- 7. Sukharev E.M. *Obshesistemnye voprosy zashity informacii: Kollectivnaya monograpiya. Kniga 1* [Systemwide issues of information security: Collective monograph. Part 1]. Moscow, Radiotehnika Publ., 2003. 296 p.
- 8. Lyudogovskiy D.A., Filatov V.V. *Proekt "Svetovoy kanal peredachi informatsii na osnove slozhnukh signalno-kodovykh konstruktsiy"* [Project "Light channel of information transfer based on complex signal-code structures"]. Available at: http://nttm2016.ru/?p=17&pr=704. (accessed: 10.01.17).
- 9. Anderson, Dzheyms A. *Diskretnaya matematika i kombinatorika* [Discrete mathematics and combinatorics]. Moscow, Vil'yams Publ., 2004. 960 p.
- 10. Sklyar B. *Tsifrovaya svyaz'*. *Teoreticheskie osnovy i prakticheskoe primenenie* [Digital communication. Theoretical bases and practical application]. Moscow, Vil'yams Publ., 2003. 1104 p.
- 11. Zalogin N.N., Kislov V.V. *Shirokopolosnye khaoticheskie signaly v radiotekhnicheskikh i informatsionnykh sistemakh* [Broadband chaotic signals in radio engineering and information systems]. Moscow, Radiotekhnika Publ., 2006. 208 p.
- 12. Korolenko P.V., Ryzhikova U.V. *Modelirovanie i obrabotka sluchaynykh signalov i konstruktsiy* [Modeling and processing of random signals and structures]. Moscow, MGU Publ., 2012. 69 p.
- 13. Vokhnik O.M., Zotov A.M., Korolenko P.V. *Modelirovanie i obrabotka stokhasticheskikh signalov i struktur: Uchebnoe posobie* [Modeling and processing of stochastic signals and structures: Textbook]. Moscow, Universitetskaya kniga, 2013. 125 p.
- 14. Stolings B. *Besprovodnye linii svyazi i seti* [Wireless links and networks]. Moscow, Vil'yams Publ., 2003. 213 p.
- 15. Zhuk A.P., Chernyak Z.V., Sazonov V.V. O tselesoobraznosti ispol'zovaniya ortogonal'nykh ansambley signalov s izmenyayushceysya razmernost'yu v sistme CDMA [On the advisability of using orthogonal ensembles of signals with varying dimensions in a CDMA system]. *Infocommunikatsionnye tekhnologii*, 2008. no 4, pp. 16-19.

Received 03.04.2017

ТЕХНОЛОГИИ ТЕЛЕКОММУНИКАЦИЙ

УДК 621.3.095

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ МОДОВОГО СОСТАВА ИЗЛУЧЕНИЯ В ОПТИЧЕСКОМ ВОЛОКНЕ С ОСЕСИММЕТРИЧНЫМ ПРОФИЛЕМ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ

Былина М.С.¹, Глаголев С.Ф. ¹, Дашков М.В.², Дюбов А.С. ¹, Хричков В.А.¹
¹Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича, Санкт-Петербург, РФ
²Поволжский государственный университет телекоммуникаций и информатики, Самара, РФ
E-mail: BylinaMaria@mail.ru

В работе предложена методика анализа модового состава видимого и ближнего инфракрасного излучения, распространяющегося по слабо направляющим оптическим волокнам круглого поперечного сечения с осесимметричным профилем показателя преломления. В основе методики лежит принцип представления реального слабо направляющего оптического волокна структурой из концентрических слоев, в которой каждый слой имеет постоянный показатель преломления и характеризуется своим радиусом. Приведены результаты моделирования для оптических волокон, соответствующих рекомендациям МСЭ-Т G.652 и G.657, для рабочих длин волн 650 и 850 нм. Определен модовый состав и основные параметры распространяющихся мод, а также приведены результаты расчетов хроматической дисперсии. Результаты работы могут быть использованы при проектировании локальных сетей, работающих в видимой и ближней инфракрасной областях, организации дополнительных оптических каналов в существующих сетях небольшой протяженности, разработке оптических рефлектометров для измерений на локальных сетях, а также на абонентских участках пассивных оптических сетей.

Ключевые слова: оптическое волокно, одномодовое оптическое волокно, направляемая мода, скалярное волновое уравнение, хроматическая дисперсия

Введение

В [1] предлагается применять для локальных сетей небольшой протяженности, а также для рефлектометрии абонентских участков оптических сетей доступа излучение видимого и ближнего инфракрасного диапазонов. Преимущественно используемые в сетях доступа оптические волокна (ОВ) стандартов G.652 и G.657 в этих диапазонах работают в маломодовом режиме. В данной работе предложена методика и проведен анализ модового состава видимого и ближнего инфракрасного излучения, проходящего по данным ОВ, а также приведены результаты расчетов хроматической дисперсии.

