Becthuk Boar(IMV)

ЛИТЕРАТУРА

- 1. Асфандияров Р. И., Удочкина Л. А. / Структурные преобразования органов и тканей в норме и при воздействии антропогенных факторов. Астрахань, 2004. С. 64—67.
- 2. *Брагина Н. Н., Доброхотова Т. А.* Функциональная асимметрия человека. 2-е изд., перераб. и доп. М.: Медицина, 1988. 237 с.
- 3. Васильев А. Ю., Ольхова Е. Б. Лучевая диагностика: Учебник для студентов медицинских вузов. М.: ГЭО-ТАР-Медиа, 2008. 688 с.: ил.
- 4. Катерлина И. Р., Изранов В. А., Соловьева И. Г., Рымар О. Д. и др. // Вестник Новосибирского государственного университета. Серия: Биология, клиническая медицина. 2010. С. 129—132.
- 5. Никитюк Б. А., Корнетов Н. А. Интегративная биомедицинская антропология. Томск: Изд. Томск. ун-та, 1998. 182 с.
- 6. Николаев В. Г. Роль интегративной антропологии в мониторинге здоровья населения / Актуальные проблемы спортивной морфологии и интегративной антропо-

логии: Материалы междунар. науч. конф., посвященной 70-летию проф. Б. А. Никитюка: под ред. П. К. Лысова. — М., 2003. — С. 23—25.

- 7. Санджиев Э. А. Структурные преобразования щитовидной железы на этапах старения человека: дис. ... к. м. н. Астрахань: Астраханская государственная медицинская академия, 2008. 149 с.
- 8. Тарарухина О. Б. Ультразвуковая диагностика заболеваний у детей школьного возраста, подвергшихся радиационному воздействию в результате аварии на ЧАЭС: Автореф. дис... к. м. н. М.: Московский научно-исследовательский институт дигностики и хирургии, 1995. 22 с.
- 9. *Шарайкина Е. П. //* Морфология. 2004. Т. 126, Вып.4. С.140.

Контактная информация

Змеев Сергей Анатольевич — аспирант кафедры анатомии человека ВолгГМУ, e-mail: zmeeva.elena@gmail.com

УДК 576.8:616.314.18.-002.4

КОЛОНИЗАЦИЯ ПОЛОСТИ РТА СТАФИЛОКОККАМИ ПРИ ПАРОДОНТИТЕ

А. Ю. Пестов, А. В. Панченко

Кафедра микробиологии, вирусологии и иммунологии с курсом клинической микробиологии ВолгГМУ

В результате исследования выявлено, что в состав биоценоза при заболевании тканей пародонта входят 12 видов стафилококков, из которых 1 коагулазоположительный и 11 коагулазоотрицательный. Установлено, что доминирующим видом в сообществе стафилококков является *S. aureus*, имеющий высокие вирулентные свойства и факторы, способствующие персистенции.

Ключевые слова: пародонтит, стафилококк, колонизация.

COLONIZATION OF ORAL CAVITY BY STAPHYLOCOCCI IN PARODONTITIS

A. Yu. Pestov, A. V. Panchenko

The study revealed that the composition of the biocenosis in parodontal disease includes 12 species of staphylococci, of which 1 is coagulase-positive and 12 are coagulase-negative. It was established that the predominant species of staphylococci in the association is *S. aureus*, which has strongly virulent properties and factors contributing to their persistence.

Key words: parodontitis, staphylococci, colonization.

В настоящее время рост числа заболеваний, вызываемых условно-патогенными микроорганизмами (УПМ), становится серьезной проблемой клинической стоматологии и обусловлен частым носительством бактериальных патогенов [1, 3, 4, 8].

Среди возбудителей инфекционных заболеваний с различными клиническими проявлениями большое место принадлежит стафилококкам, которые на протяжении последнего столетия являются наиболее значимыми оппортунистическими патогенами в медицинской практике [2, 6].

