorescent filters, 5 – tube lens, 6 – LED for illumination in bright field mode, 7 – precise motorized vertical microscope positioner, 8 – precise motorized horizontal microscope positioner ("forward – backward"), 9 – mounting optical panel with precise horizontal movement ("right – left"), 10 – diamond knife of the ultramicrotome

Download (487KB)
3. Fig.2. Experimental setup for 3D-TIRF microscopy: 1 – diamond knife of ultramicrotome, 2 – fluorescence microscope objective, 3 – XYZ-piezoscanner mounted on the movable arm of ultramicrotome, 4 – sample

Download (708KB)
4. Fig.3. Comparison of the experimental (green) and theoretical (purple) dependences of evanescent waves on the distance from the knife edge along the Z axis

Download (215KB)
5. Fig.4. Left panel: a 2D TIRF image of a sample of polystyrene microspheres (PSMs) with an optically thin (several nanometers) surface layer of CdSe/ZnS core/shell quantum dots (QDs) fluorescing at a wavelength of about 530 nm. The image size is 25.6×25.6 μm. Right: a 3D reconstruction of the PSM–QD sample based on 33 sequential 2D TIRF images. The section thickness is 150 nm; the reconstruction size is 25.6×25.6×4.95 μm. Scale bars, 5 μm

Download (1MB)

Copyright (c) 2024 Mochalov K.E., Agapova O.I., Agapov I.I., Korzhov D.S., Solovyeva D.O., Sizova S.V., Shestopalova M.S., Oleinikov V.A., Efimov A.E.