Direct visualization of extracellular vesicles on the membrane of human mesenchymal stem/stromal cells by cryo-electron microscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Extracellular vesicles (EVs) play an important role in intercellular communication and influence a wide range of physiological and pathological processes. Membrane-associated extracellular vesicles (MAVs) represent a distinct and poorly understood class of EVs. This study demonstrates the application of cryo-electron microscopy (cryo-EM) to investigate MAVs secreted by human mesenchymal stem/stromal cells (MSCs). Cryo-EM revealed vesicles ranging in diameter from 50 to 750 nm located near the cell surface. The results obtained will facilitate further studies on the physiological role of MAVs and their association with cell membranes.

Full Text

Restricted Access

About the authors

A. V. Moiseenko

Biological Department of Lomonosov

Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0003-1112-2356

Researcher

Russian Federation, Moscow

N. A. Basalova

Medical Research and Education Institute of Lomonosov MSU

Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0002-2597-8879

Cand. of Sci. (Biology), Junior Research Assistant

Russian Federation, Moscow

D. V. Bagrov

Biological Department of Lomonosov MSU

Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0002-6355-7282

Cand. of Sci. (Physics and Mathematics), Leading Researcher

Russian Federation, Moscow

T. S. Trifonova

Biological Department of Lomonosov MSU

Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0003-2042-5244

Laboratory assistant

Russian Federation, Moscow

M. A. Vigovsky

Medical Research and Education Institute of Lomonosov MSU

Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0003-2103-8158

Laboratory assistant

Russian Federation, Moscow

U. D. Dyachkova

Medical Research and Education Institute of Lomonosov MSU

Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0002-6119-8976

Laboratory assistant

Russian Federation, Moscow

O. A. Grigorieva

Medical Research and Education Institute of Lomonosov MSU

Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0003-2954-2420

Cand. of Sci. (Biology)

Russian Federation, Moscow

E. S. Novoseletskaya

Medical Research and Education Institute of Lomonosov MSU

Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0002-0922-9157

Cand. of Sci. (Biology)

Russian Federation, Moscow

A. Y. Efimenko

Medical Research and Education Institute of Lomonosov MSU

Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0002-0696-1369

Doct. of Sci. (Physiology), Head of Laboratory

Russian Federation, Moscow

O. S. Sokolova

Biological Department of Lomonosov MSU

Author for correspondence.
Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0003-4678-232X

Doct. of Sci. (Biology), Prof.

