ЛИТЕРАТУРА

- 1. Алексеева Л. И., Чичасова Н. В., Беневоленская Л. И. и др. // Терапевтический архив. 2005. № 11. С. 69—75.
- 2. Андреева Л.И., Кожемякин Л. А. // Лабораторное дело. 1988. № 11. С. 41—46.
- 3. Волчегорский И. А., Налимов А. Г., Яровинский Б. Г. // Вопросы медицинской химии. 1989. № 1. С. 127—131.
- 4. Закирова А. Н., Закирова Н. Э. // Российский кардиологический журнал. 2006. № 2. С. 24—27.
- 5. Зборовская И. А. Ревматические болезни и антиоксидантная система. — М.; ОАО «Издательство Медицина», 2005. — С. 51—56.
- 6. Королюк М. А., Иванова Л. И., Майорова И. Г., То-карев В. Е. // Лабораторное дело. 1988. № 1. С. 16—19.
- 7. Кратнов А.Е., Курылева К. В., Кратнов А. А. // Клиническая медицина. 2006. № 6. С. 42—46.
- 8. Промыслов М. Ш., Демчук М. Л. // Вопросы медицинской химии. 1990. Т. 36, № 4. С. 90—92.
- 9. Стенина О. А., Сорокин Е. В., Фомичева О. А. и др. // Кардиология. 2005. № 11. С. 105—108.

- 10. Титов В. Н., Лисицын Д. М. // Физическая химия, биология и медицина. М. Тверь: ООО «Триада», 2006. С. 558—665.
- 11. Цветкова Е. С. // Терапевтический архив. 2004. № 5. С. 77—79.
- 12. Яровой Г. А. Исследование показателей липидного обмена и перекисного окисления липидов: метод. рекомендации ЦОЛИУВ. М., 1987. 24 с.
- 13. Altman R., Alarcon G., Appelrouth D., et al. // Arthritis Rheum. 1991. Vol. 34. P. 505—514.
- *14. Dieppe P., Kirvan J. //* Br. J. Rheumatol. 1994. Vol. 33. P. 201.
- 15. Kuttner K., Goldberg V. M. Osteoarthritis disorders. Rosemont: American Academy of Orthopaedic Surgeons; 1995.
- 16. Mohan D. K., Das U. N. // Prostaglandins Leukot. Essent. Fatty Acids. 1997. Vol. 56, № 3. P. 193—198.
- 17. Tuncer S., Kamanki A., Akcil E., et al. // Biol. Trace Elem. Res. 1999. Vol. 68, № 2. P. 137—142.

Контактная информация

Алексенко Елена Юрьевна — к. м. н., доцент, заведующая кафедрой поликлинической терапии с курсом общей врачебной практики, e-mail: e-alexe@mail.ru.

УДК 616.12 005.4-053-076.5

ЦИТОКИНОВЫЙ ПРОФИЛЬ У БОЛЬНЫХ АТЕРОСКЛЕРОЗОМ

С. И. Чернова, В. Н. Плохов

Отделенческая клиническая больница, Волгоград

Изучено содержание провоспалительных цитокинов ИЛ-1 β , ФНО- α и ИЛ-6 у больных с атеросклерозом брахиоцефальных артерий. Продемонстрирована прямая корреляционная связь между суммарной площадью атеросклеротического поражения, количеством стенозированных артерий и содержанием провоспалительных цитокинов. Отмечена взаимосвязь нарушений липидных показателей с уровнем провоспалительных цитокинов.

Ключевые слова: атеросклероз, провоспалительные цитокины, количество стенозированных артерий, суммарная площадь атеросклеротического поражения, нарушение липидных показателей.

CYTOKINE PROFILE IN PATIENTS WITH ATHEROSCLEROSIS

S. I. Chernova, V. N. Plohov

The content of proinflammatory cytokines IL-1 β , TNF- α and IL-6 in patients with atherosclerosis of brachiocephalic arteries were studied. Direct correlation communication between the total area of atherosclerotic lesion, quantity of stenotic arteries and the content of pro-inflammatory cytokines are shown. The interrelation of disorder of lipid indicators with level proinflammatory cytokines is noted.

