The effect of cavitated water on the physicochemical properties of horseradish peroxidase as studied at the level of single enzyme molecules. Time dependence of cavitation effect on enzyme properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The effect of water subjected to cavitation and kept after cavitation for 8 months on the enzyme horseradish peroxidase (HRP) was studied using atomic force microscopy (AFM) and spectrophotometry (SP). No significant changes in the adsorption of HRP on freshly cleaved mica were detected compared to the control enzyme sample. On the contrary, the enzymatic activity of HRP after incubation in water subjected to cavitation 8 months ago decreased twofold. After keeping the enzyme solution in water subjected to cavitation, compared to the control enzyme sample. The detected effect should be considered in the development of biotechnological processes that involve the use of liquid media cavitation.

Full Text

Restricted Access

About the authors

Yu. D. Ivanov

Institute of Biomedical Chemistry (IBMC); Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS)

Email: shum230988@yandex.ru
ORCID iD: 0000-0001-5041-1914

Doct. of Sci. (Biology), Prof., Head of Laboratory

Russian Federation, Moscow; Moscow

I. D. Shumov

Institute of Biomedical Chemistry (IBMC)

Author for correspondence.
Email: shum230988@yandex.ru
ORCID iD: 0000-0002-9795-7065

Cand. of Sci. (Biology), Researcher

Russian Federation, Moscow

E. E. Vazhenkova

Institute of Biomedical Chemistry (IBMC)

Email: shum230988@yandex.ru
ORCID iD: 0009-0001-4224-8907

Laboratory assistant

Russian Federation, Moscow

A. N. Ableev

Institute of Biomedical Chemistry (IBMC)

Email: shum230988@yandex.ru
ORCID iD: 0009-0004-3096-107X

Leading Engineer

Russian Federation, Moscow

A. F. Kozlov

Institute of Biomedical Chemistry (IBMC)

Email: shum230988@yandex.ru

Leading Engineer

Russian Federation, Moscow

A. V. Vinogradova

Institute of Biomedical Chemistry (IBMC)

Email: shum230988@yandex.ru
ORCID iD: 0009-0001-6044-3490

Junior Researcher

Russian Federation, Moscow

E. D. Nevedrova

Institute of Biomedical Chemistry (IBMC)

Email: shum230988@yandex.ru
ORCID iD: 0000-0003-2767-2299

Junior Researcher

Russian Federation, Moscow

O. N. Afonin

Institute of Biomedical Chemistry (IBMC)

Email: shum230988@yandex.ru
ORCID iD: 0009-0008-7947-3674

Cand. of Sci. (Tech), Senior Researcher

Russian Federation, Moscow

V. Yu. Tatur

Foundation of Perspective Technologies and Novations (FPTN)

Email: shum230988@yandex.ru
ORCID iD: 0000-0002-6415-5189

Executive Director

Russian Federation, Moscow

A. A. Lukyanitsa

Foundation of Perspective Technologies and Novations (FPTN); Moscow State University

Email: shum230988@yandex.ru
ORCID iD: 0000-0002-0517-0602

Doct. of Sci. (Tech), Leading Researcher

Russian Federation, Moscow; Moscow

A. L. Shishkin

"AVK-BETA" Company" LLC

Email: shum230988@yandex.ru
ORCID iD: 0009-0008-2041-6368

Director

Russian Federation, Dubna, Moscow region

N. D. Ivanova

Moscow State Academy of Veterinary Medicine and Biotechnology Named after Skryabin

Email: shum230988@yandex.ru
ORCID iD: 0000-0001-5942-8050

Lecturer

Russian Federation, Moscow

D. V. Enikeev

Institute for Urology and Reproductive Health, Sechenov University

Email: shum230988@yandex.ru
ORCID iD: 0000-0001-7169-2209

Doct. of Sci. (Medicine), Prof., Urologist surgeon

Russian Federation, Moscow

E. S. Yushkov

National Research Nuclear University MEPhI

Email: shum230988@yandex.ru
ORCID iD: 0009-0002-9161-0877

Cand. of Sci. (Tech), Docent

Russian Federation, Moscow

М. М. Kuznetsov

Federal State University of Education

Email: shum230988@yandex.ru
ORCID iD: 0000-0001-5625-1560

Doct. of Sci. (Physics and Mathematics), Prof., Docent

Russian Federation, Moscow

A. Yu. Dolgoborodov

Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS)