Russian Federation, Moscow

References

  1. Басалова Н.А., Джауари С.С., Юршев Ю.А., Примак А.Л., Ефименко А.Ю., Ткачук В.А., et al. State-of-the-art: применение внеклеточных везикул и препаратов на их основе для нейропротекции. Нейрохимия. 2023. Т. 40. No 4. С. 367–80.
  2. Williams T., Salmanian G., Burns M., Maldonado V., Smith E., Porter R.M., et al. Versatility of mesenchymal stem cell-derived extracellular vesicles in tissue repair and regenerative applications International Society for Cellular Therapy. Biochimie [Internet]. 2023. Vol. 207. PP. 33–48. https://doi.org/10.1016/j.biochi.2022.11.011
  3. Wang J., Xia J., Huang R., Hu Y., Fan J., Shu Q., et al. Mesenchymal stem cell-derived extracellular vesicles alter disease outcomes via endorsement of macrophage polarization. Stem Cell Res Ther. 2020. Vol. 11. No. 1. PP. 1–12.
  4. Guo L., Lai P., Wang Y., Huang T., Chen X., Geng S. International Immunopharmacology Extracellular vesicles derived from mesenchymal stem cells prevent skin fibrosis in the cGVHD mouse model by suppressing the activation of macrophages and B cells immune response. Int Immunopharmacol [Internet]. 2020. Vol. 84. No. 4. P. 106541. https://doi.org/10.1016/j.intimp. 2020.106541
  5. Basalova N., Arbatskiy M., Popov V., Grigorieva O., Vigovskiy M., Zaytsev I., et al. Mesenchymal stromal cells facilitate resolution of pulmonary fibrosis by miR-29c and miR-129 intercellular transfer. Exp Mol Med. 2023. Vol. 55. No. 7. PP. 1399–412.
  6. Manzoor T., Saleem A., Farooq N., Dar L.A., Nazir J., Saleem S., et al. Extracellular vesicles derived from mesenchymal stem cells – a novel therapeutic tool in infectious diseases. Inflamm Regen [Internet]. 2023. Vol. 43. https://doi.org/10.1186/s41232-023-00266-6
  7. Welsh J.A., Arkesteijn G.J.A., Giebel B., Bremer M., Cimorelli M., Rond L. De., et al. A compendium of single extracellular vesicle flow cytometry. J Extracell Vesicles. 2023. Vol. 12. No. 11.
  8. Welsh J.A, Buzas E.I., Blenkiron C., Driscoll L.O., Cai H., Bussolati B., et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024. Vol. 13. No. 2.
  9. Tang Q., Zhang X., Zhang W., Zhao S., Chen Y. Identification and characterization of cell-bound membrane vesicles. Biochim Biophys Acta – Biomembr [Internet]. 2017. Vol. 1859. No. 5. PP. 756–66. http://dx.doi.org/10.1016/j.bbamem.2017.01.013
  10. Zhou Y., Qin Y., Sun C., Liu K., Zhang W., Gaman M.-A. Cell-bound membrane vesicles contain antioxidative proteins and probably have an antioxidative function in cells or a therapeutic potential. J Drug Deliv Sci Technol. 2023. Vol. 81.
  11. Zhang X., Chen Y., Chen Y. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles. Biochem Biophys Res Commun [Internet]. 2014. Vol. 446. No. 1. PP. 375–9. http://dx.doi.org/10.1016/j.bbrc. 2014.02.114
  12. Linares R., Tan S., Gounou C., Brisson A.R. Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy. Methods Mol Biol. 2017. Vol. 1545. PP. 43–54.
  13. Medalia O., Weber I., Frangakis A.S., Nicastro D., Baumeister W. Macromolecular Architecture in Eukaryotic Cells Visualized by Cryoelectron Tomography. Science. 2002. Vol. 298. No. 11. PP. 1209–13.
  14. Hampton C.M., Strauss J.D., Ke Z., Dillard R.S., Jason E., Alonas E., et al. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells. Nat Protoc. 2017. Vol. 12. No. 1. PP. 150–67.
  15. Braet F., Bomans P., Wisse E., Frederik P. The observation of intact hepatic endothelial cells by cryo-electron microscopy. J Microsc. 2003. Vol. 212. PP. 175–85.
  16. Sartori-rupp A., Cervantes D.C., Pepe A., Gousset K., Delage E., Corroyer-dulmont S., et al. Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells. Nat Commun [Internet]. 2019. Vol. 10. PP. 1–16. http://dx.doi.org/10.1038/s41467-018-08178-7
  17. Sartori A., Gatz R., Beck F., Rigort A., Baumeister W., Plitzko J.M. Correlative microscopy : Bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol. 2007. Vol. 160. No. 2. PP. 135–45.
  18. Emelyanov A., Shtam T., Kamyshinsky R., Garaeva L., Verlov N., Miliukhina I., et al. Cryo-electron microscopy of extracellular vesicles from cerebrospinal fluid. PLoS One. 2020. Vol. 15. No. 1. PP. 1–11.
  19. Skryabin G.O., Komelkov A.V., Zhordania K.I., Bagrov D.V., Enikeev A.D., Galetsky S.A., et al. Integrated miRNA Profiling of Extracellular Vesicles from Uterine Aspirates , Malignant Ascites and Primary-Cultured Ascites Cells for Ovarian Cancer Screening. Pharmaceutics. 2024. Vol. 16. No. 7.
  20. Kwok Z.H., Wang C., Jin Y. Extracellular Vesicle Transportation and Uptake by Recipient Cells : A Critical Process to Regulate Human Diseases. Process. 2021. Vol. 9. No. 2.
  21. Liu Y.J., Wang C. A review of the regulatory mechanisms of extracellular vesicles - mediated intercellular communication. Cell Commun Signal [Internet]. 2023. Vol. 21. No. 1. PP. 1–12. https://doi.org/10.1186/s12964-023-01103-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Photographs of MSCs on a gold grid: а – photograph obtained during cell culture using light microscopy (scale bar is 50 μm), the purple arrows indicate the cell edges, b – cryo EM image of a cell frozen on a perforated carbon substrate (scale bar is 5 μm)

Download (1MB)
3. Fig.2. Micrograph of the MSC edge with vesicles located near it, obtained by cryo EM method (scale segment is 200 nm). In image a the contrast is increased for clarity. In image b, individual vesicles and cytoskeleton elements are highlighted in colour: white – ice contamination, blue – lipid bilayers of EVs and cell edge, orange – hole in carbon substrate (diameter is 1.2 μm), pink – cell cytoskeleton

Download (2MB)
4. Fig.3. Micrograph of multilayer EVs near the MSC cell edge obtained by cryo EM (scale segment is 200 nm). In image a the contrast is increased for clarity. In image b individual vesicles, cell edge and cytoskeleton elements are highlighted in colour: blue – lipid bilayers of MSC cell and EVs, pink – cytoskeleton

Download (2MB)

Copyright (c) 2024 Moiseenko A.V., Basalova N.A., Bagrov D.V., Trifonova T.S., Vigovsky M.A., Dyachkova U.D., Grigorieva O.A., Novoseletskaya E.S., Efimenko A.Y., Sokolova O.S.