Amoxicillin+[clavulanic acid] in the treatment of lower respiratory tract infections

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Amoxicillin+clavulanic acid is an inhibitor-protected aminopenicillin that has been widely used for over 40 years to treat community-acquired lower respiratory tract infections. The drug is effective against the main pathogens of community-acquired pneumonia (CAP) and exacerbations of chronic obstructive pulmonary disease (COPD), including Streptococcus pneumoniae, Haemophilus influenzae, and others. Despite the growing resistance of some strains, the use of increased doses of amoxicillin with clavulanic acid allows overcoming some types of resistance, providing high efficacy with good tolerability. Amoxicillin+clavulanic acid is a drug of choice for the treatment of respiratory infections, including CAP, exacerbations of COPD and chronic bronchitis, as well as bacterial upper respiratory tract infections.

Texto integral

Acesso é fechado

Sobre autores

Alexander Sinopalnikov

Russian Medical Academy of Continuous Professional Education

Email: aisyn@list.ru
ORCID ID: 0000-0002-1990-2042

Dr. Sci. (Med.), Professor, Head of the Department of Pulmonology

Rússia, Moscow

Igor Guchev

Nikita & Co LLC

Autor responsável pela correspondência
Email: dr@igor-guchev.ru

Cand. Sci. (Med.), pulmonologist

Rússia, Moscow

Bibliografia

  1. Rachina S.A., Kupryushina O.A., Strelkova D.A., et al. Etiology of community-acquired pneumonia in adults in Russian hospitals after the COVID-19 pandemic: results of a multicenter prospective study. Clin Microbiol Antimicrob Chemother2024;26(2):141–7. doi: 10.36488/cmac.2024.2.141-147.
  2. Markussen D.L., Kommedal O., Knoop S.T., et al. Microbial aetiology of community-acquired pneumonia in hospitalised adults: A prospective study utilising comprehensive molecular testing. Int J Infect Dis. 2024;143:107019. doi: 10.1016/j.ijid.2024.107019.
  3. Hansen K., Yamba Yamba L., Wasserstrom L., et al. Exploring the microbial landscape: uncovering the pathogens associated with community-acquired pneumonia in hospitalized patients. Front Public Health. 2023;11:1258981. doi: 10.3389/fpubh.2023.1258981.
  4. Shoar S., Musher D.M. Etiology of community-acquired pneumonia in adults: a systematic review. Pneumonia (Nathan). 2020;12:11. doi: 10.1186/s41479-020-00074-3.
  5. Gadsby N.J., Russell C.D., McHugh M.P., et al. Comprehensive Molecular Testing for Respiratory Pathogens in Community-Acquired Pneumonia. Clin Infect Dis. 2016;62(7):817–23. doi: 10.1093/cid/civ1214.
  6. Jain S., Self W.H., Wunderink R.G., et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. N Engl J Med. 2015;373(5):415-27. doi: 10.1056/NEJMoa1500245.
  7. Guchev I.A., Yu V.L., Sinopalnikov A., et al. Management of nonsevere pneumonia in military trainees with the urinary antigen test for Streptococcus pneumoniae: an innovative approach to targeted therapy. Clin Infect Dis. 2005;40(11):1608–16. doi: 10.1086/429919.
  8. Moghoofei M., Azimzadeh Jamalkandi S., Moein M., et al. Bacterial infections in acute exacerbation of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Infection. 2020;48(1):19–35. doi: 10.1007/s15010-019-01350-1.
  9. Межрегиональная ассоциация по клинической микробиологии и антимикробной химиотерапии (МАКМАХ). Отчет о научно-исследовательской работе «Изучение активности препарата цефподоксим в отношении бактериальных возбудителей внебольничных респираторных инфекций, выделенных от пациентов в различных регионах РФ». Смоленск, 2023. [Inter-regional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC). Report on the research project “Study of the activity of the drug cefpodoxime against bacterial pathogens of communityacquired respiratory infections isolated from patients in various regions of the Russian Federation”. Smolensk, 2023. (In Russ.)].
  10. Rammelkamp C.H., Maxon T. Resistance of Staphylococcus aureus to the action of penicillin. Proceedings of the Society for Experimental Biology and Medicine. 1942;51(3):386-9.
  11. Reading C., Cole M. Clavulanic acid: a beta-lactamase-inhiting beta-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother. 1977;11(5):852–7. doi: 10.1128/AAC.11.5.852.
  12. Jakubu V., Cechova M., Musilek M., et al. Amino acid substitutions in PBP3 in Haemophilus influenzae strains, their phenotypic detection and impact on resistance to beta-lactams. J Antimicrob Chemother. 2025. doi: 10.1093/jac/dkaf023.
  13. Nathwani D., Wood M.J. Penicillins. A current review of their clinical pharmacology and therapeutic use. Drugs. 1993;45(6):866–94. doi: 10.2165/00003495-199345060-00002.