Скалярный волновой анализ

Поля мод в слабо направляющем ОВ круглого поперечного сечения с осесимметричным профилем показателя преломления (ППП) можно представить в виде [2].

$$E(r,\varphi,z) = E_t(r,\varphi) \exp(i\beta z);$$

$$E_t(r,\varphi) = E_{\max} \Psi(r,\varphi) = E_{\max} R(r) \exp(il\varphi); (1)$$

$$H(r,\varphi,z) = n_{10} \sqrt{\varepsilon_0/\mu_0} E_t(r,\varphi) \exp(i\beta z).$$

где $r, \, \varphi, \, z$ — цилиндрические координаты; $E_{\rm max}$ — амплитуда напряженности электрического поля; $\Psi(r, \, \varphi)$ — функция, описывающая изменение напряженности электрического поля в поперечном сечении ОВ; β — постоянная распространения; $l \geq 0$ — целое число, представляющее собой азимутальный порядок моды; n_{10} — показатель преломления ОВ на оптической оси; $\varepsilon_0 = 8.85 \cdot 10^{-12}$ Ф/м — электрическая постоянная; $\mu_0 = 1.257 \cdot 10^{-6}$ Гн/м — магнитная постоянная; i — мнимая единица. Таким образом, для расчета полей мод достаточно найти функцию R(r).

Функция R(r) является решением скалярного волнового уравнения, которое для рассматриваемого ОВ имеет вид [2]:

$$\frac{d^2R(r)}{dr^2} + \frac{1}{r}\frac{dR(r)}{dr} + \left[k^2n^2(r) - \beta^2 - \frac{l^2}{r^2}\right]R(r) = 0, (2)$$

где $k = 2\pi / \lambda$ — волновое число; λ — длина волны; n(r) — осесимметричный ППП.

В общем случае для каждого значения l>1 уравнение (2) описывает четыре гибридные моды с постоянными распространения β_{lm} , где m- радиальный порядок моды ($m\geq 0$): четную и нечетную $HE_{(l+1)m}$, четную и нечетную $EH_{(l-1)m}$. Четная и нечетная моды имеют взаимно перпендикулярные направления поляризации. Моды, имеющие

одинаковые l и m, имеют одинаковое распределение амплитуд напряженностей полей в поперечном сечении ОВ. Случаи l=0 и l=1 являются особыми. При l=0 уравнение (2) описывает две гибридные моды: четную и нечетную HE_{lm} . При l=1 уравнение (2) описывает четыре моды: четную и нечетную HE_{lm} , а также E_{lm} и H_{lm} .

Для каждой пары значений l и m распространяющиеся в слабо направляющем ОВ моды интерферируют, образуя линейно поляризованное излучение, которое называют линейнополяризованной модой LP_{lm} . Мода LP_{01} , являющаяся результатом интерференции четной и нечетной моды HE_{11} , называется основной или фундаментальной.

Упрощенная методика анализа мод

В общем случае дифференциальное уравнение (2) не имеет аналитического решения, поэтому представляют интерес упрощенные методики анализа ОВ, основанные на представлении реального ППП эквивалентным ступенчатым профилем или комбинацией ступенчатых профилей.

В данной работе предлагается методика, основанная на представлении реального слабо направляющего ОВ с произвольным осесимметричным ППП структурой из N концентрических слоев, в которой каждый слой имеет постоянный показатель преломления n_i и характеризуется своим радиусом r_i [3].

Для такого OB уравнение (2) сводится к каноническому уравнению Бесселя и имеет для i-го слоя решение вида:

$$R_{i}(r) = A_{i}Z_{l1}(k_{i}|r|) + B_{i}Z_{l2}(k_{i}|r|),$$
(3)

где
$$k_i = \begin{cases} \sqrt{k^2 n_i^2 - \beta^2}, & k^2 n_i^2 - \beta^2 \ge 0; \\ \sqrt{\beta^2 - k^2 n_i^2}, & k^2 n_i^2 - \beta^2 < 0; \end{cases}$$
 (4)

$$Z_{I1}(k_i|r|) = \begin{cases} J_I(k_i|r|), & k^2 n_i^2 - \beta^2 \ge 0; \\ I_I(k_i|r|), & k^2 n_i^2 - \beta^2 < 0; \end{cases}$$
(5)

$$Z_{l2}(k_i|r|) = \begin{cases} Y_i(k_i|r|), & k^2 n_i^2 - \beta^2 \ge 0; \\ K_i(k_i|r|), & k^2 n_i^2 - \beta^2 < 0, \end{cases}$$
(6)

где J_l и Y_l — функции Бесселя первого и второго рода; I_l и K_l — модифицированные функции Бесселя первого и второго рода, соответственно; A_i и B_i — амплитудные коэффициенты (B_1 = 0, A_N = 0); k — волновое число.

