УДК 577.112+616.36-006-092.4

ДИНАМИКА ИЗМЕНЕНИЙ ВИМЕНТИНА И ГЛАДКОМЫШЕЧНОГО АКТИНА ПРИ ЭКСПЕРИМЕНТАЛЬНОМ ФИБРОЗЕ ПЕЧЕНИ ХИМИЧЕСКОГО ГЕНЕЗА

Ю. И. Великородная, А. Я. Почепцов

Научно-исследовательский институт гигиены, токсикологии и профпатологии, Волгоград

При экспериментальном фиброзе печени в течение первых четырех недель происходило увеличение количества виментин-положительных и α -SMA положительных клеток. Через 8 недель на фоне прогрессирования фиброза количество виментин-положительных клеток в ткани печени стабилизировалось, а α -SMA-положительных клеток продолжало увеличиваться.

Ключевые слова: фиброз печени, внеклеточный матрикс, иммуногистохимия, виментин, актин гладкомышечных клеток.

DYNAMIC CHANGES IN VIMETIN AND SMOOTH MUSCLE ACTIN RATIO IN EXPERIMENTAL CHEMICALLY INDUCED LIVER FIBROSIS

Y. I. Velikorodnaya, A. Y. Pocheptsov

We demonstrated that the number of cells expressing vimentin and smooth muscle actin cells in the liver tissue was rapidly increasing in the first 4 weeks. After 8 weeks of progressing fibrosis the number of vimentin positive cells was stabilized and the number of actin positive cells continued to grow.

Key words: liver fibrosis, extracellular matrix, immunohistochemistry, vimentin, smooth muscle actin.

Виментин и актин гладкомышечных клеток являются маркерами мезенхимальных клеток, имеющими разные фенотипические признаки. Так, виментин относится к белкам промежуточных филаментов (ПФ) III типа и экспрессируется преимущественно в фибробластах, лимфоцитах, эндотелиальных клетках [8]. По сложившимся представлениям, основная роль виментина, как белка ПФ, заключается в поддержании клеточной и тканевой целостности. Он также участвует во внутриклеточном распределении органелл и белков [2].

Актин гладкомышечных клеток (α -SMA) является специфическим маркером миофибробластов — специализированных клеток, продуцирующих основную массу внеклеточного матрикса, состоящего из коллагена, ламинина, фибронектина, сократительные свойства которых служат для уменьшения размера очага деструкции и поддерживают клеточное окружение поврежденного участка ткани или органа [5]. Неконтролируемая пролиферация миофибробластов приводит к развитию патологических процессов — фиброза и цирроза (склероза), нарушающих нормальное функционирование ткани и/или органа в целом.

Фиброз печени является заболеванием, возникновение которого может быть инициировано, среди прочих причин, интоксикацией химического генеза. Основными эффекторными клетками при развитии фиброза печени являются покоящиеся звездчатые клетки (ЗК), экспрессирующие виментин [7, 9]. Клетки, которые под воздействием химического вещества подверглись трансдифференцировке в миофибробластподобные клетки, продуцируют α -SMA [12]. Существенный вклад в прогрессирование фиброза и повышенного уровня α -SMA при длительном воздействии патогенного фак-

тора вносят «пришлые» клеточные популяции: циркулирующие фиброциты, способные приживаться в поврежденной печени, а также мезенхимальные стволовые клетки [3]. Вследствие этого вновь образованные миофибробласты начинают активно экспрессировать α -SMA и продуцировать белки соединительной ткани, которые экскретируются в межклеточную среду и формируют внеклеточный матрикс [15]. Кроме того, активированные ЗК продуцируют тканевые ингибиторы металлопротеиназ, в результате чего динамическое равновесие в процессах секреции/деградации внеклеточного матрикса смещается в сторону накопления соединительной ткани.

Соотношение виментин/ α -SMA в динамике развития фиброза печени может рассматриваться как один из критериев прогрессирования/регрессии заболевания для оценки эффективности препаратов гепатопротекторного ряда на моделях фиброза печени химического генеза, а также в токсикологической практике при исследовании соединений с фиброгенным механизмом действия.

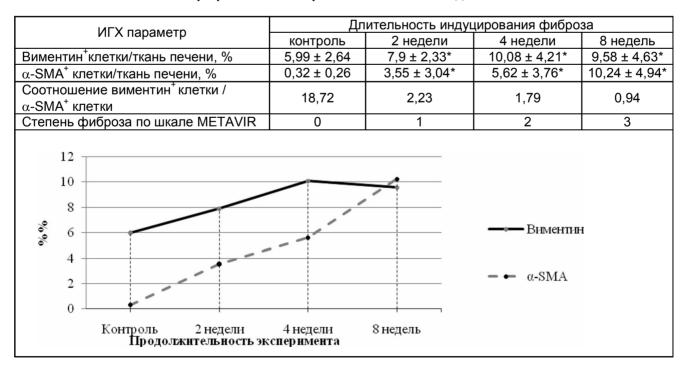
ЦЕЛЬ РАБОТЫ

Изучение в экспериментах на белых крысах динамики содержания маркеров мезенхимальных тканей разного фенотипа при фиброзе печени химического генеза с использованием иммуногистохимического метода (ИГХ).