Key words: atherosclerosis, proinflammatory cytokines, quantity of stenotic arteries, total area of atherosclerotic lesion, disorder of lipid indicators.

Провоспалительные цитокины интерклейкины (ИЛ)-1 β , ИЛ-6 и фактор некроза опухоли (ФНО)- α являются ключевыми в системе иммунных и воспалительных реакций в очаге атеросклеротического поражения и оказывают мощное деструктивное воздействие на эндотелий и соединительнотканные структуры сосудов [1, 2]. Повреждение и дисфункция эндотелия, возникающие при участии провоспалитель-

ных цитокинов, считаются начальными событиями в атерогенезе. Реорганизация эндотелия и увеличение его проницаемости способствуют миграции в интиму моноцитов и накоплению модифицированных липопротеидов [6]. Под влиянием провоспалительных цитокинов мигрировавшие из медии гладкомышечные клетки превращаются в интиме из контрактильного типа клеток в секреторный, активно синте-

зирующий соединительнотканные белки [4]. Инфильтрирующие сосудистую стенку клетки, активируясь цитокинами, сами становятся источником различных провоспалительных и фиброгенных факторов, в том числе ИЛ-1 β , ИЛ-6 и ФНО- α [5]. Дисбаланс цитокинов приводит к дальнейшему повреждению эндотелия, активации взаимодействия тромбоцитов с эдотелиоцитами, стимуляции гладкомышечных клеток и синтезу экстрацеллюлярного матрикса бляшки. В основе развития артериальной гипертонии и атеросклероза лежат аналогичные патофизиологические процессы, связанные с гиперактивацией симпато-адреналовой, ренин-ангиотензиновой и цитокиновой систем организма. Хорошо известна взаимосвязь между этими состояниями и взаимное их потенцирование [3]. Атеросклеротические поражения долгое время остаются бессимптомными. Манифестирующие формы заболевания, такие как хроническая ишемическая болезнь сердца (ИБС) или острый инфаркт миокарда, связаны в большинстве случаев со значительными изменениями сосудистой стенки и требуют пожизненной терапии. Поэтому крайне важно оценивать атеросклероз на ранних, потенциально обратимых стадиях заболевания. Поиск предикторов тяжелого течения атеросклероза остается весьма актуальной задачей.

ЦЕЛЬ РАБОТЫ

Изучение цитокинового профиля у больных с асимптомным стенозирующим поражением брахиоцефальных артерий и взаимосвязи уровней провоспалительных цитокинов ИЛ-1 β , ИЛ-6 и ФНО- α с клинико-лабораторными и количественными характеристиками атеросклеротического процесса.

МЕТОДИКА ИССЛЕДОВАНИЯ

Обследован 131 больной с артериальной гипертонией (АГ), из них 67 больных с атеросклеротическим поражением каротидных артерий и в качестве контрольной группы 64 больных без признаков атеросклеротического поражения магистральных артерий шеи. Для выявления изменений артериальной стенки, связанных с процессами атеросклероза, использовался метод ультразвукового исследования экстракраниальных артерий на аппарате «Acuson 128XP» фирмы Acuson США, линейным датчиком с частотой 5—7 мГц в режиме дуплексного сканирования с цветным доплеровским картированием потоков. Исследование уровней цитокинов проводилось методом твердофазного иммуноферментного анализа. При статистической обработке результатов использовался статистический пакет «Statistica for Windows» «STATGRAPHICS 3,0».

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

В группе больных с атеросклерозом брахиоцефальных артерий было 37 мужчин (55,2 %) и 30 жен-