Для расчета β_{lm} , A_i и B_i запишем граничные условия, которые для слабо направляющего ОВ сводятся к непрерывности $\Psi(r,\varphi)$ и $\partial \Psi(r,\varphi)$ / ∂r :

- граница 1 и 2 слоев:

$$A_{1}Z_{I1}(k_{1}r_{1}) - A_{2}Z_{I1}(k_{2}r_{1}) - B_{2}Z_{I2}(k_{2}r_{1}) = 0;$$

$$A_{1}Z'_{I1}(k_{1}r_{1}) - A_{2}Z'_{I1}(k_{2}r_{1}) - B_{2}Z'_{I2}(k_{2}r_{1}) = 0,$$

- граница 2 и 3 слоев:

$$A_{2}Z_{I1}(k_{2}r_{2}) + B_{2}Z_{I2}(k_{2}r_{2}) - A_{3}Z_{I1}(k_{3}r_{2}) - B_{3}Z_{I2}(k_{3}r_{2}) = 0;$$

$$A_{2}Z'_{I1}(k_{2}r_{2}) + B_{2}Z'_{I2}(k_{2}r_{2}) - A_{3}Z'_{I1}(k_{3}r_{2}) - B_{3}Z'_{I2}(k_{3}r_{2}) = 0,$$

- граница N-2 и N-1 слоев:

$$\begin{split} &A_{N-2}Z_{l1}\big(k_{N-2}r_{N-2}\big) + B_{N-2}Z_{l2}\big(k_{N-2}r_{N-2}\big) - \\ &- A_{N-1}Z_{l1}\big(k_{N-1}r_{N-2}\big) - B_{N-1}Z_{l2}\big(k_{N-1}r_{N-2}\big) = 0\,;\\ &A_{N-2}Z_{l1}'\big(k_{N-2}r_{N-2}\big) + B_{N-2}Z_{l2}'\big(k_{N-2}r_{N-2}\big) - \\ &- A_{N-1}Z_{l1}'\big(k_{N-1}r_{N-2}\big) - B_{N-1}Z_{l2}'\big(k_{N-1}r_{N-2}\big) = 0\,, \end{split}$$

- граница n-1 и n слоев:

$$\begin{split} &A_{N-1}Z_{l1}(k_{N-1}r_{N-1}) + B_{N-1}Z_{l2}(k_{N-1}r_{N-1}) - \\ &- B_{N}Z_{l2}(k_{N}r_{N-1}) = 0; \\ &A_{N-1}Z'_{l1}(k_{N-1}r_{N-1}) + B_{N-1}Z'_{l2}(k_{N-1}r_{N-1}) - \\ &- B_{N}Z'_{l2}(k_{N}r_{N-1}) = 0. \end{split}$$

Систему граничных условий можно записать в матричной форме:

$$\mathbf{M} \cdot \mathbf{AB} = 0 \,, \tag{7}$$

где ${\bf M}$ – матрица, представленная на рис. 1; ${\bf AB}$ – вектор неизвестных амплитудных коэффициентов

$$\mathbf{AB}^{T} = [A_1 \ A_2 \ B_2 \ \dots A_{N-1} \ B_{N-1} \ B_N], \tag{8}$$

T — операция транспонирования. Система (7) имеет нетривиальное решение только в том случае, если определитель матрицы \mathbf{M} равен нулю. Выражение

$$|\mathbf{M}| = 0 \tag{9}$$

представляет собой характеристическое уравнение, которое позволяет найти все β_{lm} . Затем, решив систему (7), можно определить для каждой моды амплитудные коэффициенты. Поскольку общее число неизвестных в (7) превышает число уравнений на единицу, один из коэффициентов нужно задать. Для хроматической дисперсии направляемой моды LP_{lm} справедливо [4]:

$$D_{chrlm} = -\frac{\lambda}{2\pi c} \left(2\frac{d\beta_{lm}}{d\lambda} + \lambda \frac{d^2 \beta_{lm}}{d\lambda^2} \right), \quad (10)$$

где λ – длина волны; c – скорость света в вакууме.

Хроматическая дисперсия фундаментальной моды является одним из основных нормируемых параметров одномодового OB.

Волокно со ступенчатым ППП

Соотношения (3)-(9) существенно упрощаются для OB, имеющего ступенчатый ППП. Характеристическое уравнение данного OB имеет вид [2]:

$$U\frac{J_{l+1}(U)}{J_{l}(U)} = W\frac{K_{l+1}(W)}{K_{l}(W)},$$
(11)

где U и W – безразмерные параметры моды в сердцевине и оболочке OB:

$$U = r_c \sqrt{k^2 n_1^2 - \beta^2}$$
; $W = r_c \sqrt{\beta^2 - k^2 n_2^2}$, (12)

 r_c — радиус сердцевины OB, n_1 , n_2 — показатели преломления сердцевины и оболочки OB.

