Becthuk Boar (MV)

6. Lacy B. E., Weiser K., De Lee R. // Therapeutic Advances

in Gastroenterology — 2009. — Vol. 2 (4). — P. 221—238. 7. Setnikar I., Ravasi M. T., Da Re P., Ravasi M. T. // Journal of Pharmacology and Experimental Therapy. — 1960. — Vol. 130. — P. 356—363.

8. Vahedi H., Ansari R., Mir-Nasseri M. M., Jafari E. // Middle East Journal of Digestive Diseases. — 2010. — Vol. 2 (2). — P. 66—77.

Контактная информация

Эртузун Ирина Анатольевна — к. б. н., старший научный сотрудник отдела организации доклинических исследований ООО «НПФ «Материа Медика Холдинг», e-mail: heifezia@materiamedica.ru

УДК 615.216.2:577.3:612.822.3

ИЗМЕНЕНИЯ ИОННЫХ ТОКОВ НЕЙРОНОВ МОЛЛЮСКОВ ПОД ВЛИЯНИЕМ СУКЦИКАРДА

А. И. Вислобоков, Ю. Д. Игнатов, И. Н. Тюренков, В. В. Багметова

Санкт-Петербургский государственный медицинский университет имени акад. И. П. Павлова, Волгоградский государственный медицинский университет

Сукцикард дозозависимо и обратимо модулировал трансмембранные ионные токи нейронов моллюсков прудовика и катушки. В концентрациях 1—10 мкМ он активировал кальциевые и калиевые токи, 100 мкМ — увеличивал амплитуду кальциевых токов на 5—10 %, 1000 мкМ — подавлял натриевые и калиевые токи на 5—12 %, не влияя на потенциал поверхностного заряда мембраны и воротные механизмы ионных каналов.

Ключевые слова: фенотропил, янтарная кислота, сукцикард, мембранотропное действие, нейроны, натриевые, кальциевые, калиевые ионные токи.

CHANGES OF ION CURRENT IN MOLLUSCS UNDER THE INFLUENCE OF SUCCICARD

A. I. Vislobokov, Y. D. Ignatov, I. N. Tyurenkov, V. V. Bagmetova

Succicard modulated the transmembrane ion current of neurons in Lymnaea stagnalis and Planorbarius corneus mollusks in a dose-dependent and reversible fashion. At concentrations of 1-10 micrometers it activated calcium and potassium currents, at 100 micrometers it increased the amplitude of calcium currents by 5-10 %, at 1000 micrometers it suppressed sodium and potassium currents by 5-12 % without affecting the potential of superficial charge of membrane and portal mechanisms of ion channels.

Key words: phenotropil, succinic acid, succicard, membranotropic effect, neurons, sodium, calcium and potassium ion currents.

Структурные аналоги гамма-аминомасляной кислоты (ГАМК) пирацетам, фенибут, фенотропил обладают выраженным нейротропным действием, а их соли и композиции с органическими карбоновыми кислотами превосходят по эффективности исходные вещества [4, 5, 6, 7, 10]. Сукцикард (композиция фенотропила и янтарной кислоты в соотношении 2:1) обладает выраженной нейро- и кардиопротекторной активностью, его влияние на ионные токи, через которые могут опосредоваться нейро- и психотропные эффекты, не изучены.

ЦЕЛЬ РАБОТЫ

Исследование изменений натриевых, кальциевых и калиевых ионных токов под влиянием сукцикарда в

широком диапазоне концентраций на нейронах моллюска, ионные каналы которых имеют принципиальное сходство с нейронами теплокровных животных [6].

МЕТОДИКА ИССЛЕДОВАНИЯ

Объектом исследования были неидентифицированные изолированные нейроны моллюсков — прудовика большого (Lymnaea stagnalis) и катушки роговой (Planorbarius comeus) [2, 3]. Использовали растворы с различным ионным составом (табл.). Перфузирующий (наружный) раствор подавался в камеру, где находился нейрон на полиэтиленовой микропипетке, а диализирующий (внутриклеточный) — внутрь этой пипетки. Исследуемые вещества добавлялись в перфузирующий раствор. Для измерения

Ионный состав растворов для регистрации ионных токов и мембранных потенциалов, в мМ

Ионные токи	NaCl	CsCl	CaCl ₂	MgCl ₂	KCI	Tris-OH	рН
Внеклеточный раствор							
Общий входящий ток и регистрация внутриклеточных потенциалов	100	_	2	1,5	5	5	7,5
Кальциевый входящий ток	_	100	10	1,5	_	5	7,5
Калиевый выходящий ток	100	_	2	1,5	5	5	7,5
Внутриклеточный раствор							
Входящие токи	_	120	_	_	_	5	7,4
Калиевые выходящие токи	_	_	_	_	120	5	7,4