щин (44,8 %), средний возраст (51 ± 3,1) года. Длительность артериальной гипертонии в этой группе составила в среднем (9,4 ± 2,8) лет. На момент включения в исследование у 46 (8,9 %) пациентов определена 1-я степень, у 36 (53,7 %) — 2-я степень и у 25 (37,3 %) — 3-я степень AГ. Сахарным диабетом 2-го типа в этой группе страдали 14 (20,8 %) больных, у 9 (13,4 %) — определено нарушение толерантности к углеводам. У 24 (35,8 %) пациентов имелось ожирение II—III степени или сочетанные обменные нарушения. Среди больных с неизмененными артериями было 26 мужчин (41 %) и 38 женщин (59 %), средний возраст (48 ± 4,7) лет. Длительность заболевания во второй группе составляла в среднем (9,8 ± 1,2) года. На момент включения в настоящее исследования у 17 (26,5 %) больных определена I степень, у 21 (32,8 %) — II степень и у 26 (40,6 %) III степень АГ. Метаболические нарушения выявлены у 44 (68,7 %) больных, из них у 9 (14 %) — сахарный диабет 2-го типа, у 6 (9,3 %) — нарушение толерантности к углеводам, у 38 (59,3 %) — ожирение II-III степени или сочетанные обменные нарушения.

В группе больных с атеросклерозом повышенные уровни ИЛ-1 β выявлены у 51 (76,1 %), ИЛ-6 — у 53 (79,1 %) и ФНО- α — у 50 (74,6 %) пациентов, достоверно чаще, чем у больных АГ без поражения каротидных артерий (p < 0,001). Содержание цитокинов у больных исследуемых групп представлено в табл. 1. Таблица 1

Содержание ИЛ-1 β , ИЛ-6, ФНО- α у больных с атеросклерозом и у больных с неизмененными сосудами, пг/мл, $M \pm m$

Группа обследованных	Количест- во обсле- дованных	ИЛ-1β	ИЛ-6	ΦΗΟ-α
Больные с неизмененными брахиоцефальными арте- риями	64	5,78 ± 1,33	5,92 ± 1,35	8,35 ± 1,19
Больные с атеросклерозом брахиоцефальных артерий	67	12,9 ± 1,35*	14,3 ± 1,18*	19,7 ± 2,26*

*p < 0.001 достоверно в сравнении с больными, не имеющими признаков атеросклероза.

Таким образом, содержание всех исследуемых цитокинов у больных с атеросклерозом экстракраниальных артерий достоверно выше, чем у больных с неизмененными артериями (p < 0.001).

Одна из важнейших ролей в развитии этого патологического процесса принадлежит нарушениям липидного обмена. При изучении состояния липидного обмена у больных с атеросклерозом нарушения липидных показателей выявлены у 60 (89,5 %) пациентов. В целом, по группе отмечалось достоверное увеличение уровня общего холестерина (ОХС), холестерина липопротеинов низкой плотности (ХСЛПНП), триглицерина (ТГ) и коэффициента атерогенности (КА) (p < 0,001), то есть имеющиеся сдвиги носили атерогенную направленность. Не выявлено зависимости липидных показателей от

длительности артериальной гипертонии. Определена положительная корреляционная связь между возрастом и ОХС (r = 0,59; p < 0,001). При этом при выделении в отдельную группу молодых пациентов с высокими цифрами систолического (САД) и диастолического артериального давления (ДАД) различия в липидных показателях нивелировались (p < 0,001).

Анализ зависимости липидных нарушений от индекса массы тела (ИМТ) обнаружил достоверно более высокие уровни ОХС у больных с ожирением по сравнению с пациентами, не имеющими избытка массы тела $[(5,9\pm0,22)$ и $(4,6\pm0,24)$ ммоль/л; p < 0.001], а также уровни ТГ [(1.8 ± 0.12) и $(1,2\pm0,11)$ ммоль/л] и ЛПНП $[(4,1\pm0,20)]$ и $(2.8 \pm 0.17 \text{ ммоль/л}; p < 0.001]$. Выявлена положительная корреляционная зависимость между ИМТ и ОХС $(r = 0.57; p < 0.001), T\Gamma (r = 0.54; p < 0.001), XC ЛПНП$ (r = 0.39; p < 0.001) и КА (r = 0.37; p < 0.001). В первой группе у больных сахарным диабетом обнаружены достоверно более высокие показатели ХС ЛПНП $[(4,6 \pm 0,24) \text{ и } (3,4 \pm 0,18) \text{ ммоль/л}; p < 0,001] \text{ и KA}$ $[(3,52 \pm 0,026)$ и $(2,87 \pm 0,19)]$ в сравнении с пациентами без нарушений углеводного обмена (p < 0.001).