Параметры U и W связаны с нормированной частотой OB V соотношением

$$U^{2} + W^{2} = r_{core}^{2} k^{2} (n_{1}^{2} - n_{2}^{2}) = V^{2}.$$
 (13)

Для каждой пары значений l и V уравнение (11) может иметь несколько решений U_{lm} (и W_{lm}), соответствующих разным модам LP_{lm} с постоянными распространения:

$$\beta_{lm} = \sqrt{k^2 n_1^2 - \frac{U_{lm}^2}{r_c^2}} \,. \tag{14}$$

Решения для полей мод будут иметь вид:

в сердцевине

$$R_{lm}(r) = \frac{J_{l}(U_{lm} r/r_{c})}{J_{l}(U_{lm})},$$
(15)

- в оболочке

$$R_{lm}(r) = \frac{K_l(W_{lm} r/r_c)}{K_l(W_{lm})}.$$
 (16)

Для расчета числа направляемых мод необходимо рассмотреть условия отсечки каждой моды. Известно, что в ОВ со ступенчатым ППП условия отсечки моды имеют вид

- при
$$l \neq 0$$
: $J_{l-1}(V) = 0$;
- при $l = 0$: $J_1(V) = 0$. (17)

Рис. 1. Матрица М

Таблица 1. Значения нормированной частоты отсечки для мод LP_{lm}

m	1	2	3	4	5	6	7	8	9	Функция Бесселя
0	0	3,832	7,016	10,173	13,324	16,471	19,616	22,760	25,904	$J_1(x)$
1	2,405	5,520	8,654	11,792	14,931	18,071	21,212	24,352	27.493	$J_0(x)$
2	3,832	7,016	10,173	13,324	16,471	19,616	22,760	25,904	29,047	$J_1(x)$
3	5,136	8,417	11,620	14,796	17,960	21,117	24,270	27,421	30,569	$J_2(x)$
4	6,380	9,761	13,015	16,223	19,400	22,583	25,748	28,908	32.065	$J_3(x)$
5	7,588	11.065	14,373	17,616	20,827	24,019	27,199	30,371	33,537	$J_4(x)$
6	8,771	12,339	15,700	18,980	22,218	25,430	28,627	31,812	34,989	$J_5(x)$
7	9,936	13,589	17,004	20,321	23,586	26,820	30,034	33,233	36,422	$J_6(x)$
8	11,086	14,821	18,288	21,642	24,935	28,191	31,423	34,637	37,839	$J_7(x)$
9	12,225	16,038	19,555	22,945	26,267	29,546	32,796	36,026	39,240	$J_8(x)$
10	13,354	17,241	20,807	24,234	27,584	30,885	34,154	37,400	40,629	$J_9(x)$
11	14,476	18,433	22,047	25,509	28,887	32,212	35,500	38,762	42,004	$J_{10}(x)$
12	15,590	19,616	23,276	26,773	30,179	33,526	36,834	40,112	43,368	$J_{11}(x)$

Таким образом, для каждой моды, кроме фундаментальной, можно определить нормированную частоту отсечки $V_{\it cut}$. Уравнения (17) имеют бесконечное число корней. Порядковый номер корня m соответствует радиальному порядку отсекаемой моды.

В таблице 1 представлены значения нормированной частоты отсечки $V_{\scriptscriptstyle cut}$ для линейнополяризованных мод. Значения $V_{cut\ lm}$ позволяют рассчитать длины волн отсечки каждой линейнополяризованной моды

$$\lambda_{cut\,lm} = \frac{2\pi r_{core}}{V_{cut\,lm}} \sqrt{n_1^2 - n_2^2} \ . \tag{18}$$

Число линейнополяризованных мод $M_{_{LP}}$, направляемых OB с нормированной частотой V, можно определить, пересчитав все дискретные решения (16), для которых $V < V_{cut}$. Приближенно M_{IP} можно рассчитать по выражению

$$M_{LP} = V^2 / 4$$
. (19)

Отметим, что поля всех направляемых мод существуют как в сердцевине, так и в оболочке. Долю мощности моды, сосредоточенную в сердцевине, можно рассчитать по выражению:

- при
$$l=0$$
: $\eta = \frac{U_{0m}^2}{V^2} \left(\frac{W_{0m}^2}{U_{0m}^2} + \frac{K_0^2(W_{0m})}{K_1^2(W_{0m})} \right)$;

- при $l \neq 0$:

$$\eta = \frac{U_{lm}^2}{V^2} \left(\frac{W_{lm}^2}{U_{lm}^2} + \frac{K_l^2(W_{lm})}{K_{l-1}(W_{lm})K_{l+1}(W_{lm})} \right). (19)$$

Результаты моделирования ОВ стандарта G.652 на длинах волн 650 и 850 нм

В работе было проведено моделирование ОВ стандарта G.652. Конструктивные параметры модели представлены в таблице 2.