Email: shum230988@yandex.ru
ORCID iD: 0000-0001-7054-7341

Doct. of Sci. (Physics and Mathematics), Head of Laboratory

Russian Federation, Moscow

V. S. Ziborov

Institute of Biomedical Chemistry (IBMC); Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS)

Email: shum230988@yandex.ru
ORCID iD: 0000-0001-7942-3337

Cand. of Sci. (Physics and Mathematics), Senior Researcher

Russian Federation, Moscow; Moscow

References

  1. Zheng H., Zheng Y., Zhu J. Recent Developments in Hydrodynamic Cavitation Reactors: Cavitation Mechanism, Reactor Design, and Applications. Engineering 2022. Vol. 19. PP. 180–198. https://doi.org/10.1016/j.eng.2022.04.027
  2. Sun X., Chen S., Liu J., Zhao S., Yoon J.Y. Hydrodynamic Cavitation: A Promising Technology for Industrial-Scale Synthesis of Nanomaterials. Front. Chem. 2020. Vol. 8. P. 259. https://doi.org/10.3389/fchem.2020.00259
  3. Petkovšek M., Mlakar M., Levstek M., Stražar M., Širok B., Dular M. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration. Ultrasonics Sonochem. 2015. Vol. 26. PP. 408–414. http://dx.doi.org/10.1016/j.ultsonch.2015.01.006
  4. Комарова Е.В., Слабунова А.В., Харитонов С.Е. Применение эффекта кавитации при очистке сточных вод животноводства. Экология и водное хозяйство. 2021. № 3 (2). С. 61–74. https://doi.org/10.31774/2658-7890-2021-3-2-61-74
  5. Tao Y., Cai J., Huai X., Liu B., Guo Z. Application of hydrodynamic cavitation to wastewater treatment. Chem. Eng. Technol. 2016. Vol. 39 (8). PP. 1363–1376. https://doi.org/10.1002/ceat.201500362
  6. Науменко Н.В., Малинин А.В., Цатуров А.В. Поиск путей повышения сохраняемости хлебобулочных изделий. Вестник ЮУрГУ. Серия "Пищевые и биотехнологии". 2018. № 6 (2). С. 58–66. https://doi.org/10.14529/food180208
  7. Asaithambi N., Singha P., Dwivedi M., Singh S.K. Hydrodynamic cavitation and its application in food and beverage industry: a review. J. Food Process Eng. 2019. Vol. 42 (5). P. e13144. https://doi.org/10.1111/jfpe.13144
  8. Кулагин В.А., Сапожникова Е.С., Стебелева О.П., Кашкина Л.В., Чжэн Ч. Ин, Ли Ц., Ли Ф.Ч. Особенности влияния эффектов кавитации на физико-химические свойства воды и стоков. Журнал Сибирского Федерального Университета. Серия: Техника и технологии. 2014. № 7 (5). С. 605–614.
  9. Ivanov Y.D., Pleshakova T.O., Shumov I.D., Kozlov A.F., Romanova T.S.; Valueva A.A., Tatur V.Y., Stepanov I.N., Ziborov V.S. Investigation of the Influence of Liquid Motion in a Flow-based System on an Enzyme Aggregation State with an Atomic Force Microscopy Sensor: The Effect of Water Flow. Appl. Sci. 2020. Vol. 10 (13). P. 4560. https://doi.org/10.3390/app 10134560
  10. Ivanov Y.D., Pleshakova T.O., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Larionov D.I., Repnikov V.V., Ivanova N.D., Tatur V.Yu., Stepanov I.N., Ziborov V.S. AFM and FTIR Investigation of the Effect of Water Flow on Horseradish Peroxidase. Molecules. 2021. Vol. 26(2). P. 306. https://doi.org/10.3390/molecules26020306
  11. Ziborov V.S., Pleshakova T.O., Shumov I.D., Kozlov A.F., Ivanova I.A., Valueva A.A., Tatur V.Y., Negodailov A.N., Lukyanitsa A.A., Ivanov Y.D. Investigation of the Influence of Liquid Motion in a Flow-Based System on an Enzyme Aggregation State with an Atomic Force Microscopy Sensor: The Effect of Glycerol Flow. Appl. Sci. 2020. Vol. 10 (14). P. 4825. https://doi.org/10.3390/app 10144825