При изучении у больных атеросклерозом взаимосвязи липидных показателей и уровней провоспалительных цитокинов выявлена положительная корреляция между ФНО- α , ИЛ-1 β и ОХС (r = 0,53; r = 0,35; ρ < 0,001), ИЛ-6 и ХС ЛПНП (r = 0,49; ρ < 0,001), ИЛ-6 и КА (r = 0,47; ρ < 0,001).

Учитывая важную роль иммунного воспаления и нарушений холестеринового обмена в развитии атеросклероза, мы провели изучение взаимосвязи липидных показателей, уровней провоспалительных цитокинов с количественными характеристиками атеросклеротического процесса, определенными при дуплексном исследовании брахиоцефальных артерий.

В нашем исследовании учитывалась максимальная для каждого больного толщина слоя интима-медия (ТИМ) общей сонной артерии с любой стороны. Нормальной считали ТИМ < 1 мм, утолщением — ТИМ = 1—1,3 мм, критерием бляшки — ТИМ ≥ 1,3 мм. Помимо общих сонных артерий изучались внутренние сонные артерии, подключичные артерии и позвоночные артерии в своих начальных отделах, оценивалась ультразвуковая морфология атеросклеротической бляшки по классификации Gray-Wealle. Величина стенозов определялась в процентном выражении по отношению к диаметру сосуда.

Для количественной оценки атеросклеротического поражения и статистической обработки учитывались следующие показатели:

1) общая суммарная площадь стенотического поражения, определяемая как простая сумма процентных величин всех стенозов по всем исследуемым артериям;

- 2) средняя величина стеноза отношение суммарной площади стенотического поражения к количеству исследуемых артерий;
- 3) максимальная величина стеноза максимальный, наиболее гемодинамически значимый у данного больного по любой из исследуемых артерий (в %);
- 4) количество стенозов общее количество пораженных артерий.

У 14 (20,8 %) пациентов имелось поражение общей сонной артерии, у 17 (25,3 %) — внутренней сонной артерии, у 3 (4,3 %) — наружной сонной артерии, у 2 (2,9 %) — подключичной артерии, у 31 (46,2 %) пациента имелось сочетанное поражение двух и более сосудов, у 8 (11,9 %) — стенозы были гемодинамически значимы.

Взаимосвязь атеросклеротических изменений брахиоцефальных артерий с клинико-лабораторными показателями приведена в табл. 2.

Таблица 2

Корреляционная зависимость между клинико-лабораторными показателями и количественными характеристиками поражения экстракраниальных артерий

Показатели	Суммарная пло- щадь атероскле- ротического по- ражения	Макси- мальная величина стеноза	Количест- во стено- зов	Толщина комплекса интима- медия
Возраст	0,38	0,19	0,36	0,29
Длительность заболевания	0,18	0,07	0,14	0,42
САД	0,19	0,16	0,07	0,23
ДАД	0,18	0,08	0,11	0,14
ИМТ	0,21	0,13	0,43	0,22
Глюкоза крови	0,39	0,16	0,24	0,20
OXC	0,63	0,11	0,11	0,21
ТΓ	0,07	0,12	0,16	0,03
ХС ЛЛНП	0,59	0,22	0,51	0,24
ХС ЛПВП	0,08	0,06	0,11	0,09
КА	0,38	0,14	0,23	0,17

Выявлена закономерная положительная связь между ОХС и суммарной площадью атеросклеротического поражения (r = 0.63; p < 0.001), между XC ЛПНП и суммарной площадью атеросклеротического поражения (r = 0.59; p < 0.001) и количеством стенозов (r = 0.51; p < 0.001), а также КА и суммарной площадью атеросклеротического поражения (r = 0.38; р < 0,001). Установлена прямая корреляционная зависимость суммарной площади атеросклеротического поражения и количества стенозов от возраста. В группе больных старше 60 лет были достоверно больше средняя величина стеноза и количество стенозов (p < 0.001). Не определена корреляционная зависимость между уровнем систолического и диастолического АД и процентной величиной стенозов, хотя теоретически такая связь является обоснованной. Выявлена слабая связь между длительностью заболевания и толщиной комплекса интима-медия (r = 0.42; p < 0.005).