Таблица 2. Конструктивные параметры моделируемого

№ п/п	Параметр	Значение
1	ППП	Ступенчатый
2	Материал сердцевины	4,1% GeO ₂ , 92,1% SiO ₂
3	Материал оболочки	100% SiO ₂
4	Радиус сердцевины, мкм	4,1
5	Радиус оболочки, мкм	125

В таблице 3 представлены результаты расчета V и M_{LP} : по приближенной формуле (19) и уточненные.

Таблица 3. Число направляемых линейнополяризованных мод в моделируемом OB

		13	
№ п/п	Параметр	Значение на длине волны 650 нм	Значение на длине волны 850 нм
1	V	5,465	4,116
2	M_{LP} , рассчитанное по (19)	7	4
3	Уточненное M_{LP}	5	3

В таблицах 4 и 5 приведены основные параметры направляемых линейнополяризованных мод рассматриваемого ОВ на длинах волны 650 и 850 нм соответственно.

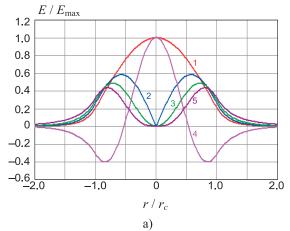

На рис. 2 показаны результаты расчета нормированных распределений напряженности электрического поля направляемых линейнополяризованных мод в рассматриваемом ОВ на длинах волн 650 и 850 нм. На рис. 3 показаны результаты расчета зависимости хроматической дисперсии фундаментальной моды от длины волны. Длина волны нулевой дисперсии составила примерно 1311 нм. На всех графиках обозначение E_{max} — это амплитуда напряженности электрического поля основной моды.

Таблица 4. Параметры направляемых мод в рассматриваемом ОВ на длине волны 650 нм

Мода $\mathit{LP}_{\mathit{lm}}$	Постоянная распространения β_{lm} , $1/мкм$	Эффективный показатель преломления $n_{\it eff}$	Нормированная частота отсечки $V_{cut\ lm}$		Длина волны отсечки $\lambda_{cut\ lm},$ мкм	Хроматическая дисперсия $D_{\it chr lm},$ пс/(нм \cdot км)
LP_{01}	14,134	1,462	_	97,73	_	-235,26
LP_{11}	14,121	1,461	2,405	93,72	1,477	-232,32
LP_{21}	14,104	1,459	3,832	87,22	0,927	-234,72
LP_{02}	14,099	1,4585	3,832	82,85	0,927	-247,83
LP_{31}	14,085	1,457	5,136	64,03	0,692	-268,38

Таблица 5. Параметры направляемых мод в рассматриваемом ОВ на длине волны 850 нм

Мода LP_{lm}	Постоянная распространения β_{lm} , $1/мкм$	Эффективный показатель преломления $n_{\it eff}$	Нормированная частота отсечки V_{cutlm}		Длина волны отсечки $\lambda_{cut\ lm},$ мкм	X роматическая дисперсия $D_{\it chr lm},$ пс/(нм·км)
LP_{01}	10,7735	1,4575	_	95,29	_	-88,78
LP_{11}	10,7586	1.4554	2,405	86,16	1,455	-91,01
LP_{21}	10,7406	1,4530	3,832	66,56	0,913	-133,7
LP_{02}	10,7378	1,4526	3,832	35,98	0,913	-332,9

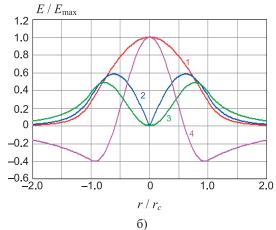


Рис. 2. Нормированные распределения напряженности электрического поля направляемых линейно-поляризованных мод на длинах волн 650 нм (а) и 850 нм (б): $1 - LP_{01}$, $2 - LP_{11}$, $3 - LP_{21}$, $4 - LP_{02}$, $5 - LP_{31}$

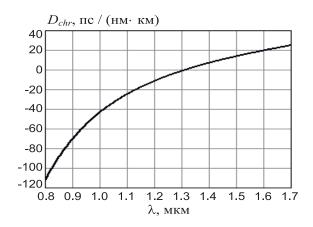


Рис. 3. Дисперсионная характеристика фундаментальной моды моделируемого ОВ

Таблица 7. Число направляемых линейнополяризованных мод в моделируемом OB

№ п/п	Параметр	Значение на длине волны 650 нм	Значение на длине волны 850 нм
1	V	4,816	3,662
2	M_{LP} , рассчитанное по (19)	5	3
3	Уточненное $M_{\it LP}$	4	2