  12. Ivanov Y.D., Pleshakova T.O., Shumov I.D., Kozlov A.F., Ivanova I.A., Ershova M.O., Tatur V.Yu., Ziborov V.S. AFM Study of the Influence of Glycerol Flow on Horseradish Peroxidase near the in/out Linear Sections of a Coil. Appl. Sci. 2021. Vol. 11(4). P. 1723. https://doi.org/10.3390/app 11041723
  13. Ivanov Y.D., Shumov I.D., Kozlov A.F., Ershova M.O., Valueva A.A., Ivanova I.A., Tatur V.Y., Lukyanitsa A.A., Ivanova N.D., Ziborov V.S. Glycerol Flow through a Shielded Coil Induces Aggregation and Activity Enhancement of Horseradish Peroxidase. Appl. Sci. 2023. Vol. 13. P. 7516. https://doi.org/10.3390/app 13137516
  14. Ivanov Y.D., Shumov I.D., Kozlov A.F., Ershova M.O., Valueva A.A., Ivanova I.A., Tatur V.Y., Lukyanitsa A.A., Ivanova N.D., Ziborov V.S. Stopped Flow of Glycerol Induces the Enhancement of Adsorption and Aggregation of HRP on Mica. Micromachines. 2023. Vol. 14. P. 1024. https://doi.org/10.3390/mi14051024
  15. Ivanov Y.D., Shumov I.D., Kozlov A.F., Valueva A.A., Ershova M.O., Ivanova I.A., Ableev A.N., Tatur V.Y., Lukyanitsa A.A., Ivanova N.D., Ziborov V.S. Atomic Force Microscopy Study of the Long-Term Effect of the Glycerol Flow, Stopped in a Coiled Heat Exchanger, on Horseradish Peroxidase. Micromachines 2024. Vol. 15 (4). P. 499. https://doi.org/10.3390/mi15040499
  16. Иванов Ю.Д., Шумов И.Д., Козлов А.Ф., Ершова М.О., Валуева А.А., Иванова И.А., Татур В.Ю., Лукьяница А.А., Иванова Н.Д., Неведрова Е.Д., Зиборов В.С. АСМ-исследование пост-эффекта движения глицерина в выходной части проточной системы на адсорбционные свойства белка. Наноиндустрия 2023. № 16 (2). С. 106–113. https://doi.org/10.22184/1993-8578.2023.16.2.106.113
  17. Ivanov Y.D., Shumov I.D., Tatur V.Y., Valueva A.A., Kozlov A.F., Ivanova I.A., Ershova M.O., Ivanova N.D., Stepanov I.N., Lukyanitsa A.A., Ziborov V.S. AFM Investigation of the Influence of Steam Flow through a Conical Coil Heat Exchanger on Enzyme Properties. Micromachines 2022. Vol. 13. P. 2041. https://doi.org/10.3390/mi13122041
  18. Тэнесеску Ф., Крамарюк Р. Электростатика в технике. М.: Энергия, 1980. 296 c.
  19. Yoo D., Jang S., Cho S., Choi D., Kim D.S. A Liquid Triboelectric Series. Adv. Mater. 2023. Vol. 35 (26). P. 2300699. https://doi.org/10.1002/adma.202300699
  20. Balmer R. Electrostatic Generation in Dielectric Fluids: The Viscoelectric Effect. In Proceedings of the WTC2005 World Tribology Congress III, Washington, DC, USA, 12–16 September 2005. Paper No. WTC2005-63806. https://doi.org/10.1115/WTC2005-63806
  21. Ivanov Y.D., Pleshakova T.O., Shumov I.D., Kozlov A.F., Ivanova I.A., Valueva A.A., Tatur V.Y., Smelov M.V., Ivanova N.D., Ziborov V.S. AFM imaging of protein aggregation in studying the impact of knotted electromagnetic field on a peroxidase. Sci. Rep. 2020. Vol. 10. P. 9022. https://doi.org/10.1038/s41598-020-65888-z
  22. Ivanov Y.D., Tatur V.Y., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Ivanova N.D., Stepanov I.N., Lukyanitsa A.A., Ziborov V.S. The Effect of a Dodecahedron-Shaped Structure on the Properties of an Enzyme. J. Funct. Biomater. 2022. Vol. 13. P. 166. https://doi.org/10.3390/jfb13040166
  23. Ziborov V.S., Pleshakova T.O., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Larionov D.I., Evdokimov A.N., Tatur V.Y., Aleshko A.I., Sakharov K.Y., Dolgoborodov A.Y., Fortov V.E., Archakov A.I., Ivanov Y.D. The Impact of Fast-Rise-Time Electromagnetic Field and Pressure on the Aggregation of Peroxidase upon Its Adsorption onto Mica. Appl. Sci. 2021. Vol. 11(24). P. 11677. https://doi.org/10.3390/app 112411677
