ИССЛЕДОВАНИЕ ПОЛЕЙ СОБСТВЕННЫХ ВОЛН ЭКРАНИРОВАННОГО ПЛОСКОГО ВОЛНОВОДА С ДВУХСЛОЙНЫМ ЗАПОЛНЕНИЕМ ПОЛУПРОВОДНИК-ДИЭЛЕКТРИК

Арефьев А.С.

В линейном приближении получены дисперсионные уравнения для определения постоянных распространения продольно-магнитных и продольно-электрических волн экранированного плоского волновода с двухслойным заполнением полупроводник-диэлектрик. Проведено исследование дисперсионных характеристик и распределений полей волн.

Введение. Классификация собственных волн линии передачи

На рис. 1 изображено поперечное сечение плоского волновода с двухслойным заполнением полупроводник-диэлектрик (ПВДЗ ПД). Области 1 и 2, расположенные между двумя идеально проводящими плоскостями, представляют собой слои полупроводника и диэлектрика, соответственно. На основе данной волноведущей структуры могут быть построены различные СВЧ устройства, в частности, вентили [1-2], СВЧ модуляторы [3-4].

Рис. 1. Поперечное сечение ПВДЗ ПД

При формулировке краевой задачи в качестве исходных уравнений выберем уравнения Максвелла:

$$\operatorname{rot}\vec{H}^{(m)} = \varepsilon_a^{(m)} \frac{\partial \vec{E}^{(m)}}{\partial t} + \vec{j}^{(m)}, \quad (m = 1; 2), \qquad (1)$$

rot
$$\vec{E}^{(m)} = -\mu_a^{(m)} \frac{\partial \vec{H}^{(m)}}{\partial t}, \quad (m = 1; 2), \quad (2)$$

div
$$\vec{E}^{(m)} = \rho^{(m)} / \varepsilon_a^{(m)}$$
, $(m = 1; 2)$, (3)

div
$$H^{(m)} = 0$$
, $(m = 1; 2)$. (4)

Здесь $\vec{E}^{(m)}$ и $\vec{H}^{(m)}$ – напряженности электрического и магнитного полей волны, распро-

страняющейся в линии передачи, $\varepsilon_a^{(m)}$ и $\mu_a^{(m)}$ – абсолютные диэлектрическая и магнитная проницаемости среды, $\rho^{(m)}$ и $\vec{j}^{(m)}$ – объемные плотности заряда и тока в среде, индекс *m* указывает номер области.

Будем считать, что полупроводник имеет электронную электропроводность; в нем присутствует только донорная примесь, концентрация которой N_{∂} значительно превышает собственную концентрацию дырок p_i . В данном случае можно пренебречь наличием дырок в полупроводнике. При этом в области 1 плотность заряда $\rho^{(1)}$ складывается из плотности заряда подвижных электронов проводимости $\rho_n^{(1)}$ и плотности заряда неподвижных донорных ионов $\rho_{\partial}^{(1)}$: $\rho^{(1)} = \rho_n^{(1)} + \rho_{\partial}^{(1)}$, а плотность тока в полупроводнике $\vec{j}^{(1)}$ равна плотности тока электронов проводимости

$$\vec{j}^{(1)} = -\mu_n \rho_n^{(1)} \vec{E}^{(1)} - D_n \operatorname{grad} \rho_n^{(1)}, \qquad (5)$$

где μ_n и D_n – подвижность и коэффициент диффузии электронов проводимости, соответственно. Величины μ_n и D_n связаны соотношением Эйнштейна $D_n = k_{\rm B} T \mu_n / e$, где $k_{\rm B}$ – постоянная Больцмана, T – абсолютная температура полупроводника, e – абсолютное значение заряда электрона. Первое слагаемое в (5) задает плотность тока дрейфа, второе – плотность тока диффузии электронов проводимости. В диэлектрике плотности заряда и тока равны нулю

$$\rho^{(2)} = 0, \quad \vec{j}^{(2)} = 0.$$

Применим операцию дивергенции к уравнению Максвелла (1), записанному для полупроводника, принимая во внимание равенства (3), (5). В результате имеем:

$$D_{n}\nabla^{2}\rho_{n}^{(1)} + \frac{\mu_{n}}{\varepsilon_{a}^{(1)}}\rho_{n}^{(1)}(\rho_{n}^{(1)} + \rho_{\partial}^{(1)}) + + \mu_{n}\vec{E}^{(1)}\operatorname{grad}\rho_{n}^{(1)} - \frac{\partial\rho_{n}^{(1)}}{\partial t} = 0.$$
(6)

Будем считать, что донорная примесь равномерно распределена в полупроводнике. При этом плотность заряда донорных ионов $\rho_{\partial}^{(1)}$ не зависит от координат (7)

(8)

(9)

(10)

(11)

 $\rho_{n,v}^{(1)}$ Наличие переменной составляющей обусловлено воздействием на электронную плазму полупроводника со стороны поля волны, распространяющейся в нап дальнейшем мы будем предполагать, что напряженности электрического и магнитного полей волны $\vec{E}^{(m)}$ и $\vec{H}^{(m)}$, (m=1; 2) малы по абсолютному значению. При этом переменная и постоян-

grad $\rho_{a}^{(1)} = 0$.

Максвелла (1), (2) с учетом равенств (3)-(4) дает

 $= \mu_n \operatorname{grad} \rho_n^{(m)} \times \vec{E}^{(m)} - \mu_a^{(m)} \mu_n \rho_n^{(m)} \frac{\partial \vec{H}^{(m)}}{\partial t},$

(m = 1; 2).

 $\nabla^2 \vec{E}^{(m)} - \varepsilon_a^{(m)} \mu_a^{(m)} \frac{\partial^2 \vec{E}^{(m)}}{\partial t^2} = \frac{1}{\varepsilon^{(m)}} \operatorname{grad} \rho_n^{(m)} -$

 $-\mu_a^{(m)}\mu_n\left(\vec{E}^{(m)}\frac{\partial\rho_n^{(m)}}{\partial t}+\rho_n^{(m)}\frac{\partial\vec{E}^{(m)}}{\partial t}\right)-$

Представим плотность заряда электронов про-

водимости в полупроводнике $\rho_n^{(1)}$ в виде суммы постоянной $\rho_{n0}^{(1)}$ и переменной $\rho_{n,v}^{(1)}$ составляю-

 $\rho_n^{(1)} = \rho_{n0}^{(1)} + \rho_{ny}^{(1)}$

Отсутствие дырок в полупроводнике означа-

ет, что в нем не происходит генерация электрон-

но-дырочных пар. Как следствие, единственным

механизмом возникновения электронов проводимости остается ионизация донорных атомов.

В данном случае постоянная составляющая $\rho_{n0}^{(1)}$ величины $\rho_n^{(1)}$ равна по модулю плотности

 $\rho_{r0}^{(1)} = -\rho_{d}^{(1)}$.

заряда донорных ионов

 $-\mu_a^{(m)}D_n \operatorname{grad} \frac{\partial \rho_n^{(m)}}{\partial t}, \quad (m=1;2).$

 $\nabla^2 \vec{H}^{(m)} - \varepsilon_a^{(m)} \mu_a^{(m)} \frac{\partial^2 \vec{H}^{(m)}}{\partial t^2} =$

Применение операции ротора к уравнениям

ная составляющие плотности заряда электронов проводимости в полупроводнике удовлетворяют условию $\left|\rho_{n,v}^{(1)}\right| \ll \left|\rho_{n0}^{(1)}\right|$

Будем считать, что величины $\vec{E}^{(m)}$, $\vec{H}^{(m)}$, и не зависят от поперечной координаты х. Подставляя (10) в (1)-(4) и пренебрегая в (1) слагаемым второго порядка малости $\left(-\mu_n \rho_{n,\nu}^{(1)} \vec{E}^{(1)}\right)$, можно заметить, что система из восьми скалярных дифференциальных уравнений, получаемая из уравнений Максвелла (1)-(4), распадается на две независимые системы.

