Design of a cell for studying domain formation processes in conjugated donor-acceptor systems at a given temperature gradient

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The actively developing field of organic semiconductor electronics requires not only development of new conjugated donor-acceptor compounds, but also the creation of new methods of sample preparation at the stage of creating devices based on them. It is known that improving the mutual packing of molecules can significantly increase the efficiency of devices. In this paper, a cell was proposed that allows creating a thermal gradient in the process of structure formation, allowing the study of structures obtained at different annealing temperatures within a single experiment. Using the example of an organic compound with an irreversible phase transition, the processes occurring during such annealing were studied using atomic force microscopy, X-ray structural analysis with a sliding beam, and polarization optical microscopy.

Full Text

Restricted Access

About the authors

A. A. Piryazev

Lomonosov Moscow State University; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Sirius University of Science and Technology

Email: stunnn@gmail.com
ORCID iD: 0000-0002-4782-1661

Researcher

Lomonosov Moscow State University, Chemistry department

Russian Federation, Moscow; Chernogolovka; township Sirius

I. E. Kuznetsov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: stunnn@gmail.com
ORCID iD: 0000-0002-3549-8158

Senior Researcher

Russian Federation, Chernogolovka

A. A. Rychkov

Lomonosov Moscow State University

Email: stunnn@gmail.com
ORCID iD: 0000-0003-0619-5112

Junior Researcher, Chemistry department

Russian Federation, Moscow

A. F. Akhkiamova

Lomonosov Moscow State University; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: stunnn@gmail.com
ORCID iD: 0000-0003-0177-7818

Junior Researcher

Lomonosov Moscow State University, Chemistry department

Russian Federation, Moscow; Chernogolovka

A. Y. Konyakhina

Sirius University of Science and Technology

Email: stunnn@gmail.com
ORCID iD: 0000-0002-0287-3396

Junior Researcher

Russian Federation, township Sirius

M. A. Gorbunova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: stunnn@gmail.com
ORCID iD: 0000-0002-3196-0544

Researcher

Russian Federation, Chernogolovka

A. V. Akkuratov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: stunnn@gmail.com
ORCID iD: 0000-0001-8750-0048

Cand. of Sci. (Chemistry), Head of Laboratory

Russian Federation, Chernogolovka

D. A. Ivanov

Lomonosov Moscow State University; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Sirius University of Science and Technology