  24. Ivanov Yu.D., Pleshakova T.O., Shumov I.D., Kozlov A.F., Ivanova I.A., Valueva A.A., Ershova M.O., Tatur V.Yu., Stepanov I.N., Repnikov V.V., Ziborov V.S. AFM study of changes in properties of horseradish peroxidase after incubation of its solution near a pyramidal structure. Sci. Rep. 2021. Vol. 11(1). P. 9907. https://doi.org/10.1038/s41598-021-89377-z
  25. Ivanov Y.D., Tatur V.Y., Pleshakova T.O., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Ivanova N.D., Repnikov V.V., Stepanov I.N., Ziborov V.S. Effect of Spherical Elements of Biosensors and Bioreactors on the Physicochemical Properties of a Peroxidase Protein. Polymers. 2021. Vol. 13(10). P. 1601. https://doi.org/10.3390/polym13101601
  26. Ivanov Y.D., Tatur V.Y., Pleshakova T.O., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Ivanova N.D., Stepanov I.N., Lukyanitsa A.A., Ziborov V.S. The Effect of Incubation near an Inversely Oriented Square Pyramidal Structure on Adsorption Properties of Horseradish Peroxidase. Appl. Sci. 2022. Vol. 12. P. 4042. https://doi.org/10.3390/app 12084042
  27. Ivanov Y.D., Tatur V.Y., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Ivanova N.D., Stepanov I.N., Lukyanitsa A.A., Ziborov V.S. Atomic Force Microscopy Study of the Effect of an Electric Field, Applied to a Pyramidal Structure, on Enzyme Biomolecules. J. Funct. Biomater. 2022. Vol. 13. P. 234. https://doi.org/10.3390/jfb13040234
  28. Ivanov Y.D., Tatur V.Y., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Ivanova N.D., Stepanov I.N., Lukyanitsa A.A., Ziborov V.S. The Influence of a High-Voltage Discharge in a Helicoidal Twisted-Pair Structure on Enzyme Adsorption. Electronics. 2022. Vol. 11. P. 3276. https://doi.org/10.3390/electronics11203276
  29. Ivanov Y.D., Tatur V.Y., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Ivanova N.D., Stepanov I.N., Lukyanitsa A.A., Ziborov V.S. The Effect of a Rotating Cone on Horseradish Peroxidase Aggregation on Mica Revealed by Atomic Force Microscopy. Micromachines. 2022. Vol. 13. P. 1947. https://doi.org/10.3390/mi13111947
  30. Ivanov Y.D., Tatur V.Y., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Ivanova N.D., Stepanov I.N., Lukyanitsa A.A., Ziborov V.S. Effect of a Conical Cellulose Structure on Horseradish Peroxidase Biomacromolecules. Appl. Sci. 2022. Vol. 12. P. 11994. https://doi.org/10.3390/app 122311994
  31. Kiselyova O.I., Yaminsky I., Ivanov Y.D., Kanaeva I.P., Kuznetsov V.Y., Archakov A.I. AFM study of membrane proteins, cytochrome P 4502B4, and NADPH–Cytochrome P 450 reductase and their complex formation. Arch. Biochem. Biophys. 1999. Vol. 371. PP. 1–7. https://doi.org/10.1006/abbi.1999.1412
  32. Sanders S.A., Bray R.C., Smith A.T. pH-dependent properties of a mutant horseradish peroxidase isoenzyme C in which Arg38 has been replaced with lysine, Eur J Biochem 1994. Vol. 224. PP. 1029–1037. https://doi.org/10.1111/j.1432-1033.1994.01029.x
  33. Pleshakova T.O., Kaysheva A.L., Shumov I.D., Ziborov V.S., Bayzyanova J.M., Konev V.A., Uchaikin V.F., Archakov A.I., Ivanov Y.D. Detection of hepatitis C virus core protein in serum using aptamer-functionalized AFM chips. Micromachines. 2019. Vol. 10. P. 129. https://doi.org/10.3390/mi10020129
  34. Першин С.М. Квантовая природа значений температуры особых точек воды: -80, -42, 4, 19, 36.6, 48, 60 °С. Тезисы докладов 3й всероссийской конференции "Физика водных растворов". Москва, 14–15 декабря 2020. 56 с. С. 41. https://doi.org/10.24412/cl-35040-2020-41-41

