Study of aggregative stability of selenium nanoparticles stabilized with cocamidopropylamine oxide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In this work, samples of selenium nanoparticles stabilized with cocamidopropylamine oxide were obtained by chemical reduction in an aqueous medium. Quantum chemical modeling of the process of stabilization of selenium nanoparticles by cocamidopropylamine oxide molecules was carried out, as a result of which it was found that this interaction is energetically favorable (∆E ≥ 2399.568 kcal/mol) and chemically stable (0.035 ≤ n ≤ 0.067 eV), and the interaction of the selenium atom with cocamidopropylamine oxide through a secondary amino group (∆E = 2400,099, n = 0.067 eV). As a result of optimization of the synthesis method, optimal concentrations of selenic acid, ascorbic acid and cocamidopropylamine oxide were determined – 0.004, 2.118 and 0.180 mol/dm3. The stability of selenium nanoparticles was also studied depending on the active acidity of the medium and the ionic strength of the solution. It has been established that selenium particles have high stability in the pH range of the medium from 1.81 to 4.56 (from 12 ± 2 nm to 24 ± 5 nm). Based on the analysis of the dependences of the average hydrodynamic radius on the ionic strength, it was found that Na+ and Cl- ions do not significantly affect the stability of the particles (R varies from 12 ± 2 to 15 ± 2 nm), and selenium nanoparticles are stable when SO42– ions with concentrations up to 0.5 mol/dm3 are added to the sol.

Full Text

Restricted Access

About the authors

A. A. Blinova

North-Caucasus Federal University

Email: zafrehman1027@gmail.com
ORCID iD: 0000-0001-9321-550X

Cand. of Sci. (Tech), Docent

Russian Federation, Stavropol

M. A. Pirogov

North-Caucasus Federal University

Email: zafrehman1027@gmail.com
ORCID iD: 0000-0001-9217-6262

Laboratory assistant

Russian Federation, Stavropol

Z. A. Rekhman

North-Caucasus Federal University

Author for correspondence.
Email: zafrehman1027@gmail.com
ORCID iD: 0000-0003-2809-4945

Assistant

Russian Federation, Stavropol

A. V. Blinov

North-Caucasus Federal University

Email: zafrehman1027@gmail.com
ORCID iD: 0000-0002-4701-8633

Cand. of Sci. (Tech), Docent

Russian Federation, Stavropol

E. D. Nazaretova

North-Caucasus Federal University

Email: zafrehman1027@gmail.com
ORCID iD: 0000-0002-1850-8043

Laboratory assistant

Russian Federation, Stavropol

A. B. Golik

North-Caucasus Federal University

Email: zafrehman1027@gmail.com
ORCID iD: 0000-0003-2580-9474

Assistant

Russian Federation, Stavropol

References

  1. Minich W.B. Selenium metabolism and biosynthesis of selenoproteins in the human body. Biochemistry (Moscow). 2022. Vol. 87. Suppl 1. PP. S168–S177.
  2. Миних В.Б. Базовые аспекты метаболизма селена и биосинтеза селенопротеинов в организме человека. Успехи биологической химии. 2022. Т. 62. С. 369–90.
  3. Решетник Л.А., Парфенова Е.О. Селен и здоровье человека (Обзор литературы). Экология моря. 2000. Т. 54. С. 20–25.
  4. Шестакова Т.П. Использование селена в медицинской практике. РМЖ. 2017. Т. 25. № 22. С. 1654–1659.
  5. Lanza M.G.D.B., Dos Reis A.R. Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiology and Biochemistry. 2021. Vol. 164. PP. 27–43.
  6. Yang H. et al. The beneficial and hazardous effects of selenium on the health of the soil-plant-human system: An overview. Journal of hazardous materials. 2022. Vol. 422. P. 126876.
  7. Lv Q. et al. Advances in research on the toxicological effects of selenium. Bulletin of Environmental Contamination and Toxicology. 2021. Vol. 106. PP. 715–726.
  8. Chen N. et al. Selenium nanoparticles: Enhanced nutrition and beyond. Critical reviews in food science and nutrition. 2023. Vol. 63. No. 33. PP. 12360–12371.
  9. Garza-García J.J.O. et al. The role of selenium nanoparticles in agriculture and food technology. Biological Trace Element Research. 2022. PP. 1–21.
  10. Ndwandwe B.K. et al. Selenium nanoparticles–enhanced potato starch film for active food packaging application. International Journal of Food Science and Technology. 2022. Vol. 57. No. 10. PP. 6512–6521.
  11. Waqar M.A. A comprehensive review on recent advancements in drug delivery via selenium nanoparticles. Journal of Drug Targeting. 2025. Vol. 33. No. 2. PP. 157–170.
  12. Блинов А.В. и др. Наночастицы селена, стабилизированные хитозаном, для обогащения молочной продукции. Аграрная наука. 2024. Т. 1. № 9. С. 130–135.
  13. Huang Y. et al. A review of selenium (Se) nanoparticles: from synthesis to applications. Particle & Particle Systems Characterization. 2023. Vol. 40. No. 11. P. 2300098.
  14. Блинов А.В. и др. Синтез и изучение стабилизации наночастиц селена в среде водорастворимых неионогенных поверхностно-активных веществ. Вестник Московского государственного технического университета им. Н.Э.Баумана. Серия "Естественные науки". 2024. № 2 (113). С. 103–115.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Results of modeling of cocamidopropylamine oxide molecule and selenium interaction through a secondary amino group: a – model of a molecular complex; b – electron density distribution; c – electron density distribution gradient; d – the highest populated molecular orbital; e – the lowest free molecular orbital

Download (203KB)
3. Fig.2. Ternary surface dependence of the average hydrodynamic radius of particles on concentration of selenious acid, ascorbic acid and cocamidopropylamine oxide

Download (111KB)
4. Fig.3. Dependence of the average hydrodynamic radius of particles on the pH-medium

Download (49KB)
5. Fig.4. Dependence of the average hydrodynamic radius of particles on the concentration of ions: a – dependence on anions concentration; b – dependence on cations concentration

Download (116KB)

Copyright (c) 2025 Blinova A.A., Pirogov M.A., Rekhman Z.A., Blinov A.V., Nazaretova E.D., Golik A.B.