Development of multilayer metal films for studying the chiral spin structures dynamics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Using magnetron sputtering, contact and photolithography installations, thin-film structures with conductive contacts of different profiles based on metal nanostructures of the heavy metal-ferromagnet type were manufactured. The parameters of the effective magnetization reversal and the magnitude of the current-induced field were determined from the magnetization and spin Hall effect measurements. The current-induced dynamics of skyrmions for ferro- and ferrimagnetic layers was simulated. The results of the work are of interest for studying spin-transport effects and developing methods for controlling spin textures in multilayer films, promising for creating new electronic elements.

Full Text

Restricted Access

About the authors

A. V. Telegin

M.N. Mikheev Institute of Metal Physics UB of RAS

Author for correspondence.
Email: telegin@imp.uran.ru
ORCID iD: 0000-0001-7209-4307

Cand. of Sci. (Physics and Mathematics), Head of Laboratory

Russian Federation, Ekaterinburg

T. N. Pavlov

M.N. Mikheev Institute of Metal Physics UB of RAS

Email: telegin@imp.uran.ru
ORCID iD: 0009-0004-5667-7616

Leading Electronics Engineer

Russian Federation, Ekaterinburg

V. M. Tsvelikhovskaya

M.N. Mikheev Institute of Metal Physics UB of RAS

Email: telegin@imp.uran.ru
ORCID iD: 0009-0000-4959-5701

Junior Researcher

Russian Federation, Ekaterinburg

Zh. Z Namsaraev

Far Eastern Federal University

Email: telegin@imp.uran.ru
ORCID iD: 0009-0004-1064-7948

Research Engineer

Russian Federation, Vladivostok

V. A. Antonov

Far Eastern Federal University

Email: telegin@imp.uran.ru
ORCID iD: 0009-0001-0015-2413

Research Engineer

Russian Federation, Vladivostok

A. V. Ognev

Sakhalin State University

Email: telegin@imp.uran.ru
ORCID iD: 0000-0002-1619-3666

Doct. of Sci. (Physics and Mathematics), Prof., Deputy Rector

Russian Federation, Yuzhno-Sakhalinsk

References

  1. Фетисов Ю.К., Сигов А.С. Спинтроника: физические основы и устройства // Радиоэлектроника. Наносистемы. Информационные технологии. 2018. Т. 10. №. 3. С. 343–356.
  2. Stashkevich A.A. Spin-orbitronics a novel trend in spin-oriented electronics // J. Russ. Univ. Radioelectron. Moscow. 2019. Vol. 22. PP. 45-54. https://doi.org/10.32603/1993-8985-2019-22-6-45-54
  3. Fert A., Van Dau F.N. Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators // Comptes Rendus Physique. 2019. Vol. 20. No. 7–8. PP. 817-831. https://doi.org/10.1016/j.crhy.2019.05.020
  4. Wei W.S., He Z.D., Qu Z., Du H.F. Dzyaloshinsky–Moriya interaction (DMI)-induced magnetic skyrmion materials // Rare Metals. 2021. Vol. 40. No. 11. PP. 3076–3090. https://doi.org/10.1007/s12598-021-01746-9
  5. Bogdanov A.N., Rößler U.K. Chiral symmetry breaking in magnetic thin films and multilayers // Physical Review Letters. 2001. Vol. 87. No. 3. P. 037203. https://doi.org/10.1103/PhysRevLett.87.037203
  6. Ma M., Pan Z., Ma F. Artificial skyrmion in magnetic multilayers // Journal of Applied Physics. 2022. Vol. 132. No. 4. https://doi.org/10.1063/5.0095875
  7. Everschor-Sitte K., Masell J., Reeve R.M., Kläui M. Perspective: Magnetic skyrmions—Overview of recent progress in an active research field // Journal of Applied Physics. 2018. Vol. 124. No. 24. https://doi.org/10.1063/1.5048972
  8. Fert A., Reyren N., Cros V. Magnetic skyrmions: advances in physics and potential applications // Nature Reviews Materials. 2017. Vol. 2. No. 7. PP. 1–15. https://doi.org/10.1038/natrevmats.2017.31
  9. Zhang X., Zhou Y., Song K.M., Park T.E., Xia J., Ezawa M., Woo S. Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications // Journal of Physics: Condensed Matter. 2020. Vol. 32. No. 14. P. 143001. https://doi.org/10.1088/1361-648X/ab5488
  10. Ognev A.V., Kolesnikov A.G., Kim Y.J., Cha I.H., Sadovnikov A.V., Nikitov S.A., Soldatov I.V., Talapatra A., Mohanty J., Mruczkiewicz M., Ge Y., Kerber N., Dittrich F., Virnau P., Klaui M., Keun Y., Kim, Samardak A.S. Magnetic direct-write skyrmion nanolithography // ACS Nano. 2020. Vol. 14. No. 11. PP. 14960-14970. https://doi.org/10.1021/acsnano.0c 04748