МЕТОДИКА ИССЛЕДОВАНИЯ

Эксперимент проводили на беспородных белых крысах-самцах весом 220—270 г. Исследования проводились в соответствии с «Правилами лабораторной практики» (Приказ Минздравсоцразвития России от

Becthuk Boar(IMV)


23 августа 2010 г. № 708н). Крыс содержали в помещениях с искусственным освещением (8.00—20.00ч. свет, 20.00—8.00 ч. — темнота) при 20—22 °С в условиях свободного доступа к воде и пище. Животные были разделены на 4 группы по 8 особей в каждой. Животные трех подопытных групп получали 5%-й раствор этанола в качестве питья и внутрижелудочно раствор четыреххлористого углерода в растительном масле в соотношении 1:3 в дозе 0,1 мл на 100 г массы тела. Животным контрольной группы водили растительное масло в дозе 0,1 мл на 100 г массы тела [1]. Продолжительность эксперимента составила 2, 4 и 8 недель. По окончании эксперимента крыс наркотизировали диэтиловым эфиром и декапитировали. Материалом для патоморфологического и иммуногистохимического исследования служила ткань печени медианной доли, в которой процесс развития фиброза наиболее выражен [13]. Образцы ткани сразу после извлечения помещали в 4%-й раствор параформальдегида, приготовленного на 0,01 М фосфатно-солевом буфере (рН = 7,4). Затем образцы заключали в парафиновую среду по общепринятой методике. Парафиновые срезы толщиной 4 мкм монтировали на стекла, обработанные поли-L-лизином («Menzel»). При выполнении данной работы было изучено содержание в ткани печени виментина (Invitrogen, Clone V9, 1:100) и актина гладкомышечных клеток (Novocastra. Clone asm-1, 1: 100). Для блокирования эндогенной пероксидазы срезы инкубировали 20 минут в 3%-й перекиси водорода. Постановку иммуногистохимических реакций проводили с помощью системы детекции «Dako». Пероксидазу проявляли 3,3'-диаминобензидином из набора протокола. На заключительном этапе реакции срезы докрашивали гематоксилином Майера. Негативным контролем служили препараты без инкубации с первичными антителами при полном соблюдении остальных этапов протокола. Степень фиброза печени оценивали по шкале МЕТАVIR.

Полученные препараты изучали с помощью микроскопа AxioScopeA1 (Zeiss), оборудованного цифровой камерой AxioCamMRc5. Морфометрический анализ процентного содержания виментин+ и α -SMA+ клеток в печеночной ткани выполняли на фотографиях 6—8 полей зрения при конечном увеличении \times 200 с использованием программы ZENpro 2012 (Zeiss). Статистическую обработку полученных данных проводили с помощью программ Excel-2010 и Statistica 7.0 с использованием непараметрического U-критерия Манна-Уитни.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Иммуногистохимическое изучение виментина в нормальной ткани печени показало, что данный белок экспрессируется в ЗК, купферовских клетках и эндотелиоцитах (рис. А). В печени интактных животных α -SMA обнаруживали преимущественно в мышечном слое стенок печеночных артерий и в немногочисленных фибробластах перипортальных зон (рис. В).

Процентное соотношение виментин- и α-SMA-положительных клеток в печеночной ткани в динамике при моделировании фиброза печени с графическим отображением табличных данных

Примечание. M \pm SD. *При $p \le 0,001$.

Becthuk Boar (IMV)

Изучение динамики развития фиброза печени после 2 и 4 недель эксперимента показало, что при воздействии четыреххлористого углерода клетки, экспрессирующие виментин, заполняли синусоидальные пространства, сливаясь между собой по периферии печеночных долек, образуя периваскулярные муфты и порто-портальные септы (рис. С и Е). Параллельно с возрастанием количества виментин-положительных клеток в печеночной ткани, увеличивался и процент α -SMA-позитивных клеток (табл., рис. D и F).

Отмечено усугубление тяжести морфологических проявлений фиброза по шкале METAVIR от F1 через 2 недели до F2 через 4 недели. Через 8 недель после начала эксперимента количество виментин-положительных клеток в ткани печени снижалось, оставаясь выше контрольных значений (рис. G), а содержание α -SMA-позитивных клеток в печеночной ткани увеличивалось, образуя на графике характерную фигуру в виде «ножниц» (табл.). При этом, помимо порто-портальных септ, формировались и портоцентральные септы, что соответствовало фиброзу печени степени F3 по шкале METAVIR (рис. H).