Первая из них включает в себя в качестве неизвестных функций величины $\rho_{n,v}^{(1)}, H_x^{(m)}, E_v^{(m)},$ $E_z^{(m)}, (m = 1; 2).$ Она соответствует продольномагнитным волнам или LM-волнам линии передачи. Для волн данного типа характерно отсутствие перпендикулярной к границе раздела полупроводник-диэлектрик составляющей напряженности магнитного поля $H_v^{(m)}$, (m = 1; 2). Вторая система дифференциальных уравнений содержит компоненты $E_x^{(m)}$, $H_y^{(m)}$, $H_z^{(m)}$, (m = 1; 2) напряженностей и соответствует продольно-электрическим волнам или LE-волнам ПВДЗ ПД. Определением продольно-электрических волн может служить условие $E_v^{(m)} \equiv 0$, (m = 1; 2). Очевидно, что в данном случае LM-волны можно также классифицировать как электрические или Е-волны $(H_z^{(m)} \equiv 0, E_z^{(m)} \neq 0), (m = 1; 2); LE$ -волны одно-временно являются магнитными волнами или *H*-волнами $(E_z^{(m)} \equiv 0, H_z^{(m)} \neq 0), (m = 1; 2).$

Отсутствие у LE-волн переменной составляющей плотности заряда электронов проводимости $\rho_{ny}^{(1)}$ означает, что эти волны не возмущают электронную плазму полупроводника. Данный факт объясняется тем, что в случае LE-волны единственная отличная от нуля компонента плотности тока в полупроводнике $j_x^{(1)}$ не зависит от координаты х, вдоль оси которой движутся электроны проводимости. Тем самым, в полупроводнике не образуются сгустки и разрежения подвижных носителей заряда. Иными словами, под действием электрического поля LE-волны все электроны проводимости в области 1 смещаются синхронно.

Вывод дисперсионных уравнений

Рассмотрим продольно-магнитные волны. В соответствии с условиями (11) и (7), постоянная составляющая плотности заряда электронов проводимости в полупроводнике $\rho_{n0}^{(1)}$ не зависит от координат

$$\operatorname{grad} \rho_{n0}^{(1)} = 0.$$
 (12)

Подставим (10) в уравнение (6). Пренебрегая слагаемыми второго порядка малости $\mu_n \left(\rho_{n,v}^{(1)} \right)^2 / \varepsilon_a^{(1)}, \ \mu_n \vec{E}^{(1)} \operatorname{grad} \rho_{n,v}^{(1)}$ и учитывая соотношения (11)-(12), имеем

$$D_n \left(\frac{\partial^2 \rho_{n,\nu}^{(1)}}{\partial y^2} + \frac{\partial^2 \rho_{n,\nu}^{(1)}}{\partial z^2} \right) + \frac{\mu_n}{\epsilon_a^{(1)}} \rho_{n0}^{(1)} \rho_{n,\nu}^{(1)} - \frac{\partial \rho_{n,\nu}^{(1)}}{\partial t} = 0.$$
(13)

щих

После аналогичных преобразований векторное равенство (8), записанное в проекции на ось *x*, дает уравнение

$$\frac{\partial^{2} H_{x}^{(m)}}{\partial y^{2}} + \frac{\partial^{2} H_{x}^{(m)}}{\partial z^{2}} - \varepsilon_{a}^{(m)} \mu_{a}^{(m)} \frac{\partial^{2} H_{x}^{(m)}}{\partial t^{2}} = -\mu_{a}^{(m)} \mu_{n} \rho_{n0}^{(m)} \frac{\partial H_{x}^{(m)}}{\partial t}, \quad (m = 1; 2).$$
(14)

Принимая во внимание линейность дифференциальных уравнений (13)-(14), будем предполагать, что искомое поле представляет собой гармоническую волну, распространяющуюся в направлении оси z. Воспользовавшись методом комплексных амплитуд, представим неизвестные функции $\rho_{n,v}^{(1)}$, $\vec{E}^{(m)}$, $\vec{H}^{(m)}$, (m=1;2) как действительные части произведений комплексных функций $\tilde{\rho}_{n,v}^{(1)}$, $\tilde{\vec{E}}^{(m)}$, $\tilde{\vec{H}}^{(m)}$, (m=1;2) и фазового множителя $\exp[i(\omega t - \gamma z)]$. Здесь *i* – мнимая единица, ω – круговая частота колебаний, γ – неизвестная постоянная распространения волны.

Подставляя в (13) и (14) вместо величин $\rho_{n,v}^{(1)}$ и $H_x^{(m)}$, (m = 1; 2) соответствующие комплексные функции, получаем следующие дифференциальные уравнения

$$\frac{d^2 \widetilde{\rho}_n^{(1)}}{dv^2} + \beta^2 \widetilde{\rho}_n^{(1)} = 0, \qquad (15)$$

$$\frac{d^2 \tilde{H}_x^{(m)}}{dy^2} + \left(\delta^{(m)}\right)^2 \tilde{H}_x^{(m)} = 0, \quad (m = 1; 2), \tag{16}$$

где введены обозначения:

$$\beta = \sqrt{\frac{1}{D_n} \left(\frac{\mu_n}{\varepsilon_a^{(1)}} \rho_{n0}^{(1)} - i\omega\right)} - \gamma^2, \qquad (17)$$

$$\delta^{(m)} = \sqrt{\omega^2 \varepsilon_a^{(m)} \mu_a^{(m)} - \gamma^2 + i\omega \mu_a^{(m)} \mu_n \rho_{n0}^{(m)}}, \quad (18)$$
$$(m = 1; 2).$$

Решения уравнений (15) и (16) имеют вид:

$$\widetilde{\rho}_{n}^{(1)}(y) = A_{\rho} \cos(\beta y) + B_{\rho} \sin(\beta y), \tag{19}$$

$$H_{x}^{(m)}(y) = A_{H}^{(m)} \cos(\delta^{(m)}y) + B_{H}^{(m)} \sin(\delta^{(m)}y),$$
(m = 1; 2),
(20)

где A_{ρ} , B_{ρ} , $A_{H}^{(m)}$, $B_{H}^{(m)}$, (m = 1; 2) – неопределенные постоянные. Из уравнения Максвелла (1) могут быть получены следующие равенства

$$\begin{split} \widetilde{E}_{y}^{(m)} &= \frac{1}{\mu_{n}\rho_{n0}^{(m)} - i\omega\varepsilon_{a}^{(m)}} \bigg(i\gamma \widetilde{H}_{x}^{(m)} - D_{n} \frac{d\widetilde{\rho}_{n}^{(m)}}{dy} \bigg), \\ \widetilde{E}_{z}^{(m)} &= \frac{1}{\mu_{n}\rho_{n0}^{(m)} - i\omega\varepsilon_{a}^{(m)}} \bigg(\frac{d\widetilde{H}_{x}^{(m)}}{dy} + i\gamma D_{n}\widetilde{\rho}_{n}^{(m)} \bigg), \\ & (m = 1; 2), \end{split}$$

позволяющие выразить компоненты напряженности электрического поля *LM*-волны.