  11. Безверхний А.И., Губанов В.А., Садовников А.В., Моргунов Р.Б. Взаимодействие Дзялошинского–Мория в синтетических ферримагнетиках Pt/Co/Ir/Co/Pt // Физика твердого тела. 2021. T. 63. № 12. С. 2053–2060. https://doi.org/10.21883/FTT.2021.12.51665.120
  12. Ding J., Yang X., Zhu T. Manipulating current induced motion of magnetic skyrmions in the magnetic nanotrack // Journal of Physics D: Applied Physics. 2015. Vol. 48. No. 11. P. 115004. https://doi.org/10.1088/0022-3727/48/11/115004
  13. Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garcia-Sanchez F., Van Waeyenberge B. The design and verification of MuMax3 // AIP advance. 2014. Vol. 4. No. 10. https://doi.org/10.1063/1.4899186
  14. Bo L., Hu C., Zhao R., Zhang X. Micromagnetic manipulation and spin excitation of skyrmionic structures // Journal of Physics D: Applied Physics. 2022. Vol. 55. No. 33. P. 333001. https://doi.org/10.1088/1361-6463/ac 6cb2
  15. Gareeva Z.V., Guslienko K.Y. Dynamics of magnetic skyrmions in nanodots // Phys. Solid State. 2018. Vol. 60. No. 6. P. 1146.
  16. Zhou Y., Iacocca E., Awad A.A., Dumas R.K., Zhang F.C., Braun H.B., Åkerman J. Dynamically stabilized magnetic skyrmions // Nature communications. 2015. Vol. 6. No. 1. P. 8193. https://doi.org/10.1038/ncomms9193
  17. Kang W., Wu B., Chen X., Zhu D., Wang Z., Zhang X., Zhou Y., Zhang Y., Zhao W. A comparative cross-layer study on racetrack memories: Domain wall vs skyrmion // ACM Journal on Emerging Technologies in Computing Systems (JETC). 2019. Vol. 16. No. 1. PP. 1–17. https://doi.org/10.1145/3333336
  18. Telegin A.V., Namsaraev Z.Z., Bessonov V.D., Teplov V.S., Ognev A.V. Growth of thin-film magnetic nanostructures promising for spintronics applications непосредственный // Modern Electronic Materials. 2024. Vol. 10. PP. 51–57.
  19. Telegin A.V., Bessonov V.D., Lobov I.D., Teplov V.S. Efficient current-induced magnetization reversal in metallic nanostructures // Physics of the Solid State. 2023.Vol. 65. PP. 2158–2167.
  20. Kolesnikov A.G., Stebliy M.E., Ognev A.V., Samardak A.S., Fedorets A.N., Plotnikov V.S., Chebotkevich L.A. Enhancement of perpendicular magnetic anisotropy and coercivity in ultrathin Ru/Co/Ru films through the buffer layer engineering // Journal of Physics D: Applied Physics. 2016. Vol. 49. No. 42. P. 425302. https://doi.org/10.1088/0022-3727/49/42/425302
  21. Sinova J., Valenzuela S.O., Wunderlich J., Back C.H., Jungwirth T. Spin hall effects // Reviews of modern physics. 2015. Vol. 87. No. 4. P. 1213. https://doi.org/10.1103/RevModPhys.87.1213
  22. Telegin A., Stebliy M., Ognev A. Bessonov V., Batalov S // Indian Journal of Physics. 2024. No. 1–11.
  23. Samardak A.S., Kolesnikov A.G., Davydenko A.V. Steblii M.E., Ognev A.V. Topologically Nontrivial Spin Textures in Thin Magnetic Films // Phys. Metals Metallogr. 2022. Vol. 123. PP. 238–260. https://doi.org/10.1134/S0031918X22030097
  24. Kuchkin V.M., Chichay K., Barton-Singer B., Rybakov F.N. Blügel S., Schroers B.J., Kiselev N.S. Geometry and symmetry in skyrmion dynamics // Physical Review B. 2021. Vol. 104. No. 16. P. 165116.
  25. Batalov S.V., Bessonov V.D., Teplov V.S., Telegin A.V. An equivalent model for micromagnetic simulation of the magnetization of ferrimagnetic structures // Diagnostics, Resource and Mechanics of materials and structures. 2024. Vol. 4. PP. 35–46. https://doi.org/10.17804/2410-9908.2024.4.035-046
  26. Sala G., Lambert C.H., Finizio S., Raposo V., Krizakova V., Krishnaswamy G., Weigand M., Raabe J., Marta D. Rossell, Martinez E., Gambardella P. Asynchronous current-induced switching of rare-earth and transition-metal sublattices in ferrimagnetic alloys. Nature Materials. 2022. Vol. 21. No 6. PP. 640–646.
  27. Guan S.H., Liu Y., Hou Z.P., Chen D.Y., Fa Z., Zeng M., Liu J.M. Optically controlled ultrafast dynamics of skyrmion in antiferromagnets. Physical Review B. 2023. Vol. 107. No. 21. P. 214429.
  28. Kim S.K., Beach G.S., Lee K.J., Ono T., Rasing T., Yang H. Ferrimagnetic spintronics // Nature materials. 2022. Vol. 21. No. 1. PP. 24–34. https://doi.org/10.1038/s41563-021-01139-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. An example of conductive Hall structures grown on thin-film samples (on the left) and an example of a final chip release (on the right)