Увеличение количества виментин-положительных клеток в ткани печени в начальной стадии разви-

Рис. Экспрессия виментина и α -SMA в ткани печени при фиброзе химического генеза. A, C, E и G — антитела к виментину. B, D, F и H — антитела к а-SMA. PAP-метод. Докраска гематоксилином Майера. Увеличение \times 200

Becthuk Boar(IMV)

тия фиброза происходило, преимущественно, за счет пролиферации пула ЗК, а также за счет клеток печени, обладающих фиброгенным потенциалом, совершающих эпителиально-мезенхимальный переход (ЭМП), при котором эпителиальные клетки подвергаются молекулярному перепрограммированию, приобретая фенотип мезенхимальных [10]. ЭМП считается критическим периодом в процессе развития фиброза. поэтому виментин наиболее часто используется в качестве маркера для выявления трансформированных клеток [11]. Кроме того, виментин является маркером мигрирующих клеток [6], что объясняет, почему потеря эпителиальных свойств (адгезия, полярность), при ЭМП сопровождается усилением миграционного и инвазивного потенциалов клеток и появлению способности к продуцированию компонентов внеклеточного матрикса.

Увеличение количества α -SMA-позитивных клеток в этот же период развития фиброза печени, скорее всего, являлось следствием дальнейшей трансдифференцировки активированных ЗК и трансформированных клеточных популяций в миофибробластподобные клетки, которые активно экспрессировали актин гладкомышечных клеток. Стабилизация количества виментин⁺-клеток через 4 недели эксперимента по нашему мнению, связана с тем, что между процессами активации (маркер — виментин) и трансдифференцировки клеточных популяций (маркер — α -SMA) печени, задействованных на первом этапе развития фиброза, устанавливается динамическое равновесие.

ЗАКЛЮЧЕНИЕ

На первом этапе (в течение первых четырех недель) развития экспериментального фиброза печени, индуцированного четыреххлористым углеродом, основную роль в формировании избыточного внеклеточного матрикса играют различные клеточные компоненты мезенхимального происхождения [14]. Общим признаком, объединяющим эти клетки, является экспрессия маркера мезенхимальных тканей — виментина. Поскольку наличие виментина (в связи с мРНК) необходимо для синтеза коллагена и сохранения его стабильности [4], можно сделать предположение, что избыточная экспрессия виментина играет заметную роль в развитии фиброза, стимулируя синтез и накопление коллагеновых волокон.

На втором этапе (в сроки до 8 недель эксперимента) развития фиброза печени химического генеза количество виментин-положительных клеток стабилизируется, а содержание α -SMA-положительных клеток продолжает увеличиваться. Измерение соотношения количества виментин- и α -SMA- положительных клеток позволяет определить степень развития фиброза печени и переход в стадию трансформации в цирроз.

ЛИТЕРАТУРА

- 1. Великородная Ю. И., Почепцов А. Я. // Вестник ВолгГМУ. 2013. Т. 48 (4). С. 27—30.
- 2. *Минин А. А., Молдавер М. В. //* Успехи биологической химии. 2008. Т. 48. С. 221—252.
- 3. *Bellini A., Mattoli S. //* Lab. Invest. 2007. Vol. 87. P. 858—870.
- 4. Challa A. A., Stefanovic B. // Mol. Cell. Biol. 2011. Vol. 31 (18). P. 773—3789.
- 5. Cherng Sh., Young J., Ma H. // The Journal of American Science. 2008. Vol. 4 (4). P. 7—9.
- 6. Chernoivanenko I. S., Minin An. A., Minin A. A. // Russian Journal of Developmental Biology. 2013. Vol. 44 (3). P. 144—157.
- 7. Friedman S. L. // Gastroenterology. 2008. Vol. 134 (6). P. 1655—1669.
- 8. Fuchs E., Weber K. // Annu. Rev. Biochem. 1994. Vol. 63. P. 345—382.
- 9. Iwaisako K., Brenner D. A., Kisseleva T. J. // Gastroenterol.Hepatol. 2012. Vol. 27 (2). P. 65—68.
- 10. Henderson N. C., Iredale J. P. // Clinical Science. 2007. Vol. 112 (5). P. 265—280.
- 11. Mendez M. G., Kojima S-I., Goldman R. D. // FASEB J. 2010. Vol. 24 (6). P. 1838—1851.
- 12. Miyata E., Masuya M., Yoshida S., et al. // Blood. 2008. Vol. 111 (4). P. 2427—2435.
- 13. *Yorozu K., Fujii E., Teruya S., et al.* // J. Toxicol. Pathol. 2004. Vol. 17 (4). P. 267—274.
- 14. Zeisberg M., Yang C., Martino M., et al. // J. Biol. Chem. 2007. Vol. 282 (32). P. 23337—23347.
- 15. Zois C. D., Baltayiannis G. H., Karayiannis P., et al. // Alimentary Pharmacology & Therapeutics. 2008. Vol. 28 (10). P. 1175—1187.

Контактная информация

Почепцов Александр Яковлевич — заведующий лабораторией патоморфологии, ФГУП Научно-исследовательский институт гигиены, токсикологии и профпатологии ФМБА России, e-mail: pochepcov@rihtop.ru