Будем предполагать, что переход металл-полупроводник в плоскости y = 0 не обладает выпрямляющими свойствами, представляя собой омический контакт. На нем выполняется граничное условие

$$\widetilde{E}_{v}^{(1)}(0) = 0,$$
 (21)

соответствующее отсутствию поверхностного заряда на границе раздела металл-полупроводник [5]. Кроме того, на поверхности идеальных проводников обращаются в ноль тангенциальные составляющие напряженности электрического поля волны

$$\widetilde{E}_{z}^{(1)}(0) = 0, \quad \widetilde{E}_{z}^{(2)}(y_{2}) = 0.$$
 (22)

Граничные условия (21)-(22) позволяют сократить (с шести до трех) количество неопределенных постоянных в равенствах (19), (20) и в выражениях для компонент $\widetilde{E}_{y}^{(m)}$, $\widetilde{E}_{z}^{(m)}$, (m = 1; 2).

Условия непрерывности тангенциальных составляющих напряженностей электрического и магнитного полей волны и перпендикулярной составляющей электрической индукции на границе раздела полупроводник-диэлектрик в плоскости $y = y_1$:

$$\widetilde{H}_{x}^{(1)}(y_{1}) - \widetilde{H}_{x}^{(2)}(y_{1}) = 0, \qquad (23)$$

$$\varepsilon_{a}^{(1)}\widetilde{E}_{y}^{(1)}(y_{1}) - \varepsilon_{a}^{(2)}\widetilde{E}_{y}^{(2)}(y_{1}) = 0, \qquad (24)$$

$$\widetilde{E}_{z}^{(1)}(y_{1}) - \widetilde{E}_{z}^{(2)}(y_{1}) = 0$$
(25)

приводят к однородной системе линейных алгебраических уравнений относительно неопределенных постоянных, присутствующих в представлениях неизвестных функций (19)-(20). Условие совместности данной системы дает дисперсионное уравнение для определения постоянных распространения *LM*-волн ПВДЗ ПД

$$\frac{\varepsilon_{a}^{(1)}}{\varepsilon_{a}^{(2)}}\delta^{(2)}(\zeta-i)\left[\frac{\beta}{\gamma}\cos(\delta^{(1)}y_{1})\sin(\beta y_{1})+\frac{\gamma}{\delta^{(1)}}\times\right] \\ \times \sin(\delta^{(1)}y_{1})\cos(\beta y_{1})\left]\sin[\delta^{(2)}(y_{2}-y_{1})\right] + \\ +\left\{\gamma(\zeta+i)\left[\cos(\delta^{(1)}y_{1})\cos(\beta y_{1})-1\right] - \\ -\left(\frac{\gamma^{3}}{\beta\delta^{(1)}}\zeta+i\frac{\beta\delta^{(1)}}{\gamma}\right)\sin(\delta^{(1)}y_{1})\sin(\beta y_{1})\right\} \times \\ \times \cos[\delta^{(2)}(y_{2}-y_{1})] = 0,$$
(26)

где введено обозначение $\zeta = \mu_n \rho_{n0}^{(1)} / (\omega \varepsilon_a^{(1)})$. При этом координатные зависимости искомых величин имеют следующий вид:

$$\begin{split} \widetilde{\rho}_{n}^{(1)}(y) &= \frac{\gamma C_{H}^{2}}{D_{n}W(y_{1},y_{1})} \cos[\delta^{(2)}(y_{2}-y_{1})] \times \\ &\times \left\{ i\delta^{(1)}\cos[\beta(y_{1}-y)] + \zeta \left[\frac{\gamma^{2}}{\beta}\sin(\delta^{(1)}y_{1}) \times \right. \\ &\times \sin(\beta y) - \delta^{(1)}\cos(\delta^{(1)}y_{1})\cos(\beta y) \right] \right\}, \\ \widetilde{H}_{x}^{(1)}(y) &= \frac{C_{H}}{W(y_{1},y_{1})} \cos[\delta^{(2)}(y_{2}-y_{1})] \times \\ &\times \left\{ W(y,y_{1}) - i\zeta\gamma^{2}\sin[\delta^{(1)}(y_{1}-y)] \right\}, \\ \widetilde{H}_{x}^{(2)}(y) &= C_{H}\cos[\delta^{(2)}(y_{2}-y)], \\ \widetilde{E}_{y}^{(1)}(y) &= \frac{C_{H}}{W(y_{1},y_{1})} \frac{i\gamma}{\mu_{n}\rho_{n0}^{(1)} - i\omega\varepsilon_{a}^{(1)}} \times \\ &\times \cos[\delta^{(2)}(y_{2}-y_{1})] \left\{ -\beta\delta^{(1)}\sin[\beta(y_{1}-y)] \right\}, \\ &+ i\zeta W(y_{1},y) + W(y,y_{1}) - \\ &- i\gamma^{2}\zeta\sin[\delta^{(1)}(y_{1}-y)] \right\}, \end{split}$$
(27)

$$\begin{split} \widetilde{E}_{y}^{(2)}(y) &= -C_{H} \frac{\gamma}{\omega \varepsilon_{a}^{(2)}} \cos[\delta^{(2)}(y_{2} - y)], \\ \widetilde{E}_{z}^{(1)}(y) &= \frac{C_{H}}{W(y_{1}, y_{1})} \frac{\cos[\delta^{(2)}(y_{2} - y_{1})]}{\mu_{n}\rho_{n0}^{(1)} - i\omega\varepsilon_{a}^{(1)}} \times \\ &\times \left\{ i\zeta\gamma^{2}\delta^{(1)}\cos[\delta^{(1)}(y_{1} - y)] - \right. \\ &- \gamma^{2}\delta^{(1)}\cos[\beta(y_{1} - y)] + \\ &+ i\zeta\gamma^{2} \left[\frac{\gamma^{2}}{\beta}\sin(\delta^{(1)}y_{1})\sin(\beta y) - \delta^{(1)} \times \\ &\times \cos(\delta^{(1)}y_{1})\cos(\beta y) \right] + \delta^{(1)} \left[\gamma^{2}\cos(\beta y_{1}) \times \\ &\times \cos(\delta^{(1)}y) - \beta\delta^{(1)}\sin(\beta y_{1})\sin(\delta^{(1)}y) \right] \right\}, \\ \widetilde{E}_{z}^{(2)}(y) &= C_{H} \frac{i\delta^{(2)}}{\omega\varepsilon_{a}^{(2)}}\sin[\delta^{(2)}(y_{2} - y)]. \\ 3glecb \\ C_{H} &= A_{H}^{(2)}/\cos(\delta^{(2)}y_{2}), \\ &W(s_{1}, s_{2}) = \beta\delta^{(1)}\cos(\delta^{(1)}s_{1})\sin(\beta s_{2}) + \\ &+ \gamma^{2}\sin(\delta^{(1)}s_{1})\cos(\beta s_{2}). \end{split}$$

В случае продольно-электрических волн можно ограничиться решением одного дифференциального уравнения. Подставляя (10) в уравнение (9), записанное в проекции на ось x, и отбрасывая слагаемые второго порядка малости, имеем

$$\frac{\partial^2 E_x^{(m)}}{\partial y^2} + \frac{\partial^2 E_x^{(m)}}{\partial z^2} - \varepsilon_a^{(m)} \mu_a^{(m)} \frac{\partial^2 E_x^{(m)}}{\partial t^2} =$$

$$= -\mu_a^{(m)} \mu_n \rho_{n0}^{(m)} \frac{\partial E_x^{(m)}}{\partial t}, \quad (m = 1, 2).$$
(28)

