Direct visualization of extracellular vesicles on the membrane of human mesenchymal stem/stromal cells by cryo-electron microscopy
- Authors: Moiseenko A.V.1, Basalova N.A.2, Bagrov D.V.3, Trifonova T.S.3, Vigovsky M.A.2, Dyachkova U.D.2, Grigorieva O.A.2, Novoseletskaya E.S.2, Efimenko A.Y.2, Sokolova O.S.3
-
Affiliations:
- Biological Department of Lomonosov
- Medical Research and Education Institute of Lomonosov MSU
- Biological Department of Lomonosov MSU
- Issue: Vol 17, No 7-8 (2024)
- Pages: 434-443
- Section: Nanotechnologies
- URL: https://journals.eco-vector.com/1993-8578/article/view/642509
- DOI: https://doi.org/10.22184/1993-8578.2024.17.7-8.434.443
- ID: 642509
Cite item
Abstract
Extracellular vesicles (EVs) play an important role in intercellular communication and influence a wide range of physiological and pathological processes. Membrane-associated extracellular vesicles (MAVs) represent a distinct and poorly understood class of EVs. This study demonstrates the application of cryo-electron microscopy (cryo-EM) to investigate MAVs secreted by human mesenchymal stem/stromal cells (MSCs). Cryo-EM revealed vesicles ranging in diameter from 50 to 750 nm located near the cell surface. The results obtained will facilitate further studies on the physiological role of MAVs and their association with cell membranes.
Full Text

About the authors
A. V. Moiseenko
Biological Department of Lomonosov
Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0003-1112-2356
Researcher
Russian Federation, MoscowN. A. Basalova
Medical Research and Education Institute of Lomonosov MSU
Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0002-2597-8879
Cand. of Sci. (Biology), Junior Research Assistant
Russian Federation, MoscowD. V. Bagrov
Biological Department of Lomonosov MSU
Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0002-6355-7282
Cand. of Sci. (Physics and Mathematics), Leading Researcher
Russian Federation, MoscowT. S. Trifonova
Biological Department of Lomonosov MSU
Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0003-2042-5244
Laboratory assistant
Russian Federation, MoscowM. A. Vigovsky
Medical Research and Education Institute of Lomonosov MSU
Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0003-2103-8158
Laboratory assistant
Russian Federation, MoscowU. D. Dyachkova
Medical Research and Education Institute of Lomonosov MSU
Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0002-6119-8976
Laboratory assistant
Russian Federation, MoscowO. A. Grigorieva
Medical Research and Education Institute of Lomonosov MSU
Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0003-2954-2420
Cand. of Sci. (Biology)
Russian Federation, MoscowE. S. Novoseletskaya
Medical Research and Education Institute of Lomonosov MSU
Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0002-0922-9157
Cand. of Sci. (Biology)
Russian Federation, MoscowA. Y. Efimenko
Medical Research and Education Institute of Lomonosov MSU
Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0002-0696-1369
Doct. of Sci. (Physiology), Head of Laboratory
Russian Federation, MoscowO. S. Sokolova
Biological Department of Lomonosov MSU
Author for correspondence.
Email: sokolova@mail.bio.msu.ru
ORCID iD: 0000-0003-4678-232X
Doct. of Sci. (Biology), Prof.
Russian Federation, MoscowReferences
- Басалова Н.А., Джауари С.С., Юршев Ю.А., Примак А.Л., Ефименко А.Ю., Ткачук В.А., et al. State-of-the-art: применение внеклеточных везикул и препаратов на их основе для нейропротекции. Нейрохимия. 2023. Т. 40. No 4. С. 367–80.
- Williams T., Salmanian G., Burns M., Maldonado V., Smith E., Porter R.M., et al. Versatility of mesenchymal stem cell-derived extracellular vesicles in tissue repair and regenerative applications International Society for Cellular Therapy. Biochimie [Internet]. 2023. Vol. 207. PP. 33–48. https://doi.org/10.1016/j.biochi.2022.11.011
- Wang J., Xia J., Huang R., Hu Y., Fan J., Shu Q., et al. Mesenchymal stem cell-derived extracellular vesicles alter disease outcomes via endorsement of macrophage polarization. Stem Cell Res Ther. 2020. Vol. 11. No. 1. PP. 1–12.
