Becthuk Bon(MV)

УДК 616.91:616.831.4-092.4

СТРУКТУРНЫЕ ИЗМЕНЕНИЯ В НЕЙРОНАХ ГИПОТАЛАМУСА ПРИ ЭКСПЕРИМЕНТАЛЬНОМ ВОСПРОИЗВЕДЕНИИ ЛИХОРАДКИ ЗАПАДНОГО НИЛА

В. А. Глухов, А. В. Смирнов, М. В. Шмидт, А. М. Бутенко*, Н. В. Хуторецкая*, В. Ф. Ларичев*

Кафедра патологической анатомии ВолГМУ, отдел общей и экспериментальной патологии ВНЦ РАМН и Администрации Волгоградской области, НИИ Вирусологии РАМН им. Д. И. Ивановского, Москва*

Произведено моделирование лихорадки Западного Нила путем подкожного инфицирования белых мышейсамцов. На седьмые сутки эксперимента у животных обнаружена клиническая картина менингоэнцефалита. Ультраструктурные изменения в нейронах и признаки повреждения миелиновых оболочек аксонов в гипоталамусе свидетельствуют о цитопатическом действии вируса Западного Нила.

Ключевые слова: лихорадка Западного Нила, гипоталамическая область, повреждение нейронов.

STRUCTURAL ALTERATIONS OF HYPOTHALAMUS IN EXPERIMENTAL MODELING OF WEST NILE ENCEPHALITIS

V. A. Glukhov, A. V. Smirnov, M. V. Schmidt, A. M. Butenko, N. V. Khutoretskaya, V. P. Larichev

We modeled West Nile encephalitis by way of infecting white mice subcutaneously. Clinical symptoms of meningoencephalitis were found on the 7th day of experiment. Ultrastructural alterations in neurons, damage of myelin sheaths in the hypothalamus indicate cytopathic action of West Nile virus.

Key words: West Nile encephalitis, hypothalamic area, damage of neurons.

Одной из актуальных медицинских проблем южных регионов России является лихорадка Западного Нила (ЛЗН), что обусловлено расширением ареала болезни, ростом заболеваемости среди населения в последние годы в странах Африки, Азии, Северной Америки, Европы (Львов Д. К. и др., 2004; Crichlow R., Bailey J., 2004, Paddock C. D., et al., 2006). С 1999 по 2006 г. на территории Волгоградской области было зарегистрировано 452 больных ЛЗН (летальность 9,7%) [1, 6]. В 76% случаев ЛЗН протекала с поражением центральной нервной системы. Наибольшую долю клинических вариантов течения в структуре заболеваемости ЛЗН составили менингиты (59%) и менингоэнцефалиты (17%) [2, 3, 4].

При моделировании ЛЗН в головном мозге отмечены обратимые изменения в нейронах [8, 9], а также ультраструктурные признаки апоптоза [4, 10], снижение электронной плотности аксоплазмы с образованием светлых крупных вакуолей в отдельных осевых цилиндрах. Однако данные о выраженности структурных повреждений отличаются в зависимости от отдела головного мозга, экспериментальной модели и периода заболевания. Известно, что важнейшим центральным звеном нейро-гуморальной регуляции вегетативных функций является гипоталамус, однако данные о морфологических изменениях в нем в период разгара ЛЗН немногочисленны и противоречивы.

ЦЕЛЬ РАБОТЫ

Выявить структурные изменения в передней гипоталамической области при экспериментальном воспроизведении лихорадки Западного Нила.

МЕТОДИКА ИССЛЕДОВАНИЯ

Моделирование ЛЗН производилось в лаборатории арбовирусных инфекций (зав. лаб. проф. А. М. Бутенко) ГУ НИИ вирусологии РАМН им. Д. И. Ивановского (директор академик РАМН Д. К. Львов). В работе использовали белых мышей-самцов массой (10 ± 2) г в возрасте 30 суток, которые были заражены вирусом Западного Нила (ЗН), астраханский штамм (Астр 901), подкожно в разведении 10^2 0,3 мл (10 животных). Заболевших животных с выраженной клинической симптоматикой ЛЗН забивали на 7-е сутки (7 животных) под эфирным наркозом в соответствии с «Правилами проведения работ с использованием экспериментальных животных». Контролем служили мыши-самцы (10 животных), которым подкожно вводили 0,3 мл 0,9%-го раствора хлорида натрия.