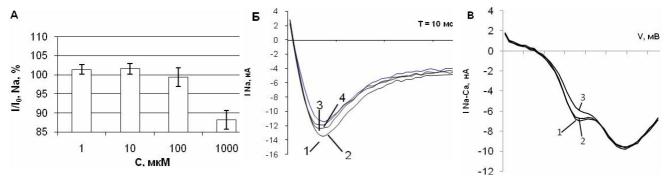
Becthuk Boar (MV)

трансмембранных ионных токов применялся метод внутриклеточной перфузии изолированных нейронов и фиксации мембранного потенциала [1, 2, 3].

Для исследования использовали субстанцию сукцикарда, которая растворялась в соответствующих наружных растворах в концентрациях 1, 10, 100 и 1000 мкМ. Кривые ионных токов и потенциалов визуально оценивали на экране осциллографа, с помощью преобразователя АЦП — ЦАП вводили в компьютер и распечатывали на принтере. 12-разрядный ЦАП позволял регистрировать малейшие изменения в амплитудах токов. Результаты обрабатывали с использованием статистической программы SPSS-17, при этом для проверки гипотезы о различиях между группами проводили непараметрический дисперсионный анализ Фридмана, а для доказательства различий между контролем и эффектами фармакологических средств в различных концентрациях — апостериорное попарное сравнение с критериев использованием Вилкоксона. Для оценки каждого изменения тока при определенной концентрации использовали 5—10 измерений. На графиках представлены значения средних арифметических и 95 % доверительные интервалы. Для построения графиков использовали пакет программ «Excel».

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

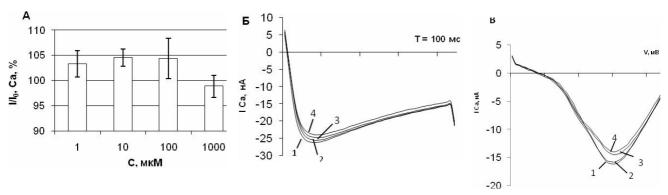
Сукцикард вызывал незначительные, зависимые от концентрации и обратимые изменения амплитуды натриевого тока (рис. 1).


В концентрациях 1 и 10 мкМ происходило увеличение или наблюдалась тенденция к увеличению тока на 1,5—2 % (рис. 1A), 100 мкМ — проявлялась тенденция подавления тока, а в концентрации 1000 мкМ — подавление тока на 10—12 %. Эффекты наступали быстро, устранялись при отмывании за 2—3 мин, что указывает на невысокую прочность связывания соедине-

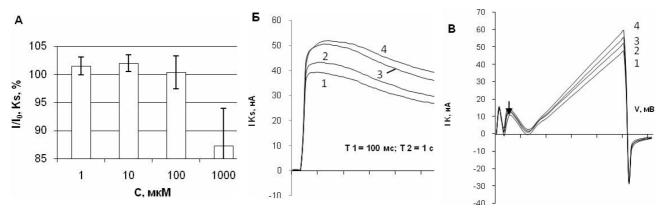
ния со структурами мембраны (или ионных каналов). Сукцикард не изменял кинетику развития тока (рис. 1Б) и положение максимума вольт-амперной характеристики мембраны (рис. 1В).

В концентрациях от 1 до 1000 мкМ наблюдалось зависимое от концентрации преимущественно активирующее влияние на кальциевые токи (увеличение амплитуды на 3—10 %) (рис. 2A), оно было выражено в большей степени, чем для натриевых токов. Кинетика развития тока (рис. 2Б) и положение максимума вольтамперной характеристики мембраны (рис. 2В и 2Г) не изменялись.

Нужно обратить внимание на то, что сукцикард при действии в концентрации 1000 мкМ в большей степени подавлял натриевые токи (рис. 1A), чем кальциевые (рис. 2A). На рис. 1В показано, что на суммарной натрий-кальциевой вольт-амперной характеристике мембраны левая часть кривой, отражающая натриевый ток, подавлена сукцикардом в концентрации 1000 мкМ в большей степени, чем правая часть, связанная с кальциевым током.