Таблица 6. Конструктивные параметры ОВ

№ п/п	Параметр	Значение
1	Материал сердцевины	3,5% GeO ₂ , 96,5% SiO ₂
2	Радиус сердцевины, мкм	3,9
3	Материал внутреннего и внешнего слоев оболочки	100% SiO ₂
4	Радиус внутреннего слоя оболочки, мкм	9,5
5	Материал центрального слоя оболочки	1,0% F, 99.0% SiO ₂
6	Радиус центрального слоя оболочки, мкм	14,75
7	Радиус центрального слоя оболочки, мкм	125

Результаты моделирования ОВ стандарта G.657 на длинах волн 650 и 850 нм

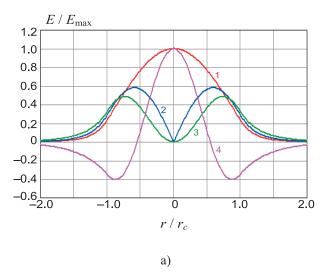

В работе было проведено моделирование ОВ стандарта G.657. Конструктивные параметры модели представлены в таблице 6. В таблице 7 представлены результаты расчета V и M_{LP} : по приближенной формуле (19) и уточненное по таблице 1. В таблицах 8 и 9 приведены основные параметры направляемых линейнополяризованных мод рассматриваемого ОВ на длинах волны 650 и 850 нм соответственно.

Таблица 8. Параметры направляемых мод в рассматриваемом ОВ на длине волны 650 нм

Мода LP _{lm}	Постоянная распространения β_{lm} , 1/мкм	Эффективный показатель преломления $n_{\it eff}$	Нормированная частота отсечки V_{cutlm}	Доля мощности в сердцевине η_{lm} , %	Длина волны отсечки $\lambda_{cutlm},$ мкм	Хроматическая дисперсия $D_{\it chr lm},$ пс/(${\it lm\cdot km}$)
LP_{01}	14,124	1,461	_	96,85	_	-226,53
LP_{11}	14,111	1,460	2,405	91,08	1,303	-225,0
LP_{21}	14,094	1,458	3,832	80,94	0,817	-234,64
LP_{02}	14,089	1,4575	3,832	72,29	0,817	-266,16

Таблица 9. Параметры направляемых мод в рассматриваемом ОВ на длине волны 850 нм

Мода <i>LP</i> _{lm}	Постоянная распростране-	Эффективный показатель	частота отсеч-	Доля мощности в сердцевине	отсечки $\lambda_{cut \ lm}$,	Хроматическая дисперсия
	ния β_{lm} , $1/$ мкм	преломления $n_{\it eff}$	ки V_{cutlm}	$\eta_{lm}, \%$	МКМ	$D_{\mathit{chrlm}},$ пс/(нм·км)
LP_{01}	10,767	1,457	_	93,690	ı	-83,80
LP_{11}	10,752	1,4545	2,405	80,750	1,294	-90,26

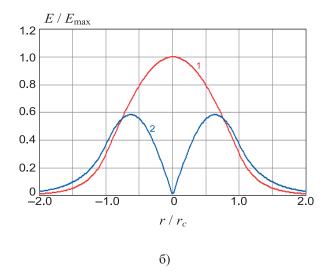


Рис. 4. Нормированные распределения напряженности электрического поля направляемых линейно-поляризованных мод на длинах волн: а) 650 нм; б) 850 нм; $I - LP_{01}$, $2 - LP_{11}$, $3 - LP_{21}$, $4 - LP_{02}$

На рис. 4 показаны результаты расчета нормированных распределений напряженности электрического поля направляемых линейнополяризованных мод в рассматриваемом ОВ на двух длинах волн 650 и 850 нм. На графиках $E_{\rm max}$ — это амплитуда напряженности электрического поля основной моды.

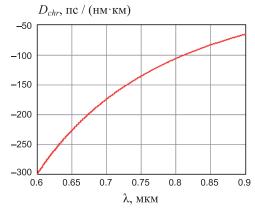


Рис. 5. Дисперсионная характеристика фундаментальной моды моделируемого OB

На рис. 5 показаны результаты расчета зависимости хроматической дисперсии фундаментальной моды от длины волны.

Заключение

Результаты проведенных расчетов могут быть использованы при

- проектировании локальных сетей, работающих в видимой и ближней инфракрасной областях;
- организации дополнительных оптических каналов в существующих сетях небольшой протяженности;

 разработке оптических рефлектометров для измерений на локальных сетях, а также на абонентских участках пассивных оптических сетей.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта N 16-37-50088.