Уравнение (28), записанное относительно комплексной функции $\widetilde{E}_{x}^{(m)}$, (m = 1; 2), имеет следующий вид

$$\frac{d^2 \widetilde{E}_x^{(m)}}{dy^2} + \left(\delta^{(m)}\right)^2 \widetilde{E}_x^{(m)} = 0, \quad (m = 1; 2). \quad (29)$$

Решение уравнения (29)

$$\widetilde{E}_{x}^{(m)}(y) = A_{E}^{(m)}\cos(\delta^{(m)}y) + B_{E}^{(m)}\sin(\delta^{(m)}y),$$

$$(m = 1; 2)$$

содержит неопределенные постоянные $A_E^{(m)}$, $B_E^{(m)}$, (m = 1; 2). Используя граничные условия на металле

$$\widetilde{E}_{x}^{(1)}(0) = 0, \quad \widetilde{E}_{x}^{(2)}(y_{2}) = 0,$$
(30)

получаем

$$\widetilde{E}_{x}^{(1)}(y) = B_{E}^{(1)} \sin(\delta^{(1)}y),$$

$$\widetilde{E}_{x}^{(2)}(y) = C_{E} \sin[\delta^{(2)}(y_{2} - y)],$$
(31)

где $C_E = -B_E^{(2)}/\cos(\delta^{(2)}y_2)$. Соотношения $\widetilde{H}_y^{(m)} = \frac{\gamma}{\omega\mu_a^{(m)}}\widetilde{E}_x^{(m)}, \quad \widetilde{H}_z^{(m)} = \frac{-i}{\omega\mu_a^{(m)}}\frac{d\widetilde{E}_x^{(m)}}{dy},$ (m = 1; 2),

следующие из уравнения Максвелла (2), позволяют найти компоненты напряженности магнитного поля *LE*-волны. Дисперсионное уравнение для определения постоянных распространения *LE*-волн ПВДЗ ПД

$$\frac{\cos(\delta^{(1)}y_1)}{\omega\mu_a^{(1)}}\frac{\sin[\delta^{(2)}(y_2 - y_1)]}{\delta^{(2)}} + \frac{\sin(\delta^{(1)}y_1)}{\delta^{(1)}}\frac{\cos[\delta^{(2)}(y_2 - y_1)]}{\omega\mu_a^{(2)}} = 0$$
(32)

получается из условий непрерывности компонент E_x , H_z напряженностей на границе раздела полупроводник-диэлектрик

$$\widetilde{E}_{x}^{(1)}(y_{1}) - \widetilde{E}_{x}^{(2)}(y_{1}) = 0,$$
(33)

$$\widetilde{H}_{z}^{(1)}(y_{1}) - \widetilde{H}_{z}^{(2)}(y_{1}) = 0.$$
 (34)

При этом координатные зависимости компонент напряженностей *LE*-волн принимают следующий вид

$$\begin{split} \widetilde{E}_{x}^{(1)}(y) &= C_{E}\xi\sin(\delta^{(1)}y), \\ \widetilde{E}_{x}^{(2)}(y) &= C_{E}\sin[\delta^{(2)}(y_{2}-y)], \\ \widetilde{H}_{y}^{(1)}(y) &= C_{E}\frac{\gamma}{\omega\mu_{a}^{(1)}}\xi\sin(\delta^{(1)}y), \\ \widetilde{H}_{y}^{(2)}(y) &= C_{E}\frac{\gamma}{\omega\mu_{a}^{(2)}}\sin[\delta^{(2)}(y_{2}-y)], \\ \widetilde{H}_{z}^{(1)}(y) &= -C_{E}\frac{i\delta^{(1)}}{\omega\mu_{a}^{(1)}}\xi\cos(\delta^{(1)}y), \\ \widetilde{H}_{z}^{(2)}(y) &= C_{E}\frac{i\delta^{(2)}}{\omega\mu_{a}^{(2)}}\cos[\delta^{(2)}(y_{2}-y)], \end{split}$$

«Инфокоммуникационные технологии» Том 7, № 4, 2009

где
$$\xi = \sin \left[\delta^{(2)} (y_2 - y_1) \right] / \sin \left(\delta^{(1)} y_1 \right).$$

Анализ численных результатов

При выполнении расчетов числовые значения параметров краевой задачи были выбраны следующим образом: расстояние между экранирующими металлическими пластинами $y_2 = 2 \cdot 10^{-4}$ м; толщина слоя полупроводника $y_1 = 0.5 \cdot y_2$; температура полупроводника T = 300 К; концентрация донорной примеси в полупроводнике $N_{\partial} = 10^{21}$ м⁻³; $(\rho_{n0}^{(1)} = -eN_{\partial})$; подвижность электронов проводимости в полупроводнике $\mu_n = 0.85$ м² /(B·C); относительные диэлектрическая и магнитная проницаемости полупроводника $\varepsilon^{(1)} = 13,1$, $\mu^{(1)} = 1$ (материал полупроводника $\varepsilon^{(2)} = 9.05$, $\mu^{(2)} = 1$ (материал диэлектрика $-\Gamma$ Б-7).

На рис. 2-3 изображены дисперсионные характеристики *LM*- и *LE*-волн ПВДЗ ПД. Здесь $k = \omega/c$ – волновое число свободного пространства, c – скорость света в вакууме. Как следует из графиков, при k > 0 все собственные волны линии передачи являются комплексными, действительные и мнимые части их постоянных распространения огличны от нуля. Параметры $\text{Re}(\gamma)$ и $\text{Im}(\gamma)$ любой волны различаются по знаку. Этот факт свидетельствует о том, что амплитуды компонент напряженностей убывают в направлении распространения волн. Условия для усиления в данной направляющей структуре отсутствуют.

Назовем волну квазираспространяющейся, если в ее постоянной распространения γ действительная часть преобладает над мнимой

$$\operatorname{Re}(\gamma) > |\operatorname{Im}(\gamma)|.$$
 (35)

Под квазизатухающей будем понимать волну, постоянная распространения которой удовлетворяет условию

$$\operatorname{Re}(\gamma) < |\operatorname{Im}(\gamma)|. \tag{36}$$

Частоту ω_{кр}, на которой действительная и мнимая части параметра γ равны по модулю, назовем критической частотой волны.

Рис. 3. Дисперсионные характеристики *LE*-волн ПВДЗ ПД

Очевидно, что определения (35)-(36) квазираспространяющихся и квазизатухающих волн можно также записать в виде

$$-\frac{\pi}{4} < \arg(\gamma) < 0 \quad \mu \tag{37}$$

$$-\frac{\pi}{2} < \arg(\gamma) < -\frac{\pi}{4}.$$
 (38)

Индексацию *LM*- и *LE*-волн ПВДЗ ПД будем производить в порядке увеличения их критических частот. Нормированные значения критических волновых чисел $k_{\rm kp} = \omega_{\rm kp} / c$ некоторых волн приведены в таблице 1.

Таблица 1.