Стафилококки представляют собой большую гетерогенную группу грамположительных микроорганизмов, которые делятся на коагулазо-положительные

(КПС) и коагулазоотрицательные (КОС). Среди коагулазо-положительных самым известным является *S. aureus*, колонизирующий и поражающий многие органы и ткани, демонстрируя при этом широкий диапазон адаптационных возможностей [9, 5, 7].

Однако, несмотря на большое количество работ, посвященных стафилококкам, роль данного микроорганизма в патологии органов полости рта (пародонтите) остается малоизученной.

Важность и многообразие функций, которые присущи микрофлоре, с одной стороны, и возможность негативных последствий для здоровья человека в случае нарушения ее целостности при колонизации стафилококками, с другой стороны, определили актуальность проблемы.

Becthuk Boar(IMV)

ЦЕЛЬ РАБОТЫ

Определение биоценотических взаимоотношений стафилококков, колонизирующих полость рта при пародонтите, разработка критериев значимости биологических свойств в оценке микроэкологии полости рта.

МЕТОДИКА ИССЛЕДОВАНИЯ

Для решения поставленных задач за период с 2009 по 2011 гг. на базе кафедры микробиологии, вирусологии и иммунологии Волгоградского государственного медицинского университета, Клиники стоматологии ВолгГМУ проведено комплексное обследование 30 больных пародонтитом и 100 практически здоровых людей.

Критерием включения в исследование были возраст от 18 до 65 лет, отсутствие острых и обострений общесоматических заболеваний, отсутствие лекарственной или наркотической зависимости. При выполнении работы соблюдены основные этические принципы.

Клинические симптомы заболевания выявляли при тщательном целенаправленном расспросе, а также путем объективного осмотра, обращая внимание на гигиеническое состояние полости рта, наличие кариеса и его осложнений, состояние тканей пародонта, используя индексы КПУ, гигиены (ГИ), РМА и пародонтита.

Забор материала для бактериологического исследования проводился по методике Крамарь В. С. и Кравцовой Е. О. (1994). Микрофлора изучалась по методу Наепеl (1979) в модификации Канарейкиной С. К. с соавт. (1981).

Качественный и количественный состав микрофлоры полости рта определен в зубном налете, слизистой оболочке языка, нёба и щеки, содержимом пародонтального кармана.

При проведении бактериологического исследования учитывали: 1) общее количество микроорганизмов; 2) стрептококков: 3) лактобактерий; 4) стафилококков; 5) дрожжеподобных грибов; 6) энтеробактерий; 7) анаэробов.

Идентификация выделенных микроорганизмов проводилась на основании морфологических, культуральных, биохимических признаков в соответствии с классификацией Берджи (1980). Для оценки биохимических свойств стрептококков, стафилококков, энтеробактерий, анаэробов использовали тест-системы Strepto-test, Staphy-test, Entero-test, API-20A (Франция).

Все материалы были подвергнуты статистической обработке. Вычисления проводились в среде пакета STATISTICA 5.0, а также с использованием программы статистического и инженерного анализа MS Excel 97.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Для выполнения поставленных задач было осуществлено изучение микрофлоры полости рта и определено бактерионосительство *Staphylococcus spp.* у лиц обследуемых групп. С этой целью анализирована микрофлора 550 экологических ниш полости рта, выделено и идентифицировано 1140 культур, из которых было 796 штаммов *Staphylococcus spp.*

По результатам двухкратного обследования с интервалом 1,5—3 месяца был определен тип бактерионосительства: резидентное и транзиторное (табл. 1).

Из данных приведенной таблицы видно, что в 1-й группе преобладал резидентный тип бактерионосительства как у КПС, так и КОС. В группе сравнения транзиторных КПС было несколько больше (53,6 %), однако среди КОС доминировали резидентные виды.