Литература

- 1. Глаголев С.Ф., Дюбов А.С., Рудницкий В.Б. и др. Рефлектометрия абонентских участков РОМ // Материалы МНК АПИНО-2016: Санкт-Петербург, март 2016. С. 308-312.
- 2. Снайдер А., Лав Дж. Теория оптических волноводов. Пер. с англ. М.: Радио и связь, 1987. 656 с.
- 3. Taha Mohamed Barake. A Generalized Analysis of Multiple-Clad Optical Fibers with Arbitrary Step-Index Profiles and Applications // Thesis for the degree of Master of Science in Electrical Engineering, 1997.
- 4. Агравал Г. Нелинейная волоконная оптика. Пер. с англ. М.: Мир, 1996. 323 с.
- 5. Адамс А. Введение в теорию оптических волноводов. Пер. с англ. М.: Мир, 1984. 512 с.
- 6. Андреев В.А., Бурдин А.В., Кочановский Л.Н. и др. Направляющие системы электросвязи. Т.2. Проектирование, строительство и техническая эксплуатация. М.: Горячая линия Телеком, 2016. 424 с.
- 7. Иванов А.Б. Волоконная оптика. Компоненты, системы передачи, измерения. М.: Syrus Systems, 1999. 671 с.

- 8. Листвин А.В., Листвин В.Н., Швырков Д.В. Оптические волокна для линий связи. М.: ЛЕСАРарт, 2003. 288 с.
- 9. Гауэр Дж. Оптические системы передачи. Пер с англ. М.: Радио и связь, 1989. 501 с.

10.Листвин В.Н., Трещиков В.Н. DWDM системы. М.: ИД «Наука», 2013. – 300 с.

Получено 23.04.2017

Былина Мария Сергеевна, к.т.н., доцент Кафедры фотоники и линий связи (ФиЛС) Санкт-Петербургского государственного университета телекоммуникаций им. М.А. Бонч-Бруевича (СПбГУТ). Тел. (812) 305-12-69. E-mail: bylinamaria@mail.ru.

Глаголев Сергей Федорович, к.т.н., доцент, заведующий Кафедрой ФиЛС СПбГУТ. Тел. (812) 305-12-69. E-mail: glagolevsf@yandex.ru.

Дашков Михаил Викторович, к.т.н., доцент Кафедры линий связи и измерений в технике связи Поволжского государственного университета телекоммуникаций и информатики. Тел. (846) 228-00-66. E-mail: mvd.srttc@gmail.com.

Дюбов Андрей Сергеевич, к.т.н., доцент Кафедры ФиЛС СПбГУТ. Тел. (812) 305-12-69. E-mail: blip@mail.ru.

Хричков Валентин Александрович, преподаватель кафедры ФиЛС СПбГУТ. Тел. (812) 305-12-69. E-mail: hrichkovv@gmail.com.

THEORETICAL ANALYSIS OF THE MODE STRUCTURE IN AN OPTICAL FIBER WITH AXISYMMETRIC REFRACTIVE INDEX PROFILE

Bylina M.S.,¹ Glagolev S.F.,¹ Dashkov M.V.,² Diubov A.S.,¹ Hrichkov V.A.¹
¹The Bonch-Bruevich Saint-Petersburg State University of Telecommunications,
Saint-Petersburg, Russia Federation
²Povolzhskiy State University of Telecommunications and Informatics, Samara, Russian Federation
E-mail: bylinamaria@mail.ru

This paper presents a method to evaluate the modal structure of the optical fibers in visible and near-infrared wavelength range. Previous research proposed the use of these wavelength ranges for testing of short lines with optical time domain reflectometry technique. The present paper focuses on standard single-mode fibers that can be considered as weak guidance circular axisymmetric cross-section ones. The approach to analysis is based on the representation of real optical fiber by an equivalent step profile or a combination of step profiles where each layer is characterized by their local refractive index and radius. The numerical simulation was carried out for optical fibers ITU-T Rec. G.652 and G.657 fibers at wavelengths 650 nm and 850 nm. The electric field intensity distributions of lower-order guided modes and chromatic dispersion of fundamental mode were presented.

Keywords: optical fiber, singlemode optical fiber, guided mode, scalar wave equation, chromatic dispersion

DOI: 10.18469/ikt.2017.15.2.03

Bylina Maria Sergeevna, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, 22 Prospekt Bolshevikov, St. Petersburg 193232, Russian Federation; Associate Professor of the Department of Photonic and Telecommunication Lines; PhD in Technical Sciences. Tel.: +78123051269. E-mail: Bylina-Maria@mail.ru

Glagolev Sergey Fedorovich, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, 22 Prospekt Bolshevikov, St. Petersburg 193232; the Head of Department of Photonic and Telecommunication Lines; PhD in Technical Sciences, Associate Professor. Tel.: +78123051269. E-mail: GlagolevSF@yandex.ru