Тип волны	LM_1	LM_2	LM_3	LE_1	LE_2
$k_{\rm kp}y_2$	0	0,92	1,89	0,97	1,88

На основании рис. 2-3 можно сделать следующие выводы. Волна LM_1 является квазираспространяющейся на любой частоте $\omega > 0$. Остальные LM- и LE-волны ПВДЗ ПД в частотных диапазонах ($0 < \omega < \omega_{\rm kp}$) и ($\omega > \omega_{\rm kp}$) следует квалифицировать, соответственно, как квазизатухающие и квазираспространяющиеся.

Действительные части постоянных распространения всех волн возрастают с увеличением частоты. Мнимые части постоянных распространения всех волн, за исключением волны LM_1 , возрастают с увеличением числа k от нуля. На некоторых частотах, превышающих критические, параметры $Im(\gamma)$ достигают максимальных (минимальных по модулю) значений, вновь убывая при дальнейшем увеличении k. Например, максимальные значения мнимых частей постоянных распространения волн LE_1 и LM_2 достигаются, соответственно, при $ky_2 = 1,66$ и $ky_2 = 2,49$.

Определим предельные значения постоянных распространения волн при неограниченном

уменьшении частоты. Умножая уравнение (32) на ω и полагая $\omega = 0$, получаем:

$$\frac{\frac{\operatorname{ch}(\gamma y_1)}{\mu_a^{(1)}}\frac{\operatorname{sh}[\gamma(y_2-y_1)]}{\gamma}+\frac{\operatorname{sh}(\gamma y_1)}{\gamma}\frac{\operatorname{ch}[\gamma(y_2-y_1)]}{\mu_a^{(2)}}=0.$$

В случае равенства магнитных проницаемостей полупроводника и диэлектрика

$$\mu_a^{(1)} = \mu_a^{(2)} = \mu_a \tag{39}$$

это уравнение принимает вид $sh(\gamma y_2)/(\mu_a \gamma) = 0$. Отсюда

$$\lim_{\omega \to 0} (\gamma y_2) = \pm i \pi n, \quad (n = 1; 2...).$$
(40)

Знаки «--» и «+-» в равенстве (40) соответствуют предельным значениям постоянных распространения *LE*-волн, распространяющихся, соответственно, в направлении оси *z* и в противоположном направлении. Корни уравнения (32) будут также определяться равенством (40) в случае, если условие тождественности магнитных проницаемостей полупроводника и диэлектрика (39) заменить требованием идентичности размеров частичных областей 1 и 2 на рис. 1 $y_1 = y_2 - y_1$ или $y_2 = 2y_1$. Рис. 3 позволяет убедиться в справедливости соотношения (40).

Что касается *LM*-волн, то для них предельное соотношение, аналогичное (40), не выполняется, хотя на основании рис. 2 и может возникнуть такая иллюзия. Уравнение (26) позволяет лишь доказать аналитически, что при $\omega \rightarrow 0$ постоянная распространения γ волны *LM*₁ неограниченно уменьшается по модулю.

На рис. 4-10 изображены распределения амплитуд и фаз нормированных компонент напряженностей электрических и магнитных полей семи волн ПВДЗ ПД. В случае *LM*-волн безразмерные функции $\stackrel{\vee}{\vec{H}}$, $\stackrel{\vee}{\vec{E}}$ и $\stackrel{\vee}{\vec{\rho}_n}$ введены следующим образом:

$$\overset{\vee}{\widetilde{H}} = \vec{\widetilde{H}} / C_H, \quad \overset{\vee}{\widetilde{E}} = \vec{\widetilde{E}} \sqrt{\varepsilon_0 / \mu_0} / C_H, \quad \overset{\vee}{\widetilde{\rho}}_n = \widetilde{\rho}_n c y_2 / C_H.$$

Нормировочные соотношения для LE-волн имеют вид:

$$\overset{\vee}{\widetilde{E}} = \vec{\widetilde{E}} / C_{E}, \quad \overset{\vee}{\widetilde{H}} = \vec{\widetilde{H}} \sqrt{\mu_{0} / \varepsilon_{0}} / C_{E}.$$

Рис. 4. Распределения амплитуд (*a*) и фаз (*б*) компонент напряженностей поля волны LM_1 : $ky_2 = 2$; верхней точке оси ординат на рис. *a* соответствуют значения: $|\tilde{H}_x| = 11$; $|\tilde{E}_y| = 2,5$; $|\tilde{E}_z| = 2,5$

Рис. 5. Распределения амплитуд (а) и фаз (б) компонент напряженностей поля волны LM_2 : $ky_2 = 2$; верхней точке оси ординат на рис. *а* соответствуют

значения: $|\tilde{H}_x| = 1$; $|\tilde{E}_y| = 0.38$; $|\tilde{E}_z| = 0.38$

Рис. 6. Распределения амплитуд (а) и фаз (б) компонент напряженностей поля волны LM_3 : $ky_2 = 2$; верхней точке оси ординат на рис. *а* соответствуют значения: $|\breve{H}_x| = 1,1; |\breve{E}_y| = 0,35; |\breve{E}_z| = 0,35$

Рис. 7. Распределения амплитуд (*a*) и фаз (*б*) компонент напряженностей поля волны LM_4 : $ky_2 = 2$; верхней точке оси ординат на рис. *a* соответствуют

Рис. 8. Распределения амплитуд (*a*) и фаз (*б*) компонент напряженностей поля волны LE_1 : $ky_2 = 2$; верхней точке оси ординат на рис. *a* соответствуют значения: $|\breve{E}_x| = 2,5$; $|\breve{H}_y| = 7$; $|\breve{H}_z| = 7$

Рис. 9. Распределения амплитуд (*a*) и фаз (*б*) компонент напряженностей поля волны LE_2 : $ky_2 = 2$; верхней точке оси ординат на рис. *a* соответствуют значения: $|\breve{E}_x| = 1,1; |\breve{H}_y| = 3; |\breve{H}_z| = 3$

Рис. 10. Распределения амплитуд (*a*) и фаз (б) компонент напряженностей поля волны LE_3 : $ky_2 = 2$; верхней точке оси ординат на рис. *a* соответствуют

вначения:
$$\left|\widetilde{E}_{x}\right| = 1,1; \left|\widetilde{H}_{y}\right| = 5,2; \left|\widetilde{H}_{z}\right| = 5,2$$

Рис. 11. Распределения амплитуд (*a*) и фаз (б) компонент напряженностей поля волны LM_1 вблизи границ слоя полупроводника: $ky_2 = 2$; s = 0.01; верхней точке оси ординат на рис. *a* соответствуют значения:

$$\widetilde{H}_x = 11; |\widetilde{E}_y| = 2.5; |\widetilde{E}_z| = 2.5; |\widetilde{\widetilde{\rho}_n}| = 8 \cdot 10^4.$$

Компоненты напряженностей должны удовлетворять граничным условиям (22), (30) на поверхности идеальных проводников, условиям (23)-(25), (33)-(34) на границе раздела полупроводник-диэлектрик, включая условие непрерывности перпендикулярной составляющей магнитной индукции

$$\mu_a^{(1)} \widetilde{H}_y^{(1)}(y_1) - \mu_a^{(2)} \widetilde{H}_y^{(2)}(y_1) = 0,$$

а также граничному условию на омическом контакте (21). Выполнение всех перечисленных условий, за исключением (21) и (24), с очевидностью следует из рис. 4-10. Чтобы снять все сомнения относительно компоненты E_y , следует построить аналогичные распределения компонент напряженностей вблизи границ полупроводникового слоя (см. рис. 11). Приведенные на рис. 11*a* графики, позволяют убедиться в том, что компонента E_y волны LM_1 удовлетворяет условию (21). Кроме того, из рис. 46 и 116 следует непрерывность фазы компоненты E_y на границе раздела полупроводник-диэлектрик

$$\arg\left[\widetilde{E}_{y}^{(1)}(y_{1})\right] = \arg\left[\widetilde{E}_{y}^{(2)}(y_{1})\right],$$

благодаря чему обеспечивается выполнение граничного условия (24).