Download (240KB)
3. Fig.2. a – schematic diagram of the mutual orientation of magnetization in two sublattices MCo and MTb, polarization of the spin current p, external field Bx and induced effective field BS; b – schematic representation of the experiment on current-induced magnetization reversal of a magnetically ordered layer

Download (107KB)
4. Fig.3. Switching of magnetization of FIM sublattices under the action of spin current: а – predominance of the contribution of the FM sublattice, b – compensation state, с – predominance of the contribution of the RE sublattice

Download (572KB)
5. Fig.4. Diagrams of switching of magnetization M under the action of spin current J for FIM (a) and FM (b). Switching time is given in color scale, where gray color indicates absence of switching

Download (415KB)
6. Fig.5. Switching of the z-component of the magnetization of the FIM sublattices under the action of spin current: a – dominance of the FM sublattice, b – compensation state, с – dominance of the RE sublattice

Download (262KB)
7. Fig.6. Change in the speed of current-induced motion of the skyrmion n at different values of current density J

Download (592KB)
8. Fig.7. Time of stabilization of the speed of movement of a skyrmion depending on the current density

Download (132KB)

Copyright (c) 2024 Telegin A.V., Pavlov T.N., Tsvelikhovskaya V.M., Namsaraev Z.Z., Antonov V.A., Ognev A.V.