Выявлено, что стафилококки у здоровых людей заселяли один биотоп у 24; два — у 16; три — у 14 % обследуемых. Отмечено, что 2—3 биотопа преимущественно было колонизировано эпидермальным стафилококком [$(59,2\pm1,4)$ %], а 1—2 — золотистым, сапрофитическим и другими видами КОС [$(40,8\pm1,2)$ %].

У практически здоровых людей обсемененность стафилокожами полостирта при любом типе носительства была одинаковой и достоверных отличий не имела (p > 0.05).

Рассмотрение колонизации полости рта лиц с патологией тканей пародонта показало, что стафилококки у пациентов этой группы встречались весьма часто, колонизируя все биотопы, при этом в полости рта больных пародонтитом один биотоп они колонизировали у 10; два — у 3; три — у 4, четыре — у 8 и пять — у 5 % обследуемых.

У больных пародонтитом *S. aureus* и *S. saprophyticus* были зарегистрированы у 78,1 и 5,5 % больных соответственно, реже обнаруживались *S. epidermidis* и *S. haemolyticus* (по 2,6 % равнозначно). На долю *S. capitis*, *S. warneri*, *S. gallinarum*, *S. simulans*, *S. cohnii*, *S. hominis*, *S. lentis*, *S. xylosus* приходилось по 1,4 % наблюдений равнозначно.

Таблица 1

Частота встречаемости различного типа бактерионосительства стафилококков, выделенных у лиц обследуемых групп

Микро-		кпс	Из них					Из них			
орга- низм Кол-в	16		резидентные		транзиторные		1600	резидентные		транзиторные	
	Кол-во		абс.	%	абс.	%	кос	абс.	%	абс.	%
1	73	57	48	84,2	9	15,8	16	12	75,0	4	25,0
2	308	56	26	46,4	30	53,6	252	182	72,2	70	27,8

Becthuk Boar(IMV)

Рассматривая колонизацию стафилококками при резидентном бактерионосительстве патологических ниш, установили, что *S. aureus* с высокой частотой заселял пародонтальный карман (85,7%).

Таким образом, биоценоз полости рта у больных пародонтитом при резидентном типе носительства стафилококков характеризовался снижением доминирования КОС и увеличением значимости золотистого стафилококка по сравнению с таковой группы сравнения.

В дальнейшем представлял интерес анализ состава биоценоза отдельных экониш при стафилококковом участии. Так, при анализе биоценоза полости рта у лиц 1-й группы выявлено, что при легкой степени пародонтита микробные ассоциации были представлены в основном аэробными микроорганизмами — стафилококками, стрептококками, лактобактериями, а также анаэробными, при этом соотношение аэробных представителей к анаэробным было 1:1. При средней степени тяжести микрофлора изменялась, и представительство анаэробных микроорганизмов по плотности колонизации увеличилось вдвое (2:1). При тяжелой форме заболевания произошла сукцессия, в результате которой резко уменьшилось содержание стафилококков за счет увеличения количества анаэробных представителей (1:500). При этом плотность колонизации в 1000 раз превышала такую аэробных бактерий, а у 10 % больных представительство аэробных видов было минимальным, составляя 10 × КОЕ/ед. субстрата. Вытеснение аэробных микроорганизмов анаэробными при прогрессировании пародонтита находит подтверждение в экспериментах Матисовой Е. В. (2010).

Перечисленные изменения в микрофлоре больных обследуемой группы характеризуют дисбактериоз полости рта, обнаруженный у всех обследуемых.

Изучение биологических свойств штаммов *S. aureus* показало, что стафилококки, колонизирующие полость рта больных, отличались мелкими размерами, часть из них была лишена способности синтезировать пигмент. Анализ биохимической активности стафилококков резидентного и транзиторного типа показал, что оксидазная активность чаще регистрировалась у больных пародонтитом (48,6%), тогда как у практически здоровых людей она наблюдалась в 2 раза реже (23,6%). По наличию фосфатазной активности высокий показатель установлен у больных пародонтитом (65,3%). Аналогичная закономерность отмечена для нитратредуктаз, которые чаще обнаруживались у микроорганизмов, выделенных у больных.