Можно заметить, что, в большинстве случаев, фазы компонент напряженностей полей *LM*- и *LE*-волн возрастают в направлении оси y. Однако есть и исключения из данного правила. Прежде всего, это компоненты E_y *LM*-волн, аргументы которых немонотонны в слое полупроводника вблизи границы его раздела с диэлектриком. Наиболее наглядно подобную немонотонность иллюстрирует рис. 116. Кроме того, например, при числовых значениях параметров краевой задачи, соответствующих рис. 7, функция $\arg[\widetilde{E}_z^{(1)}(y)]$ волны LM_4 достигает минимума в точке $y/y_2 = 0,026$.

Обращает на себя внимание тот факт, что в окрестностях точек, в которых амплитуды компонент напряженностей достигают минимальных значений, фазы соответствующих компонент быстро изменяются с увеличением координаты у. Например, фазы компонент H_x и E_y напряженностей поля волны LM₃ (рис. 6) проявляют значительную координатную зависимость в точках $y/y_2 = 0,22$ и $y/y_2 = 0,73$, соответствующих минимальным значениям амплитуд этих компонент. Максимальное значение функции $d/dy \left\{ \arg \left[\widetilde{E}_{z}(y) \right] \right\}$ и минимальное значение функции $|\tilde{E}_{z}(y)|$ достигаются в точке $y/y_{2} = 0,44$. Данную закономерность легко обосновать. Если бы область 1 на рис. 1, вместо полупроводника, была заполнена идеальным диэлектриком, то в некоторых продольных сечениях линии передачи $y = y_0$ амплитуды компонент напряженностей тех или иных волн не просто достигали бы минимальных значений, а обращались бы в ноль. По обе стороны от указанных сечений (в точках $y = y_0 - \Delta y$ и $y = y_0 + \Delta y$) соответствующие компоненты напряженностей совершали бы колебания в противофазе. Иными словами, фазы данных компонент испытывали бы разрывы в точках $y = y_0$. Причем левый и правый односторонние пределы фаз в этих точках различались бы на 180°. В нашем случае направляющая структура частично заполнена средой с потерями. Поэтому, вместо нулей амплитуд компонент напряженностей, мы имеем их минимумы; вместо точек разрыва фаз, имеем точки, в которых фазы существенно зависят от координаты *y*.

Напряженность магнитного поля любой LMволны имеет единственную компоненту H_x . Тем самым, магнитные поля LM-волн ПВДЗ ПД линейно поляризованы. Аналогичным свойством обладают электрические поля LE-волн, векторы \vec{E} которых ориентированы параллельно оси x. Очевидно, что электрическое поле LM-волны будет линейно поляризовано в тех точках, в которых фазы компонент E_y и E_z его напряженности будут удовлетворять условию

$$\arg\left[\widetilde{E}_{y}(y)\right] - \arg\left[\widetilde{E}_{z}(y)\right] = \pm \pi n, \quad (n = 0; 1...).$$

Иначе поляризация электрического поля волны будет эллиптической. В последнем случае вектор \vec{E} будет вращаться по часовой стрелке, если смотреть в направлении оси *x*, при условии:

$$0 < \left\{ \arg \left[\widetilde{E}_{y}(y) \right] - \arg \left[\widetilde{E}_{z}(y) \right] \right\} < \pi$$

и против часовой стрелки при условии:

$$-\pi < \left\{ \arg \left[\widetilde{E}_{y}(y) \right] - \arg \left[\widetilde{E}_{z}(y) \right] \right\} < 0.$$

Как следует из рис. 46 и 116, при выбранных числовых значениях параметров краевой задачи электрическое поле волны LM_1 эллиптически поляризовано в любой точке. В соответствии с рис. 5, электрическое поле волны LM_2 линейно поляризовано в точке $y/y_2 = 0,29$, в которой

$$\arg[\widetilde{E}_{y}(y)] = \arg[\widetilde{E}_{z}(y)].$$

В этой точке угол наклона напряженности E относительно оси *z* имеет два возможных значения: $\operatorname{arctg} |\widetilde{E}_{v}(y)/\widetilde{E}_{z}(y)| = 29,64^{\circ}$ и

$$\operatorname{arctg}\left|\widetilde{E}_{y}(y)/\widetilde{E}_{z}(y)\right| - \pi = -150,36^{\circ}$$

На интервалах (y < 0,29) и (y > 0,29) за период колебаний конец вектора \vec{E} описывает эллипс в плоскости (y,z), вращаясь, соответственно, против часовой стрелки и по часовой стрелке, если смотреть в направлении оси *x*. Электрическое поле волны LM_3 (см. рис. 6б) линейно поляризовано в трех точках: $y/y_2 = 0,24$, $y/y_2 = 0,42$, $y/y_2 = 0,746$. В этих плоскостях положительные углы наклона вектора \vec{E} относительно оси *z* составляют, соответственно, 5,848°, 44,65°, 6,25°. Сведения о поляризации магнитных полей *LE*-волн ПВДЗ ПД содержатся в таблице 2. При этом числовые значения параметров линии передачи и частота колебаний соответствуют рис. 8-10.

Таблица 2.

Тип	Точки линейной	Положительный угол
волны	поляризации маг-	наклона напряженно-
	нитного поля	сти \vec{H} относительно
	y/y_2	оси z
LE_1	0,36	80,10 [°]
	0,22	62,71°
LE_2	0,48	11,27°
	0,70	67,23°
LE_3	0,12	58,98°

На основании рис. 8-10 можно сделать вывод о том, что сдвиг фаз между компонентами E_x и H_y напряженностей поля любой *LE*-волны не зависит от координаты *y* и удовлетворяет условию $0 < \{\arg[\tilde{E}_x(y)] - \arg[\tilde{H}_y(y)]\} < \frac{\pi}{2}$. Действительно, исходя из второго уравнения Максвелла, можно получить следующее соотношение, связывающее комплексные амплитуды этих компонент (m = 1; 2). Тем самым, в обеих частичных областях (рис. 1) аргументы комплексных чисел \tilde{H}_y и \tilde{E}_x удовлетворяют условию

$$\arg\left[\widetilde{H}_{y}(y)\right] - \arg\left[\widetilde{E}_{x}(y)\right] = \arg(\gamma).$$
(41)

В соответствии с определением (37), формула (41) дает условие

$$0 < \left\{ \arg \left[\widetilde{E}_{x}(y) \right] - \arg \left[\widetilde{H}_{y}(y) \right] \right\} < \frac{\pi}{4}$$

выполняющееся для квазираспространяющихся продольно-электрических волн. При $ky_2 = 2$ таковыми являются волны LE_1 и LE_2 (см. рис. 8-9). Используя определения (38), для квази-затухающих *LE*-волн получаем

$$\frac{\pi}{4} < \left\{ \arg \left[\widetilde{E}_{x}(y) \right] - \arg \left[\widetilde{H}_{y}(y) \right] \right\} < \frac{\pi}{2}.$$

Последние неравенства справедливы для волны LE_3 (см. рис. 10).

