High-sensitive magnetic field transducer based on spin-tunnel magnetoresistive nanostructures with synthetic antiferromagnet

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The results of a study of mock-ups of magnetic field transducers (MFT) based on spin-tunnel magnetoresistive nanostructures (STMR) with a synthetic antiferromagnet (SAF) are presented. The absolute sensitivity to the magnetic field of the studied MFT-SAF mock-ups was 217 mV/Oe in the magnetic field range ±5 Oe (±0.5 mT) at a supply voltage of 5 V.

Full Text

Restricted Access

About the authors

D. V. Vasilyev

Scientific-manufacturing complex "Technological centre"

Email: V.Amelichev@tcen.ru
ORCID iD: 0000-0001-6568-5301

Head of Laboratory

Russian Federation, Moscow

A. N. Saurov

Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences

Email: V.Amelichev@tcen.ru

Doct. of Sci. (Tech), Prof., Academician of RAS, Director

Russian Federation, Moscow

V. V. Amelichev

Scientific-manufacturing complex "Technological centre"

Author for correspondence.
Email: V.Amelichev@tcen.ru
ORCID iD: 0000-0002-4204-2626

Cand. of Sci. (Tech), Head of Department

Russian Federation, Moscow

References

  1. Djayaprawiraa D.D., Tsunekawa K., Nagai M. et al. 230% room-temperature magnetoresistance in CoFeB / MgO / CoFeB magnetic tunnel junctions / // Applied Physics Letters. 2005. Vol. 86. P. 092502.
  2. Dieny B., Goldfarb R.B., Lee. K.-J. Introduction to magnetic random-access memory // IEEE Magnetics. 2017. 255 p.
  3. Ikeda S., Hayakawa J., Ashizawa Y. et al. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB / MgO / CoFeB pseudo-spin-valves annealed at high temperature // Applied Physics Letters. 2008. Vol. 93. P. 082508.
  4. Lee Y.M., Hayakawa J., Ikeda S. et al. Giant tunnel magnetoresistance and high annealing stability in CoFeB / MgO / CoFeB magnetic tunnel junctions with synthetic pinned layer // Applied Physics Letters. 2006. Vol. 89. P. 042506.
  5. Vidal E.G., Muñoz D.R., Arias S.I.R. et al. Electronic energy meter based on a tunnel magnetoresistive effect (TMR) current sensor // Materials. 2017. Vol. 10. P. 1134.
  6. Valadeiro J.P., Leitão J.A., Ferreira D.C. et al. Strategies for pTesla field detection using magnetoresistive sensors with a soft pinned sensing layer" // IEEE Transactions on Magnetics. 2015. Vol. 51. No. 1. P. 4400204.
  7. Ferreira R., Paz E., Freitas P.P. et al. Large area and low aspect ratio linear magnetic tunnel junctions with a soft-pinned sensing layer // IEEE Transactions on Magnetics. 2012. Vol. 48. No. 11. PP. 3719–3722.
  8. Наумова Л.И., Миляев М.А., Чернышова Т.А. и др. Безгистерезисные спиновые клапаны с синтетическим антиферромагнетиком и управляемой магниторезистивной чувствительностью // Естественные и технические науки. 2015. № 10(80). С. 92–96.
  9. Freitas P.P., Ferreira R., Cardoso S. Spintronic Sensors // Proceedings of the IEEE. 2016. Vol. 104. No. 10. PP. 1894–1918.
  10. Чернышова Т.А., Миляев М.А., Наумова Л.И. и др. Магниторезистивная чувствительность и одноосная анизотропия микрополосок спиновых клапанов с синтетическим антиферромагнетиком // Физика металлов и металловедение. 2017. Т. 118. № 5. С. 439–445.
  11. Silva A.V., Leitao D.C., Valadeiro J. et al. Linearization strategies for high sensitivity magnetoresistive sensors // The European Physical Journal Applied Physics. 2015. Vol. 72. P. 10601.
  12. Амеличев В.В., Аравин В.В., Белов А.Н. и др. Создание интегральных компонентов усиления магнитного сигнала в беспроводной МЭМС на основе магниторезистивных элементов // Нано- и микросистемная техника. 2013. № 3. С. 29–33.
  13. Патент 2568148. Российская Федерация, МПК H01L 43/00 (2006.01). Магниторезистивный преобразователь: № 2014133072/28: заявл. 12.08.2014: опубл. 10.11.2015 / И.Е. Абанин, В.В. Амеличев, В.В. Аравин и др. 5 c.
  14. Электронный ресурс: Материалы сайта компании "MultiDimension Technology Co., Ltd". www.dowaytech.com (Дата обращения: 30.10.2024).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. STMR sketch of a nanostructure with SAF Ta / CoFe / CoFeB / MgO / CoFeB / Ru / CoFe / IrMn / Ta (a) and its remagnetisation loop (b)

Download (145KB)
3. Fig.2. The full Wheatstone bridge circuit (a) based on MTJ has zero signal at the output in the absence of an external magnetic field, an external magnetic field (b) unbalances the bridge circuit, and a signal appears at the output [9]

Download (200KB)
4. Fig.3. Sequence of connected MTJs

Download (59KB)
5. Fig.4. Dependence of R(H) of a chain of series-connected MTJs on the external magnetic field, dR/R = 45%

Download (57KB)
6. Fig.5. Dependence of R(H) of a chain of series-connected MTJs on the external magnetic field after the first stage of magnetic annealing (blue curve) and after the second stage (red curve)

Download (95KB)
7. Fig.6. Photograph of the MFJs-SAF mock-up

Download (52KB)
8. Fig.7. Volt-Oersted characteristics of mock-up samples with a 1.0 mm (blue curve) and 0.35 mm (red curve) MFCs gap

Download (101KB)
9. Fig.8. Dependence of absolute sensitivity to magnetic field of the MFTs-SAF mock-up on the supply voltage

Download (36KB)

Copyright (c) 2025 Vasilyev D.V., Saurov A.N., Amelichev V.V.