У пациентов с ожирением достоверно чаще определялось сочетанное поражение двух и более сосудов (p < 0,001), выявлена положительная корреляция между ИМТ и количеством стенозов. Установлена также зависимость между уровнем глюкозы крови и суммарной площадью атеросклеротического поражения. У больных с сахарным диабетом средняя величина стенозов составила 16,6 %, у пациентов без диабета — 9,4 % (p < 0,001), при одинаковых средних значениях АД.

При изучении взаимосвязи между выраженностью стенотического поражения и гиперцитокинемией наибольшие значения уровней цитокинов ИЛ-1 β , ИЛ-6, ФНО- α обнаружены у больных с гемодинамически значимыми стенозами (12,48 ± 1,25), (17,64 ± 1,96) и (22,49 ± 1,36) пг/мл соответственно. Но, в целом, по всей группе больных с атеросклерозом корреляционной зависимости между максимальной величиной стеноза и содержанием медиаторов воспаления не выявлено.

Для анализа зависимости содержания цитокинов от количества стенозов пациентов с атеросклерозом разделили на две группы: с поражением одного сосуда и с поражением двух и более сосудов. Группы не отличались по демографическому составу и уровню САД и ДАД.

Поражение двух и более сосудов ассоциировалось с достоверным увеличением частоты выявления гиперцитокинемии. Во второй группе ИЛ-1 β выявляли на 26,4 %, ИЛ-6 — на 25,5 %, а ФНО- α — на 41,5 % чаще, чем в группе с атеросклеротическими изменениями одного сосуда (p < 0,001). В первой группе содержание ИЛ-1 β составило (9,26 ± 1,16) пг/мл, ИЛ-6 — (10,41 ± 1,66) пг/мл, а ФНО- α (12,56 ± 1,49) пг/мл, во второй — (14,39 ± 1,87), (14,64 ± 1,53) и (16,26 ± 2,24) пг/мл соответственно (p < 0,001). Обнаружена прямая корреляционная связь между суммарной площадью атеросклеротического поражения и уровнями ИЛ-6 (r = 0,58; p < 0,05) и ФНО- α (r = 0,64; p < 0,05).

ЗАКЛЮЧЕНИЕ

Таким образом, исследование продемонстрировало, что у больных с атеросклерозом брахиоцефальных артерий содержание провоспалительных цитокинов ИЛ-1 β , ФНО- α и ИЛ-6 достоверно выше, чем у больных с неизмененными артериями. Выявленные статистически значимые корреляционные зависимости между дисбалансом провоспалительных цитокинов и количественными характеристиками атеросклеротического поражения указывают на наличие прямой взаимосвязи между этими процессами. Взаимосвязь липидных показателей с уровнем провоспалительных цитокинов, по-видимому, аддитивна в плане атерогенеза. Больные артериальной гипертонией, имеющие повышенное содержание провоспалительных цитокинов, при наличии даже гемодинамически незначимых форм каротидного атеросклероза, должны быть отнесены к группе высокого риска прогрессирования атеросклеротического процесса. Они нуждаются не только в адекватной терапии артериальной гипертонии, но и в патогенетически обоснованном применении препаратов с противовоспалительным и иммуномодулирующим действием.

ЛИТЕРАТУРА

- 1. Hansson G. K., Robertson A. K. // Annu Rev Pathol. 2006. P. 297—329.
- 2. Hansson G. K. Inflammatory // J. Thromb Haemost. 2009. Suppl. P. 328—331.
- 3. Pasqui A. L., Bova G., Maffei S., Auteri A. // Ann. Ital. Med. Int. 2005. № 20 (2). P. 81—89.
- Reiner Z, Tedeschi-Reiner E. // Lijec Vjesn. —
 2001. № 123. P. 26—31
- 5. Stoll G., Bendszus M. // Stroke. 2006. № 37 (7). P. 1923—1932.
- 6. Takahashi K., Takeya M., Sakashita N. // Med. Electron. Microsc. 2002. № 35 (4). P. 179—203.

Контактная информация

Чернова Светлана Ивановна — к. м. н., заведующая поликлиникой №1 НУЗ «Отделенческая клиническая больница», e-mail: sichernova@yandex.ru.