Первое уравнение Максвелла, записанное для слоя диэлектрика, дает – $\gamma \widetilde{H}_x^{(2)} = \omega \varepsilon_a^{(2)} \widetilde{E}_y^{(2)}$. Тем самым, в частичной области 2 (см. рис. 1) сдвиг фаз между компонентами E_y и H_x напряженностей *LM*-волн не зависит от координаты *y* и определяется соотношением

$$\arg\left[\widetilde{E}_{y}^{(2)}(y)\right] - \arg\left[\widetilde{H}_{x}^{(2)}(y)\right] = \pi + \arg(\gamma) .$$

Отсюда, аргументы комплексных функций $\widetilde{E}_{y}^{(2)}$ и $\widetilde{H}_{x}^{(2)}$ квазираспространяющихся и квазизатухающих *LM*-волн должны удовлетворять условиям

$$\frac{3\pi}{4} < \left\{ \arg\left[\widetilde{E}_{y}^{(2)}(y)\right] - \arg\left[\widetilde{H}_{x}^{(2)}(y)\right] \right\} < \pi$$
(42)

$$\operatorname{H} \frac{\pi}{2} < \left\{ \arg \left[\widetilde{E}_{y}^{(2)}(y) \right] - \arg \left[\widetilde{H}_{x}^{(2)}(y) \right] \right\} < \frac{3\pi}{4}, \quad (43)$$

соответственно. При $ky_2 = 2$ неравенствам (42) удовлетворяют волны LM_1 , LM_2 , LM_3 (см. рис. 46, 56, 66), неравенствам (43) удовлетворяет волна LM_4 (рис. 76). В частичной области 1 (рис. 1) сдвиг фаз между компонентами E_y и H_x напряженностей LM-волн зависит от координаты y. Это обусловлено тем, что в слое полупроводника протекает ток.

При выбранных числовых значениях параметров линии передачи и нормированном волновом числе $ky_2 = 2$ мнимая часть параметра β , определяемого равенством (17), удовлетворяет условию Im(βy_2) << -1, поскольку

$$(\beta y_2)^2 + (\gamma y_2)^2 = \frac{kcy_2^2}{D_n}(\zeta - i) =$$

= -(2,13727 + 5,45716 i) \cdot 10^6 =
= 5,86076 \cdot 10^6 exp(-0,61882 \pi i)

В данном случае, уже при небольших значениях координаты *у* справедливы следующие приближенные представления:

$$\cos(\beta y) \approx \frac{1}{2} \exp[i \operatorname{Re}(\beta y)] \times \\ \times \exp[-\operatorname{Im}(\beta y)], \quad (y > 0), \\ \sin(\beta y) \approx -\frac{i}{2} \exp[i \operatorname{Re}(\beta y)] \times \\ \times \exp[-\operatorname{Im}(\beta y)], \quad (y > 0).$$

$$(44)$$

Аналогичным образом можно записать:

$$\cos[\beta(y_1 - y)] \approx \frac{1}{2} \exp\{i \operatorname{Re}[\beta(y_1 - y)]\} \times \exp\{-\operatorname{Im}[\beta(y_1 - y)]\}, \quad (y < y_1).$$
(45)

Подстановка выражений (44)-(45) в (27) дает

$$\widetilde{\rho}_{n}(y) \approx \frac{C_{H}}{W(y_{1}, y_{1})} \frac{\gamma}{2D_{n}} \cos[\delta^{(2)}(y_{2} - y_{1})] \times \\ \times (i\delta^{(1)} \exp\{i\operatorname{Re}[\beta(y_{1} - y)]\} \times \\ \times \exp\{-\operatorname{Im}[\beta(y_{1} - y)]\} - \\ -\zeta \left[i\frac{\gamma^{2}}{\beta}\sin(\delta^{(1)}y_{1}) + \delta^{(1)}\cos(\delta^{(1)}y_{1})\right] \times \\ \times \exp[i\operatorname{Re}(\beta y)]\exp[-\operatorname{Im}(\beta y)]).$$
(46)

Слагаемое в правой части (46), содержащее множитель $\exp[-\operatorname{Im}(\beta y)]$, быстро возрастает с увеличением координаты *y*; слагаемое, содержащее множитель $\exp\{-\operatorname{Im}[\beta(y_1 - y)]\}$, так же быстро убывает. В результате, при удалении точки наблюдения вглубь слоя полупроводника, комплексная амплитуда $\tilde{\rho}_n$ быстро убывает по абсолютному значению, что иллюстрирует рис. 11*а*. Вблизи этих границ функция $\tilde{\rho}_n(y)$ описывается приближенными выражениями

$$\widetilde{\rho}_{n}(y) \approx \frac{C_{H}}{W(y_{1}, y_{1})} \frac{i\gamma\delta^{(1)}}{2D_{n}} \cos\left[\delta^{(2)}(y_{2} - y_{1})\right] \times$$

$$\times \exp\left\{i\operatorname{Re}\left[\beta(y_{1} - y)\right]\right\} \times$$

$$\times \exp\left\{-\operatorname{Im}\left[\beta(y_{1} - y)\right]\right\}, \quad (0 < y << y_{1});$$

$$\widetilde{\rho}_{n}(y) \approx -\frac{C_{H}}{W(y_{1}, y_{1})} \frac{\gamma\zeta}{2D_{n}} \cos\left[\delta^{(2)}(y_{2} - y_{1})\right] \times$$

$$\times \left[i\frac{\gamma^{2}}{\beta}\sin(\delta^{(1)}y_{1}) + \delta^{(1)}\cos(\delta^{(1)}y_{1})\right] \times$$

$$\times \exp\left[i\operatorname{Re}(\beta y)\right] \exp\left[-\operatorname{Im}(\beta y)\right], \quad (0 << y < y_{1}),$$

которые следуют из (46). Тем самым любая *LM*волна возмущает электронную плазму полупроводника только в очень тонких приповерхностных слоях.

В таблицах 3-4 приведены нормированные значения координат $y_{\rho,1}$ и $y_{\rho,2}$ точек, в которых амплитуда переменной составляющей плотности заряда электронов проводимости $|\tilde{\rho}_n(y)|$ на порядок меньше, чем на границах раздела полупроводник-металл и полупроводник-диэлектрик:

$$\frac{\left|\frac{\widetilde{\rho}_{n}(0)}{\widetilde{\rho}_{n}(y_{\rho,1})}\right| = \left|\frac{\widetilde{\rho}_{n}(y_{1})}{\widetilde{\rho}_{n}(y_{\rho,2})}\right| = 10$$

Значения величин $y_{\rho,1}$ и $y_{\rho,2}$ вычислены с использованием формулы (27) для $\tilde{\rho}_n(y)$. Кроме того, в таблицах 3 и 4 приведены приближенные значения $y_{\rho,1,\sim}$ и $y_{\rho,2,\sim}$ величин $y_{\rho,1}$ и $y_{\rho,2}$, определяемые равенствами

$$y_{\rho,1,\sim} = \ln(0,1) / \operatorname{Im}(\beta), \quad y_{\rho,2,\sim} = y_1 - y_{\rho,1,\sim},$$

полученными из (47)-(48). Как можно убедиться, значения величин $y_{\rho,1}$, $y_{\rho,1,\sim}$ и $y_{\rho,2}$, $y_{\rho,2,\sim}$ совпадают с точностью до 10-12 значащих цифр, соответственно.

Таблица 3.