Author for correspondence.
Email: stunnn@gmail.com
ORCID iD: 0000-0002-5905-2652

Doct. of Sci. (Chemistry), Senior Researcher

Lomonosov Moscow State University, Chemistry department

Russian Federation, Moscow; Chernogolovka; township Sirius

References

  1. Zhang J., Jin J., Xu H., Zhang Q., Huang W. Recent progress on organic donor–acceptor complexes as active elements in organic field-effect transistors // J. Mater. Chem. C. 2018. Vol. 6. No. 14. PP. 3485–3498. https://doi.org/10.1039/C7TC04389A.
  2. Tepliakova M.M., Kuznetsov I.E., Mikheeva A.N., Sideltsev M.E., Novikov A.V., Furasova A.D., Kapaev R.R., Piryazev A.A., Kapasharov A.T., Pugacheva T.A., Makarov S.V., Stevenson K.J., Akkuratov A.V. The Impact of Backbone Fluorination and Side-Chain Position in Thiophene-Benzothiadiazole-Based Hole-Transport Materials on the Performance and Stability of Perovskite Solar Cells // IJMS. 2022. Vol. 23. No. 21. P. 13375. https://doi.org/10.3390/ijms232113375.
  3. Otmakhova O.A., Piryazev A.A., Bondarenko G.N., Shandryuk G.A., Merekalov A.S., Maryasevskaya A.V., Ivanov D.A., Talroze R.V. New complexes of liquid crystal discotic triphenylenes: induction of the double gyroid phase // Phys. Chem. Chem. Phys. 2021. Vol. 23. No. 31. PP. 16827–16836. https://doi.org/10.1039/D1CP 00660F
  4. Dou J., Zheng Y., Yao Z., Yu Z., Lei T., Shen X., Luo X., Sun J., Zhang S., Ding Y., Han G., Yi Y., Wang J., Pei J. Fine-Tuning of Crystal Packing and Charge Transport Properties of BDOPV Derivatives through Fluorine Substitution // Journal of the American Chemical Society. 2015. Vol. 137. No. 50. PP. 15947–15956. https://doi.org/10.1021/jacs.5b08766
  5. Wu X., Fu W., Chen H. Conductive Polymers for Flexible and Stretchable Organic Optoelectronic Applications // ACS Applied Polymer Materials. 2022. Vol. 4. No. 7. PP. 4609–4623. https://doi.org/10.1021/acsapm.2c 00519
  6. Ostroverkhova O. Organic Optoelectronic Materials: Mechanisms and Applications // Chem. Re. v. 2016. Vol. 116. No. 22. PP. 13279–13412. https://doi.org/10.1021/acs.chemre. v. 6. b00127
  7. Zhang Q., Hu W., Sirringhaus H., Müllen K. Recent Progress in Emerging Organic Semiconductors // Adv Mater. 2022. Vol. 34. No. 22. P. 2108701. https://doi.org/10.1002/adma.202108701
  8. Liu Y., Wu Y., Geng Y., Zhou E., Zhong Y. Managing Challenges in Organic Photovoltaics: Properties and Roles of Donor/Acceptor Interfaces // Adv. Funct. Mater. 2022. Vol. 32. No. 43. P. 2206707. https://doi.org/10.1002/adfm.202206707
  9. Yuan Y., Xu W., Zhu D., Dong G., Zhao N., Yan F. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method // Nature Communications. 2014. Vol. 5. No. 1. P. 3005. https://doi.org/10.1038/ncomms4005
  10. Gaurav G., Verploegen E., Mannsfeld S.C.B., Sule Atahan-Evrenk, Do Hwan Kim, Sang Yoon Lee, Becerril H.A., Aspuru-Guzik A., Toney M.F., Bao Z. Tuning charge transport in solution-sheared organic semiconductors using lattice strain // Nature. 2011. Vol. 480. No. 7378. PP. 504–508. https://doi.org/10.1038/nature10683
  11. Liu Y., Wu Y., Geng Y., Zhou E., Zhong Y. Tailoring the charge transport characteristics in ordered small-molecule organic semiconductors by side-chain engineering and fluorine substitution // Physical Chemistry Chemical Physics. 2022. Vol. 24. No. 26. PP. 16041–16049. https://doi.org/10.1039/d2cp 01758j
  12. Mikheeva A.N., Kuznetsov I.E., Tepliakova M.M., Elakshar A., Gapanovich M.V., Gladush Y.G., Perepelitsina E.O., Sideltsev M.E., Akhkiamova A.F., Piryazev A.A., Nasibulin A.G., Akkuratov A.V. Novel Push-Pull Benzodithiophene-Containing Polymers as Hole-Transport Materials for Efficient Perovskite Solar Cells // Molecules. 2022. Vol. 27. No. 23. P. 8333. https://doi.org/10.3390/molecules27238333
  13. Vogelsang J., Lupton J.M. Solvent Vapor Annealing of Single Conjugated Polymer Chains: Building Organic Optoelectronic Materials from the Bottom Up // Journal of Physical Chemistry Letters. 2012. Vol. 3. No. 11. PP. 1503–1513. https://doi.org/10.1021/jz300294m
  14. Bobrovsky A.Yu., Piryazev A., Ivanov D., Kozlov M., Utochnikova V. Photoinduced Split of the Cavity Mode in Photonic Crystals Based on Porous Silicon Filled with Photochromic Azobenzene-Containing Substances // ACS Appl. Polym. Mater. 2022. Vol. 4. No. 10. PP. 7387–7396. https://doi.org/10.1021/acsapm.2c 01149
  15. Bobrovsky A., Piryazev A., Ivanov D., Kozlov M., Utochnikova V. Temperature-Dependent Circularly Polarized Luminescence of a Cholesteric Copolymer Doped with a Europium Complex // Polymers. 2023. Vol. 15. No. 6. P. 1344. https://doi.org/10.3390/polym15061344
  16. Kuznetsov I.E., Piryazev A.A., Akhkiamova A.F., Sideltsev M.E., Anokhin D.V., Lolaeva A.V., Gapanovich M.V., Zamoretskov D.S., Sagdullina D.K., Klyuev M.V., Ivanov D.A., Akkuratov A.V. Remarkable Enhancement of the Hole Mobility of Novel DA-D’-AD Small Molecules by Thermal Annealing: Effect of the D’‐Bridge Block // ChemPhysChem. 2023. Vol. 24. No. 21. https://doi.org/10.1002/cphc. 202300310
  17. Yeqing Xia, Weifeng Zhang, Shuai Yang, Liping Wang, Gui Yu. Research Progress in Donor−Acceptor Type Covalent Organic Frameworks // Advanced Materials. 2023. Vol. 35. No. 48. P. 2301190. https://doi.org/10.1002/adma.202301190
  18. He Z., Asare-Yeboah K., Zhang Z., Bi S. Manipulate organic crystal morphology and charge transport // Organic Electronics. 2022. Vol. 103. P. 106448. https://doi.org/10.1016/j.orgel.2022.106448.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. S1 synthesis

Download (456KB)
3. Fig.2. Schematic diagram of a cell designed to form a thermal gradient

Download (406KB)
4. Fig.3. DSC curves of sample S1, red curve corresponds to heating, blue curve – to cooling

Download (177KB)
5. Fig.4. Diffractograms measured in sliding beam geometry for a sample of the original film (a) and heated above melting point (b)

Download (1023KB)
6. Fig.5. Optical micrograph of sample S1, annealed (left), transition (centre) and initial (right) regions

Download (1MB)
7. Fig.6. Scanning electron microscopy micrographs of the S1 sample for the warmed (a), middle (b) and cold (c) regions

Download (741KB)
8. Fig.7. Atomic force microscopy images of sample S1: a – warmed region; b – initial region, frame size 6 × 6 µm; c – transition region, frame size 18 × 18 µm

Download (1MB)
9. Fig.8. One-dimensional diffractograms obtained by scanning the X-ray beam across the S1 sample, plotted as a function of the X-ray beam shift from the film edge. The colour indicates the scattering intensity of the X-ray beam

Download (440KB)

Copyright (c) 2024 Piryazev A.A., Kuznetsov I.E., Rychkov A.A., Akhkiamova A.F., Konyakhina A.Y., Gorbunova M.A., Akkuratov A.V., Ivanov D.A.