Влияние сукцикарда на медленные калиевые токи (рис. 3А) было также зависимым от концентрации, обратимым и двухфазным: наблюдалась небольшая активация (повышение амплитуд тока на 1,5— 3,6 % при концентрациях 1—10 мкМ) и подавление на 5—13 % при действии в концентрации 1000 мкМ. Восстановление токов в процессе отмывания нейронов происходило так же, как для кальциевых и натриевых токов довольно быстро — за 2—3 мин. Кинетика активации и инактивации тока под влиянием сукцикарда не изменялась (рис. 3Б), положение вольт-амперной характеристики мембраны на оси потенциалов не изменялось, что указывает на отсутствие влияния сукцикарда как на воротные механизмы каналов, так и на потенциал поверхностного заряда мембраны нейронов.

A — зависимость «концентрация — эффект». **Б** — изменения амплитуды и кинетики тока при действии сукцикарда, кривые снизу вверх: 1 — отмывание, 2 — контроль, 3 — сукцикард 100 мкМ, 4 —1000 мкМ. **В** — вольтамперные характеристики натрий-кальциевых каналов, кривые снизу вверх: 1 и 2 — контроль и отмывание (кривые сливаются), 3 — 1000 мкМ. *По оси абсцисс:* **А** — концентрация, **Б** — время, **В** — пилообразное смещение мембранного потенциала от —40 до 30 мВ за 20 мс; *по оси ординат* — ионный ток (**A**: I — при действии вещества, I_0 — до действия, %); **Б** — натриевый ток (I_{Na}); **В** — натрий-кальциевый ток; доверительные интервалы при p = 95 %.


Рис. 1. Изменения натриевого тока нейронов прудовика под влиянием сукцикарда (n = 7)

Becthuk BoarfMV

А — зависимость «концентрация — эффект». **Б** — изменения амплитуды и кинетики тока при действии сукцикарда, кривые снизу вверх: 1 — отмывание, 2 — контроль, 3 — сукцикард 100 мкМ, 4 —1000 мкМ. **В** — вольт-амперные характеристики при действии сукцикарда, кривые снизу вверх: 1 — контроль, 2 — отмывание, 3 — 100, 4 — 1000 мкМ. *По оси абсцисс:* **А** — концентрация препарата, **Б** — время, **В** — пилообразное смещение мембранного потенциала от —40 до 50 мВ длительностью 100 мс; *по оси ординат* — ионный ток (**А**: I — при действии вещества, I_0 — до действия, %); **Б** и **В**: $I_{\text{са}}$ — кальциевый ток; доверительные интервалы при p = 95 %.

Рис. 2. Изменения кальциевого тока нейронов прудовика под влиянием сукцикарда (n = 7)

А — зависимости «концентрация — эффект». **Б** — изменения амплитуды и кинетики медленного тока под влиянием сукцикарда: $1-1000\,$ мкМ, $2-100\,$ мкМ, 3- контроль, $4-1\,$ мкМ. **В** — вольт-амперные характеристики быстрых и медленных токов при действии сукцикарда; под левой стрелкой — быстрый калиевый ток, кривые сверху вниз: $1-100\,$ мкМ, $1-1000\,$ мкМ, $1-10000\,$ мкМ, $1-10000\,$ мкМ, $1-10000\,$ мкМ, $1-10000\,$ мкМ, $1-10000\,$ мк

Рис. 3. Изменения калиевых ионных токов нейронов прудовика под влиянием сукцикарда (n = 10)

Характер влияния сукцикарда на быстрые калиевые токи напоминал их влияние на медленные калиевые. Общий характер подавления выходящих быстрых и медленных калиевых ионных токов для сравнения показан на рис. 3В.

В самом начале на записи после возникновения емкостных токов мембраны (кривые направлены вверх — под стрелкой) следуют небольшие по амплитуде выходящие быстрые калиевые токи, их амплитуда под влиянием сукцикарда изменялась незначительно. Затем следуют линейно нарастающие выходящие медленные калиевые токи (над стрелкой), которые изменялись в большей степени. В самом конце в правой части записи снова видны емкостные токи мембраны, направленные вниз и возникающие

на выключение линейно нарастающего деполяризующего смещения потенциала.

Неспецифические токи утечки мембраны при действии сукцикарда во всем диапазоне исследованных концентраций (1—1000 мкМ) и при регистрации всех ионных токов либо изменялись незначительно (на 0,5—1 нА), либо оставались неизменными, поэтому характерных изменений тока утечки мембраны установить не удалось.