Dashkov Michael Victorovich, Povolzhskiy State University of Telecommunications and Informatics, 77 Moskovskoe shosse, Samara 443090, Russian Federation; Associated Professor of the Department of Communication Lines; PhD in Technical Science, Associated Professor. Tel.: +78462280066. E-mail: mvd.srttc@gmail.com

Diubov Andrei Sergeevich, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, 22 Prospekt Bolshevikov, St. Petersburg 193232; Associate Professor of the Department of Photonic and Telecommunication Lines; PhD in Technical Sciences. Tel.: +78123051269. E-mail: blip@mail.ru

Hrichkov Valentin Alexandrovich, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, 22 Prospekt Bolshevikov, St. Petersburg 193232; Lecturer of the Department Photonic and Telecommunication Lines. Tel.: +78123051269. E-mail: hrichkovv@gmail.com

References

- Glagolev S.F., Diubov A.S., Rudnitskiy V.B. e.a. Reflektometriia abonentskikh uchastkov PON [Reflectometry
 of PON subscriber sections]. *Materialy mezhdunarodnoy konferentcii APINO-2016* [Collection of scientific
 papers of ICAIT-2016]. Saint Petersburg, 2016, pp. 308-312.
- 2. Snaider A., Lav Dzh. *Teoriia opticheskikh volnovodov* [Optical waveguide Theory]. Moscow, Radio i sviaz Publ., 1987. 656 p.
- 3. Taha Mohamed Barake. A Generalized Analysis of Multiple-Clad Optical Fibers with Arbitrary Step-Index Profiles and Applications. Thesis for the degree of Master of Science in Electrical Engineering, 1997.
- 4. Agraval G. Nelineinaia volokonnaia optika [Nonlinear fiber optics]. Moscow, Mir Publ., 1996. 323 p.
- 5. Adams A. *Vvedenie v teoriju opticheskih volnovodov* [Introduction in optical waveguides theory]. Moscow, Mir Publ., 1984. 512 p.
- Andreev V.A., Bourdine A.V., Kochanovsky L.N. e.a. Napravljauschie sistemi electrosvjazi. V.2. Design, installation and maintenance [Telecommunication guided systems]. Moscow, Gorjachaya Linija—Telecom Publ., 2016. 424 p.
- 7. Ivanov A.B. *Volokonnaja optika. Kompinenti, sistemi peredachi, izmerenija* [Fiber optic. Components, telecommunication systems, measurements]. Moscow, Syrus Systems, 1999. 671 p.
- 8. Listvin A.V., Listvin V.N., Shvirkov D.V. *Opticheskie volokna dlja linii svjazi* [Optical fibers for telecommunication]. Moscow, LESARart, 2003. 288 p.
- 9. Gauer J. *Opticheskie sistemi peredachi* [Optical telecommunication systems]. Moscow, Radio I svjaz Publ., 1989. 501 p.
- 10. Listvin V.N., Treschikov V.N. DWDM sistemy [DWDM systems]. Moscow, Nauka Publ., 2013. 300 p.

Received 23.04.2017

УДК 621.391

ПРИМЕНЕНИЕ АЛГОРИТМОВ КЛАСТЕРИЗАЦИИ ДЛЯ НАХОЖДЕНИЯ УЗЛОВ СПРОСА В СЕТЯХ ПОДВИЖНОЙ СВЯЗИ

Зотов К.Н., Жданов Р.Р., Киселев А.Е., Комиссаров А.М., Кузнецов И.В. Уфимский государственный авиационный технический университет, Уфа, РФ E-mail: tks@ugatu.ac.ru

В статье сравниваются основные алгоритмы нечеткой кластеризации для определения узлов спроса в сетях подвижной радиосвязи. Выявление наиболее подходящего алгоритма для динамического нахождения узлов спроса в условиях аномальных зон пространственно-временных изменений трафиковых процессов (изменения нагрузки) необходимо для быстрого перераспределения конечного радиочастотного ресурса базовых станций, каналов связи и вычислительных мощностей оборудования оператора. Каждый алгоритм четкой и нечеткой кластеризации является уникальным математическим инструментом, способным анализировать трафиковые процессы в современных телекоммуникационных сетях. Алгоритмы имеют границы применимости в реальных условиях использования – скорость счета, особенности выбора границ нечеткости, выбор метрики принадлежности к тому или иному кластеру и целый спектр эвристических критериев для решения реальных физических задач.

Ключевые слова: трафиковые процессы, алгоритм нечеткой кластеризации, Fuzzy C-Means, FCM алгоритм, алгоритм Густафсона-Кесселя, узел спроса

Введение

В процессе функционирования систем мобильной связи возникают резкие перегрузки в

отдельных ее сегментах, обусловленные перемещением абонентов, что вызывает необходимость оперативного управления радиоресурсами. Так, в случае перегрузки сети в одной части зоны об-