Головной мозг фиксировали в 10 %-м нейтральном формалине, с дальнейшим обезвоживанием в батарее спиртов и изготовлением парафиновых блоков. Срезы толщиной 5—7 мкм. Производили окрашивание срезов гематоксилином и эозином, тионином по методу Ниссля. Фиксацию кусочков головного мозга для электронно-микроскопического исследования размером до 1 мм³ производили в течение 12 часов в 4%-м растворе параформа на 0,1 М какодилатном буфере с последующей постфиксацией в течение 2 часов в 1%-м растворе тетраокиси осмия на 0,1М какодилатном буфере (рН = 7,4) при температуре +4 °C [7]. После промывки в нескольких порциях раствора какодилатного буфера материал подвергали дегидратации в спиртах возрастающей кон-

Becthuk Bon(MV)

центрации и заливали в смесь эпона и аралдита. Ультратонкие срезы толщиной 50—90 нм получали на ультрамикротоме «LKB-8800» и монтировали на медные сетки. После контрастирования в 2,5%-м растворе уранилацетата на 50°-м этаноле в течение 40 минут и 0,3%-м растворе цитрата свинца в течение 20 минут срезы изучались в электронном микроскопе «Tesla BS-500» при ускоряющем напряжении 60 кВ. Фотодокументирование производили с использованием фотопластинок «Для ядерных исследований». Электронные микрофотограммы изготавливали на фотографической черно-белой бумаге «Унибром 160 БП».

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

При морфологическом исследовании передней гипоталамической области заболевших животных в большинстве нейронов обнаруживалась полигональная форма перикариона. У части нейронов отмечались признаки набухания, вакуолизации и очаговый хроматолиз в цитоплазме перикарионов, эктопия ядер и ядрышек. В отдельных нейронах обнаружена гиперхромная цитоплазма перикариона с диффузно распределенным мелкогранулярным материалом. В ядре определялись одно или два хорошо выраженных ядрышка. Среди глиальных клеток преобладали астроциты, в части из которых, особенно в периваскулярных отделах, обнаруживались явления кариорексиса. В сосудах микроциркуляторного русла, особенно в посткапиллярных венулах и капиллярах, наблюдались полнокровие, смешанная лимфоидная инфильтрация с наличием единичных сегментоядерных нейтрофильных лейкоцитов и гистиоцитов, переходящая на периваскулярные отделы, очаговая пролиферация эндотелия. В менингиальных оболочках отмечены периваскулярные кровоизлияния и смешанная лимфоцитарная инфильтрация с единичными нейтрофильными лейкоцитами, признаки продуктивного воспаления с явлениями лимфоидной инфильтрации стенок менингиальных сосудов и пролиферацией эндотелия.

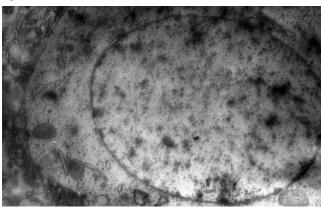
По данным электронно-микроскопического исследования передних отделов гипоталамуса, в большей части ядер нейронов преобладал эухроматин. В некоторых ядрах нейронов наблюдались небольшие скопления свободного гетерохроматина в периферических отделах ядер и гетерохроматина, прилежащего к внутренней мембране ядерной оболочки, представленной наружной и внутренними ядерными мембранами с узким перинуклеарным пространством.

В цитоплазме перикарионов нейронов цистерны гранулярной эндоплазматической сети (гЭПС) были расширены, встречались единичные мелкие мембранные вакуоли с содержимым низкой электронной плотности. Ультраструктурные элементы комплекса Гольджи были развиты умеренно, расположены в

перинуклеарной зоне. Многочисленные митохондрии имели несколько вытянутую овальную форму. Их количество увеличивалось в периферических отделах перикариона (рис. 1a).

В отдельных нейронах в ядрах обнаруживались очаговые расширения перинуклеарного пространства, небольшие очаги разрушения наружной ядерной мембраны, а также одиночные крупные центрально расположенные вакуоли с содержимым низкой электронной плотности (рис. 1б), ограниченные мембраной, образованные, по нашему мнению, в результате глубоких инвагинаций внутренней ядерной мембраны. В цитоплазме перикарионов таких нейронов отмечено снижение электронной плотности гиалоплазмы за счет внутриклеточного отека, а также уменьшение количества митохондрий, элементов гЭПС, при сохранности свободных рибосом и полисом.

В нейропиле встречались преимущественно безмиелиновые нервные волокна, представленные поперечно срезанными профилями дендритов и безмиелиновых аксонов. Единичные аксоны небольшого диаметра покрыты тонкой миелиновой оболочкой с участками разрыхления, очаговым расслоением ламелл. Обнаружены очаговые просветления аксоплазмы, а также участки аксоплазмы, имевшие «пенистый» вид. Ультраструктурные изменения митохондрий характеризовались просветлением матрикса и очаговым лизисом крист в отдельных аксонах. Обнаружено значительное количество аксодендритических синапсов в нейропиле в непосредственной близости от перикарионов нейронов, а также аксосоматических синапсов, представленных синапсами симметричного типа по Грею, содержащих множество мембранных везикул с содержимым низкой электронной плотности диаметром около 100 нм в пресинаптических частях (рис. 1б).