- Guo L., Lai P., Wang Y., Huang T., Chen X., Geng S. International Immunopharmacology Extracellular vesicles derived from mesenchymal stem cells prevent skin fibrosis in the cGVHD mouse model by suppressing the activation of macrophages and B cells immune response. Int Immunopharmacol [Internet]. 2020. Vol. 84. No. 4. P. 106541. https://doi.org/10.1016/j.intimp. 2020.106541
- Basalova N., Arbatskiy M., Popov V., Grigorieva O., Vigovskiy M., Zaytsev I., et al. Mesenchymal stromal cells facilitate resolution of pulmonary fibrosis by miR-29c and miR-129 intercellular transfer. Exp Mol Med. 2023. Vol. 55. No. 7. PP. 1399–412.
- Manzoor T., Saleem A., Farooq N., Dar L.A., Nazir J., Saleem S., et al. Extracellular vesicles derived from mesenchymal stem cells – a novel therapeutic tool in infectious diseases. Inflamm Regen [Internet]. 2023. Vol. 43. https://doi.org/10.1186/s41232-023-00266-6
- Welsh J.A., Arkesteijn G.J.A., Giebel B., Bremer M., Cimorelli M., Rond L. De., et al. A compendium of single extracellular vesicle flow cytometry. J Extracell Vesicles. 2023. Vol. 12. No. 11.
- Welsh J.A, Buzas E.I., Blenkiron C., Driscoll L.O., Cai H., Bussolati B., et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024. Vol. 13. No. 2.
- Tang Q., Zhang X., Zhang W., Zhao S., Chen Y. Identification and characterization of cell-bound membrane vesicles. Biochim Biophys Acta – Biomembr [Internet]. 2017. Vol. 1859. No. 5. PP. 756–66. http://dx.doi.org/10.1016/j.bbamem.2017.01.013
- Zhou Y., Qin Y., Sun C., Liu K., Zhang W., Gaman M.-A. Cell-bound membrane vesicles contain antioxidative proteins and probably have an antioxidative function in cells or a therapeutic potential. J Drug Deliv Sci Technol. 2023. Vol. 81.
- Zhang X., Chen Y., Chen Y. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles. Biochem Biophys Res Commun [Internet]. 2014. Vol. 446. No. 1. PP. 375–9. http://dx.doi.org/10.1016/j.bbrc. 2014.02.114
- Linares R., Tan S., Gounou C., Brisson A.R. Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy. Methods Mol Biol. 2017. Vol. 1545. PP. 43–54.
- Medalia O., Weber I., Frangakis A.S., Nicastro D., Baumeister W. Macromolecular Architecture in Eukaryotic Cells Visualized by Cryoelectron Tomography. Science. 2002. Vol. 298. No. 11. PP. 1209–13.
- Hampton C.M., Strauss J.D., Ke Z., Dillard R.S., Jason E., Alonas E., et al. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells. Nat Protoc. 2017. Vol. 12. No. 1. PP. 150–67.
- Braet F., Bomans P., Wisse E., Frederik P. The observation of intact hepatic endothelial cells by cryo-electron microscopy. J Microsc. 2003. Vol. 212. PP. 175–85.
- Sartori-rupp A., Cervantes D.C., Pepe A., Gousset K., Delage E., Corroyer-dulmont S., et al. Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells. Nat Commun [Internet]. 2019. Vol. 10. PP. 1–16. http://dx.doi.org/10.1038/s41467-018-08178-7
- Sartori A., Gatz R., Beck F., Rigort A., Baumeister W., Plitzko J.M. Correlative microscopy : Bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol. 2007. Vol. 160. No. 2. PP. 135–45.
- Emelyanov A., Shtam T., Kamyshinsky R., Garaeva L., Verlov N., Miliukhina I., et al. Cryo-electron microscopy of extracellular vesicles from cerebrospinal fluid. PLoS One. 2020. Vol. 15. No. 1. PP. 1–11.
- Skryabin G.O., Komelkov A.V., Zhordania K.I., Bagrov D.V., Enikeev A.D., Galetsky S.A., et al. Integrated miRNA Profiling of Extracellular Vesicles from Uterine Aspirates , Malignant Ascites and Primary-Cultured Ascites Cells for Ovarian Cancer Screening. Pharmaceutics. 2024. Vol. 16. No. 7.
- Kwok Z.H., Wang C., Jin Y. Extracellular Vesicle Transportation and Uptake by Recipient Cells : A Critical Process to Regulate Human Diseases. Process. 2021. Vol. 9. No. 2.
- Liu Y.J., Wang C. A review of the regulatory mechanisms of extracellular vesicles - mediated intercellular communication. Cell Commun Signal [Internet]. 2023. Vol. 21. No. 1. PP. 1–12. https://doi.org/10.1186/s12964-023-01103-6
Supplementary files