Нормированное волновое число $ky_2 = 2$				
Тип волны	LM_1	LM_2		
$\frac{y_{\rho,1}}{y_2}$	0,00115143099194	0,00115143132163		
$\frac{y_{\rho,1,\sim}}{y_2}$	0,00115143099215	0,00115143132188		
$\frac{y_{\rho,2}}{y_2}$	0,49884856900806	0,49884856867837		
$\frac{y_{\rho,2,\sim}}{y_2}$	0,4988485690078	0,49884856867812		

Как следует из рис. 11*б*, на границе раздела металл-полупроводник совпадают фазы переменной составляющей плотности заряда электронов проводимости в полупроводнике $\rho_{n,v}^{(1)}$ и перпендикулярной составляющей напряженности электрического поля $E_v^{(1)}$ волны LM_1

$$\arg\left[\widetilde{\rho}_{n}^{(1)}(0)\right] = \arg\left[\widetilde{E}_{y}^{(1)}(0)\right]. \tag{49}$$

Таблица 4.

Тип волны – LM_1					
ky_2	0,1	1			
$\frac{\mathcal{Y}_{\rho,1}}{\mathcal{Y}_2}$	0,00157183437282	0,00137565645622			
$\frac{y_{\rho,1,\sim}}{y_2}$	0,00157183437312	0,00137565645594			
$\frac{y_{\rho,2}}{y_2}$	0,49842816562718	0,49862434354378			
$\frac{y_{\rho,2,\sim}}{y_2}$	0,49842816562688	0,49862434354406			

Результаты расчетов показывают, что данная закономерность справедлива и для других *LM*-волн линии передачи. Для обоснования указанного свойства запишем третье уравнение Максвелла для функций $\tilde{E}_{v}^{(1)}(y)$, $\tilde{E}_{z}^{(1)}(y)$ и $\tilde{\rho}_{n}^{(1)}(y)$:

$$\frac{d\widetilde{E}_{y}^{(1)}}{dy} - i\gamma\widetilde{E}_{z}^{(1)} = \frac{\widetilde{\rho}_{n}^{(1)}}{\varepsilon_{a}^{(1)}}.$$
(50)

Представим входящие сюда комплексные величины следующим образом:

$$\begin{split} \widetilde{E}_{y}^{(1)} &= \left| \widetilde{E}_{y}^{(1)} \right| \exp\left[i \arg\left(\widetilde{E}_{y}^{(1)} \right) \right], \\ \widetilde{E}_{z}^{(1)} &= \left| \widetilde{E}_{z}^{(1)} \right| \exp\left[i \arg\left(\widetilde{E}_{z}^{(1)} \right) \right], \\ \widetilde{\rho}_{n}^{(1)} &= \left| \widetilde{\rho}_{n}^{(1)} \right| \exp\left[i \arg\left(\widetilde{\rho}_{n}^{(1)} \right) \right]. \end{split}$$

«Инфокоммуникационные технологии» Том 7, № 4, 2009

В результате уравнение (50) принимает вид:

$$\begin{cases} \left(\frac{d}{dy}\left|\widetilde{E}_{y}^{(1)}\right|\right) + i\left|\widetilde{E}_{y}^{(1)}\right|\frac{d}{dy}\left[\arg\left(\widetilde{E}_{y}^{(1)}\right)\right]\right\} \exp\left[i\arg\left(\widetilde{E}_{y}^{(1)}\right)\right] - i\gamma\left|\widetilde{E}_{z}^{(1)}\right| \exp\left[i\arg\left(\widetilde{E}_{z}^{(1)}\right)\right] = \frac{1}{\varepsilon_{a}^{(1)}}\left|\widetilde{\rho}_{n}^{(1)}\right| \exp\left[i\arg\left(\widetilde{\rho}_{n}^{(1)}\right)\right] \end{cases}$$

Полагая *y* = 0 и используя условия (21)-(22) на границе раздела металл-полупроводник, получаем

$$\left(\frac{d}{dy}\left|\widetilde{E}_{y}^{(1)}(y)\right|\right|_{y=0}\exp\left\{i\arg\left[\widetilde{E}_{y}^{(1)}(0)\right]\right\}=$$
$$=\frac{1}{\varepsilon_{a}^{(1)}}\left|\widetilde{\rho}_{n}^{(1)}(0)\right|\exp\left\{i\arg\left[\widetilde{\rho}_{n}^{(1)}(0)\right]\right\}.$$

Приравнивая аргументы комплексных чисел, стоящих в левой и правой частях равенства, приходим к доказуемому фазовому соотношению (49).

Литература

- Кац Л.И., Попов В.В., Ревзин Р.М. К расчету невзаимных устройств для субмиллиметрового диапазона // Радиотехника и электроника. Т.22, №6, 1977. – С. 1107-1113.
- Захаров В.А. О медленных волнах плоскопараллельного волновода, заполненного двухслойной структурой диэлектрик – поперечно намагниченная полупроводниковая плазма // Радиотехника и электроника. Т.26, №4, 1981. – С. 673-682.
- 3. Гусаков В.В., Кац Л.И. Модуляция миллиметрового излучения в МДП структуре // Журнал технической физики. Т.49, №6, 1979. С. 1306-1309.
- 4. Гусаков В.В., Кац Л.И. МДП-модулятор СВЧдиапазона на основе пленок InSb // Радиотехника и электроника. Т.28, №8, 1983. – С. 1671-1673.
- Барыбин А.А. Волны в тонкопленочных полупроводниковых структурах с горячими электронами. М.: Наука, 1986. – 288 с.

УДК 621.395.8

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ СЛУЧАЙНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ В УСЛОВИЯХ АПРИОРНОЙ НЕОПРЕДЕЛЕННОСТИ ОТНОСИТЕЛЬНО ИСКАЖАЮЩЕГО ВОЗДЕЙСТВИЯ

Горячкин О.В., Эрина Е.И.

Статья посвящена задаче восстановления ковариационной матрицы случайных информационных последовательностей, прошедших через линейную систему с неизвестными характеристиками. Такая постановка значительно усложняет задачу, и ее невозможно решить средствами корреляционного анализа. В статье предлагается «слепой» метод решения, в основу которого положено использование полиномиальных представлений конечных случайных последовательностей – так называемых полиномиальных статистик. Эффективность работы предлагаемого алгоритма подтверждается результатами математического моделирования.

Введение

В настоящее время наблюдается широкое распространение методов корреляционного анализа для решения различных практических задач. Необходимость выявления наличия и характера статистической зависимости наблюдаемых величин возникает в подавляющем большинстве областей исследования: это радио- и гидролокация, навигация и связь, химия, астрофизика, экология, и даже социология и психология. По результатам корреляционного анализа можно делать выводы о взаимозависимости случайных величин, проверять гипотезы относительно параметров их распределения, получать оценки коэффициентов парной, частной и множественной корреляции.

В статье рассматривается проблема восстановления ковариационной матрицы случайного дискретизированного сигнала, прошедшего искажающую среду с неизвестными параметрами. Решение этой задачи методами корреляционного анализа невозможно из-за априорной неопределенности как относительно статистических параметров самого сигнала, так и искажающей среды. Предлагаемый подход опирается на использование полиномиальных статистик – полиномиальных представлений случайных последовательностей [1]. Изначально интерес к этим математическим объектам был вызван их свойствами, полезными с точки зрения решения весьма актуальной сегодня проблемы «слепой» обработки сигналов, в частности «слепой» идентификации каналов связи [2].