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Photographic image of hydrodynamic generator assembly

Download (154KB)
3. Fig.2. Schematic of the experiment on incubation of the HRP solution to study the effect of water subjected to cavitation 8 months ago on the enzyme solution. A test tube with a working sample of the HRP solution (1) was incubated in a beaker with water subjected to cavitation. A test tube with a control sample of the HRP solution (2) was incubated in a glass with tap water, which was placed at a distance of 10 m from the glass with water subjected to cavitation 8 months ago

Download (34KB)
4. Fig.3. Typical AFM images of the surface of freshly cleaved mica substrates incubated in the studied samples of HRP solution. The HRP sample solution was kept for 3 hours in a beaker with water subjected to cavitation 8 months ago (a, working sample), or in a beaker with tap water placed 10 m away from the beaker with cavitational water (b, control sample). Experimental conditions: 10–7 M HRP in 2 mM PBS-D, pH 7.4, T=23 °C, incubation time 3 hours. The size of each scan is 2×2 μm

Download (221KB)
5. Fig.4. Distribution plots of the relative number of visualized objects with heights ρ(h) obtained for the studied samples of HRP solution. The sample was kept for 3 hours in a beaker with water subjected to cavitation 8 months ago (working sample, red curve) or in a beaker with tap water placed 10 m from the beaker with cavitation water (control sample, blue curve). Experimental conditions: 10–7 M HRP in 2 mM PBS-D, pH 7.4, T = 23 °С, incubation time 3 hours

Download (64KB)
6. Fig.5. Histograms of the absolute number of visualized objects (normalized to an area of 400 μm2) depending on the heights of objects N400(h), obtained for the studied samples of the HRP solution. The sample was kept for 3 hours in a beaker with water subjected to cavitation 8 months ago (working sample, red bars) or in a beaker with tap water placed 10 m from the beaker with cavitation water (control sample, blue bars). Experimental conditions: 10–7 M HRP in 2 mM PBS-D, pH 7.4, T = 23 °С, incubation time 3 hours

Download (51KB)
7. Fig.6. Dependences of absorption at 405 nm of the studied solution on time A405(t), obtained for the studied samples of the HRP solution. The sample was kept for 3 hours in a beaker with water subjected to cavitation 8 months ago (working sample, red curve) or in a beaker with tap water placed 10 m from the beaker with cavitation water (control sample, blue curve). Experimental conditions: the concentration of HRP in the SP cell was 10–9 M, pH 5.0, T = 23 °С, the optical path length of the SP cell was 1 cm

Download (63KB)

Copyright (c) 2025 Ivanov Y.D., Shumov I.D., Vazhenkova E.E., Ableev A.N., Kozlov A.F., Vinogradova A.V., Nevedrova E.D., Afonin O.N., Tatur V.Y., Lukyanitsa A.A., Shishkin A.L., Ivanova N.D., Enikeev D.V., Yushkov E.S., Kuznetsov М.М., Dolgoborodov A.Y., Ziborov V.S.