Выявленные нами морфологические изменения в нейронах гипоталамуса свидетельствуют о появлении во многих нейронах гипоталамуса морфологических признаков апоптоза в группе заболевших животных на 7-е сутки эксперимента. Эти результаты косвенно подтверждаются при исследовании головного мозга мышей, зараженных путем внутрибрюшинного введения вируса ЗН, у которых были обнаружены признаки апоптоза в нейронах гипокампа, ствола и мозжечка [15].

В наших исследованиях отмечены более выраженные клинико-морфологические проявления менингоэнцефалита по сравнению с моделью внутрибрюшинного введения [5], что, возможно, объясняется большим разведением вируса ЗН. Кроме того, при внутрибрюшинном заражении вирусом ЗН в сосудах микроциркуляторного русла гипоталамуса был обнаружен внутриклеточный отек эндотелиальных клеток, повреждение органелл, формирование в цитоплазме вакуолей и миелиноподобных структур [7]. Выявленные нами морфологические признаки продуктивного

Becthuk Bon(MV)

васкулита с наличием единичных сегментоядерных нейтрофильных лейкоцитов указывают на более выраженное повреждение гематоэнцефалического барьера в нашем исследовании, что ведет к изменению проницаемости и способствует повреждению нейронов передней гипоталамической области.

Выявленные ультраструктурные изменения указывают на повреждение миелиновых оболочек аксонов в гипоталамусе, что согласуется с современной концепцией о возможности репликации вируса ЗН в перикарионах нейронов и накоплении вирионов между ламеллами в миелиновых оболочках.

а

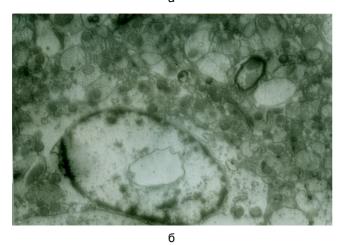


Рис. 1. Ультраструктура нейрона переднего отдела гипоталамуса головного мозга мыши на 7-е сутки эксперимента:

а) с внутриклеточным отеком; б) в ядрах обнаруживались вакуоли, ограниченные одной мембраной с содержимым низкой электронной плотности. Электронная микрофотография.

Ув. х 6000

ЗАКЛЮЧЕНИЕ

Таким образом, в головном мозге мышей при лихорадке ЗН на модели подкожного введения вируса (штамм Астр 901) в нейронах передней гипоталамической области выявлены ультраструктурные признаки обратимых и необратимых изменений, что свидетельствует, на наш взгляд, о цитопатическом действии вируса ЗН. Обнаруженные морфологические изменения указывают на возможность вовлечения элементов гематоэнцефалического барьера в механизмы повреждения нейронов гипоталамуса при лихорадке ЗН.

Исследование выполнено при финансовой поддержке гранта ВолГМУ.

ЛИТЕРАТУРА

- 1. Григорьева Н. В. Патоморфология органов и систем при лихорадке Западного Нила (клинико-экспериментальное исследование): Автореф. дис.... д-ра мед. наук. Волгоград, 2005. 42 с.
- 2. Львов Д. К., Писарев В. Б., Петров В. А., Григорьева Н. В. Лихорадка Западного Нила: по материалам вспышек в Волгоградской области в 1999—2002 гг. Волгоград, 2004. 104с.
- 3. Писарев В. Б., Григорьева Н. В., Петров В. А., Бутенко А. М. // Архив патологии. — 2004. — № 5. — С. 15—18.
- 4. Писарев В. Б., Смирнов А. В., Почепцов А. Я. и др. // Бюллетень ВНЦ РАМН и АВО. 2006. № 3. С. 11—13.
- 5. Писарев В. Б., Бутенко А. М. Смирнов А. В. и др. // Бюллетень ВНЦ РАМН и АВО. 2008. № 1. С. 21—24.
- 6. Шмидт М.В., Писарев В.Б., Смирнов А.В., Бутенко А.М. // Архив патологии. — 2006. — Т. 68, № 4. — С. 25—27.
- 7. Шмидт М. В. Морфологическая характеристика гематоэнцефалического барьера при экспериментальном воспроизведении лихорадки Западного Нила: Автореф. канд. мед. наук. Волгоград, 2006. 23 с.
- 8. Crichlow R., Bailey J., Gardner C. // The Journal of the American Board of Family Practice. 2004. № 17. P. 470—472.
- 9. *Dai J., Wang P., Bai F., Town T., Fikrig E. //* J. Virol. 2008. № 6. P. 4164—1468.
- 10. Samuel M. A., Morrey J. D., Diamond M. S. // Journal of Virology. 2007. Vol. 81. № 6. P. 2614—2623.

Контактная информация

Смирнов Алексей Владимирович — д. м. н., доцент, зав. кафедрой патологической анатомии с секционным курсом и курсом патологии Волгоградского государственного медицинского университета, e-mail: alexey-smirnov@rambler.ru