Золотистый стафилококк у больных в 92 % наблюдений обладал адгезией, при этом среди резидентных представителей адгезия была выявлена у всех штаммов. Значения лецитиназной и гемолитической активности также были выше у резидентных микроорганизмов. Дезоксирибонуклеазоактивные изоляты чаще регистрировались у больных пародонтитом при резидентном типе носительства (66,7%), что достоверно превышало значения таковых группы сравнения (11,5%) (p < 0,05). Коагулазоотрицательные стафилококки проявляли низкую активность всех изученных свойств независимо от обследуемой группы и типа носительства.

При изучении факторов, способствующих персистенции стафилококков, установлено, что антилизоцилимная активность (АЛА) *S. aureus* определялась у всех культур при резидентном и транзиторном типе носительства. Большинство микроорганизмов при пародонтите проявляли высокую и умеренную выраженность признака. Низкая АЛА регистрировалась в 9 % наблюдений при резидентном носительстве и в 3 % — при транзиторном.

Анализ антиинтерфероновой активности (АИА) показал, что распространенность этого фактора была наибольшей среди резидентных S.~aureus при пародонтите (66,7%). Среднее значение показателя резидентных стафилококков у больных пародонтитом составило (3,21 \pm 0,2) и (2,71 \pm 1,23) у. е.

Распространенность и значение АЛА и АИА коагулазо-отрицательных стафилококков лиц обследуемых групп были несколько ниже у всей популяции микроорганизмов.

Таким образом, наличие факторов, способствующих персистенции, является необходимой мерой для патогена, направленной на деградацию неспецифической резистентности макроорганизма, с одной стороны, и длительного переживания стафилококков в эконише — с другой.

Полученные результаты биологических свойств стафилококков побудили нас провести анализ вирулентности коллекции стафилококков, используя при этом нумерическую обработку (табл. 2).

Таблица 2

Распределение стафилококков по степени вирулентности

	Группа										
Сте-		боль	ные		сравнения						
пень	КГ	TC	KC	C	КПС		KOC				
	Р	Т	Р	Т	Р	Т	Р	Т			
Низ-			9	2	26	30	182	70			
кая	_	_	75,0	50,0	100,0	100,0	100,0	100,0			
Сред-	12	3	3	2							
НЯЯ	25,0	33,3	25,0	50,0			_				
Высо-	36	6									
кая	75,0	66,7				_		_			

Примечание. Р — резидентное носительство, Т — транзиторное носительство, числитель — абсолютное значение, знаменатель — процент.

Из данных табл. 2 следует, что среди *S. aureus*, колонизирующих больных, регистрировалось наибольшее количество высоковирулентных штаммов (75 при резидентном и 66,7 % при транзиторном типе бактерионосительства). Большая часть КОС, выделенных у больных, обладала низкой вирулентностью.

ЗАКЛЮЧЕНИЕ

Стафилококки, изолированные при пародонтите, обладали набором отдельных детерминант вирулент-

Becthuk Boar(MV)

ности: способность к адгезии, антилизоцимная, антиинтерфероновая, каталазная и гемолитическая активность. Установлено, что маркеры патогенности присутствовали у бактерий в различных сочетаниях. Рассмотренные признаки патогенности ответственны за степень выраженности патологического процесса.

Высокая распространенность поражения тканей пародонта наряду с увеличением плотности колонизации Staphylococcus spp. делают возможным быстрое развитие деструктивно-воспалительных процессов в полости рта у больных, что является убедительным доказательством необходимости комплексной терапии стоматологических заболеваний, включающей в себя элиминацию стафилококковой флоры полости рта, а также мероприятия, направленные на коррекцию данной экологической ниши.