Наши результаты о незначительном увеличении амплитуды трансмембранных ионных токов нейронов под влиянием сукцикарда в концентрациях 1—10 мкМ можно расценивать как активирующие. При этом активация была выражена преимущественно для кальциевых токов. Этот факт указывает на то, что в клетке под влиянием сукцикарда могут возникать многообразные

Becthuk Boar (MV)

модулирующие эффекты — вплоть до активации геномного аппарата, а в синаптических окончаниях — усиленный выброс медиаторов. А поскольку процесс синаптической пластичности связан с повышением концентрации ионов кальция в постсинаптической клетке, который запускает каскад белок-белковых взаимодействий, приводящих в конечном итоге к структурным изменениям в нейроне [2], то полученный нами факт приобретает важное значение для понимания механизмов мембранотропного действия нейромодуляторных ноотропных средств.

Подавление всех ионных токов [9] при действии мембраноактивных веществ примерно в равной степени и в равных концентрациях можно называть неспецифическим (неизбирательным) их влиянием на ионные каналы. Многие соединения подавляют кальциевые, натриевые и калиевые ионные токи, но вместе с тем часто выявляются и индивидуальные черты их действия [2, 3]. Например, анксиолитик афобазол, обладающий и противоаритмическими свойствами, способен блокировать ионные каналы [8]. Из ноотропных средств пирацетам на нейронах моллюска виноградной улитки в концентрации 1—2 мМ подавляет калиевые токи почти на 50 % [10].

ЗАКЛЮЧЕНИЕ

Сукцикард в концентрациях 1, 10, 100 и 1000 мкМ дозозависимо и обратимо изменяет трансмембранные натриевые, кальциевые и калиевые ионные токи нейронов моллюсков прудовика и катушки, проявляя мембранотропную активность при внеклеточном действии. Сукцикард в концентрациях 1—10 мкМ увеличивает амплитуду кальциевых и калиевых токов на 2—10 %, не изменяя амплитуду натриевых; 100 мкМ — увеличивает амплитуду кальциевых токов на 5-10 %, не оказывая влияния на натриевые и калиевые; 1000 мкМ подавляет амплитуду натриевых и калиевых токов на 5—12 %, не оказывая влияния на кальциевые. Сукцикард не вызывает сдвигов вольт-амперных характеристик мембраны для всех токов; не влияет на потенциал поверхностного заряда мембраны вблизи ионных каналов и кинетику активации/инактивации ионных токов, что свидетельствует об отсутствии его влияния на воротные механизмы ионных каналов. Быстрая обратимость эффектов после действия сукцикарда в течение 2—3 мин указывает на относительно непрочное связывание его молекул со структурами мембраны и ионных каналов.

ЛИТЕРАТУРА

- 1. *Бородкина Л. Е., Молодавкин Г. М., Тюренков И. Н. //* Эксперим. и клинич. фармакол. 2009. № 1. С. 57—60.
- 2. Вислобоков А. И., Игнатов Ю. Д., Галенко-Ярошевский П. А., Шабанов П. Д. Мембранотропное действие фармакологических средств. СПб. Краснодар: Просвещение-Юг, 2010. 528 с.
- 3. Вислобоков А. И., Игнатов Ю. Д., Мельников К. Н. Фармакологическая модуляция ионных каналов мембраны нейронов. СПб.: Издательство СПбГМУ, 2006. 288 с.
- 4. Перфилова В. Н., Тюренков И. Н., Гречко О. Ю. и др. // Вестник Волгоградского государственного медицинского университета. 2010. № 1. С. 74—76.
- 5. *Тюренков И. Н., Багметов М. Н., Епишина В. В. и др //* Эксперим. и клинич. фармакол. 2006. С. 19 22.
- 6. *Тюренков И. Н., Багметов М. Н., Епишина В. В. //* Эксперим. и клинич. фармакол. 2007. Т. 70, №2. С. 24—29
- 7. Тюренков И. Н., Багметова В. В., Кривицкая А. Н. и др. // Эксперим. и клинич. фармакол. 2011. Т. 74, № 2. С. 3—7.
- 8. *Цорин И. Б., Палка И. П., Чичканов Г. Г. //* Эксперим. и клинич. фармакол. 2009. Т. 72, № 1. С. 41—45.
- 9. *Miller K. W.* // Br. J. Anaesth. 2002. Vol. 89, № 1. P. 17—31.
- 10. Solntseva E. I., Bukanova J. V., Ostrovskaya R. U., et al. // Gen. Pharmacol. 1997. Vol. 29 (1) P. 85—89.

Контактная информация

Вислобоков Анатолий Иванович — д. б. н., заведующий отделом нейрофармакологии института фармакологии им. А. В. Вальдмана, СПбГМУ им. акад. И. П. Павлова, e-mail: vislobokov@yandex.ru