ЛИТЕРАТУРА

- 1. Абрамов В. Г. Колонизация полости рта и ее влияние на лизоцим-антилизоцимные взаимоотношения в экосистеме при кариесе: Автореф. дис. канд. мед. наук. Волгоград, 2007. С. 14.
- 2. Белобородов В. Б., Митрохин С. Д. // Инфекции и антимикробная терапия. 2003. Т. 5. № 1. С. 4—12.
- 3. Воронин В. В., Леонтьев В. К., Шестаков В. Т. // Стоматология. 2001. Т. 80, № 6. С. 15—17.

- 4. *Кареальцева Н. М.* // Ин-т стоматологии. 2001. № 1. С. 18—21.
- 5. *Кафарская Л. И.* // Детские инфекции. 2006. Т. 5, № 1. С. 6—11.
- 6. Осиян С. А. Эколого-микробиологическая оценка резидентного стафилококкового бактерионосительства среди детского населения: Дис. ... канд. мед. наук. Оренбург, 2005. С. 24—56.
- 7. Поспелова С. В. Характеристика штаммов стафилококков, изолированных при обследовании на бактерионосительство / С. В. Поспелова, Э. С. Горовиц // Проблемы и перспективы современной науки (сборник научных трудов). 2008. В. 2. С. 26—31.
- 8. Рабинович И. М., Баненко Г. В., Рабинович О. Ф. // Стоматология. — 2002. — № 5. — С. 48—50.
- 9. Чернуха М. Ю. и др. Антибиотикорезистентность и возможное происхождение штаммов Staphylococcus aureus и Klebsiella, выделенных от детей с дисбактериозом кишечника. М.: ЖМЭИ, 2005. № 5. С. 66—70.

Контактная информация

Пестов Артур Юрьевич — аспирант кафедры микробиологии, вирусологии и иммунологии с курсом клинической микробиологии ВолгГМУ, e-mail: anna.panchenko@pochta.ru

УДК 57.043.615.361.01851-012

УСОВЕРШЕНСТВОВАНИЕ ПРОЦЕССА ЛИОФИЛЬНОГО ВЫСУШИВАНИЯ ИММУНОБИОЛОГИЧЕСКИХ ПРЕПАРАТОВ НА СОВРЕМЕННОМ ОБОРУДОВАНИИ

В. Г. Пушкарь, И. В. Новицкая*, М. Я. Кулаков, К. А. Павлова, А. М. Степурина

Кафедра молекулярной биологии и генетики медико-биологического факультета ВолгГМУ*, Волгоградский научно-исследовательский противочумный институт

Предложена новая схема лиофильной сушки лабильных иммунобиологических и диагностических препаратов на современном оборудовании. Схема заключается в плавном понижении давления и повышении температуры в сублимационной камере по определенной программе. Предложенная технология позволяет длительно хранить высушенные препараты и полностью сохранить их активность.

Ключевые слова: лиофильная сушка препаратов, процесс сублимации.

DEVELOPMENT OF THE PROCESS OF LYOPHILIZATION OF IMMUNOBIOLOGIC PREPARATIONS USING MODERN EQUIPMENT

V. G. Pushkar, I. V. Novitskaya, M. Ya. Kulakov, K. A. Pavlova, A. M. Stepurina

We suggested a new scheme of immunologic and diagnostic agent lyophilization using modern equipment. A freezedrying program is based on continuous reduction of pressure and a rise in temperature in the sublimation chamber. The presented technology allows a long-term storage of dried preparations with complete preservation of their activity.

Key words: freezedrying, diagnostic preparation, process of lyophilization.

Значительная часть иммунодиагностических препаратов на одном из заключительных этапов производства подвергаются лиофильному высушиванию. Этот технологический этап позволяет стабилизировать свойства препарата и многократно увеличить срок его хранения. Однако подбор па-

раметров лиофилизации в каждом конкретном случае является сложной технологической задачей. Так как этот процесс связан с изменением агрегатного состояния препарата, он напрямую влияет на его иммунологическую активность и возможность длительного хранения.