  14. Vree T.B., Dammers E., Exler P.S. Identical pattern of highly variable absorption of clavulanic acid from four different oral formulations of co-amoxiclav in healthy subjects. J Antimicrob Chemother. 2003;51(2):373–8. doi: 10.1093/jac/dkg082.
  15. Kaye C.M., Allen A., Perry S., et al. The clinical pharmacokinetics of a new pharmacokinetically enhanced formulation of amoxicillin/clavulanate. Clin Ther. 2001;23(4):578–84. doi: 10.1016/s0149-2918(01)80061-8.
  16. Alou L., Aguilar L., Sevillano D., et al. Effect of opsonophagocytosis mediated by specific antibodies on the co-amoxiclav serum bactericidal activity against Streptococcus pneumoniae after administration of a single oral dose of pharmacokinetically enhanced 2000/125 mg co-amoxiclav to healthy volunteers. J Antimicrob Chemother. 2005;55(5):742-7. doi: 10.1093/jac/dki071.
  17. Agerso H., Friis C., Nielsen J.P. Penetration of amoxycillin to the respiratory tract tissues and secretions in Actinobacillus pleuropneumoniae infected pigs. Res Vet Sci. 1998;64(3):251–7. doi: 10.1016/s0034-5288(98)90134-5.
  18. Honeybourne D., Andrews J.M., Ashby J.P., Lodwick R, Wise R. Evaluation of the penetration of ciprofloxacin and amoxycillin into the bronchial mucosa. Thorax. 1988;43(9):715–9. doi: 10.1136/thx.43.9.715.
  19. Lovering A.M., Pycock C.J., Harvey J.E., Reeves D.S. The pharmacokinetics and sputum penetration of ampicillin and amoxycillin following simultaneous i.v. administration. J Antimicrob Chemother. 1990;25(3):385–92.
  20. Cafini F., Alou L., Sevillano D., Valero E., Prieto J., Spanish Pneumococcal Infection Study N. Bactericidal activity of moxifloxacin against multidrug-resistant Streptoccocus pneumoniae at clinically achievable serum and epithelial lining fluid concentrations compared with three other antimicrobials. Int J Antimicrob Agents. 2004;24(4):334-8. doi: 10.1016/j.ijantimicag.2004.04.015.
  21. Gould I.M., Harvey G., Golder D., et al. Penetration of amoxycillin/clavulanic acid into bronchial mucosa with different dosing regimens. Thorax. 1994;49(10):999–1001.
  22. Sjovall J., Westerlund D., Alvan G. Renal excretion of intravenously infused amoxycillin and ampicillin. Br J Clin Pharmacol. 1985;19(2):191–201. doi: 10.1111/j.1365-2125.1985.tb02631.x.
  23. Nilsson-Ehle I., Fellner H., Hedstrom S.A., Lodwick R, Wise R. Pharmacokinetics of clavulanic acid, given in combination with amoxycillin, in volunteers. J Antimicrob Chemother. 1985;16(4):491–8. doi: 10.1093/jac/16.4.491.
  24. Cook P.J., Andrews J.M., Woodcock J., Lodwick R, Wise R. Concentration of amoxycillin and clavulanate in lung compartments in adults without pulmonary infection. Thorax. 1994;49(11):1134–8. doi: 10.1136/thx.49.11.1134.
  25. Rohrer S., Berger-Bachi B. FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and beta-lactam resistance in gram-positive cocci. Antimicrob Agents Chemother. 2003;47(3):837–46. doi: 10.1128/AAC.47.3.837-846.2003.
  26. Gustafsson I., Lowdin E., Odenholt I., Cars O. Pharmacokinetic and pharmacodynamic parameters for antimicrobial effects of cefotaxime and amoxicillin in an in vitro kinetic model. Antimicrob Agents Chemother. 2001;45(9):2436–40. doi: 10.1128/AAC.45.9.2436-2440.2001.
  27. Aguilar L., Gimenez M.J., Garcia-Rey C., Martin J.E. New strategies to overcome antimicrobial resistance in Streptococcus pneumoniae with beta-lactam antibiotics. J Antimicrob Chemother. 2002;50 Suppl S2:93–100. doi: 10.1093/jac/dkf501.
  28. Andes D., Craig W.A. In vivo activities of amoxicillin and amoxicillin-clavulanate against Streptococcus pneumoniae: application to breakpoint determinations. Antimicrob Agents Chemother. 1998;42(9):2375–9. doi: 10.1128/AAC.42.9.2375.
  29. Azoulay-Dupuis E., Moine P., Bedos J.P., et al. Amoxicillin dose-effect relationship with Streptococcus pneumoniae in a mouse pneumonia model and roles of in vitro penicillin susceptibilities, autolysis, and tolerance properties of the strains. Antimicrob Agents Chemother. 1996;40(4):941-6. doi: 10.1128/AAC.40.4.941.
  30. Barry B., Muffat-Joly M., Gehanno P., Pocidalo J.J. Effect of increased dosages of amoxicillin in treatment of experimental middle ear otitis due to penicillin-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother. 1993;37(8):1599–603. doi: 10.1128/AAC.37.8.1599.
  31. Craig W.A., Andes D. Pharmacokinetics and pharmacodynamics of antibiotics in otitis media. Pediatr Infect Dis J. 1996;15(3):255–9. doi: 10.1097/00006454-199603000-00015.
  32. Drusano G.L., Craig W.A. Relevance of pharmacokinetics and pharmacodynamics in the selection of antibiotics for respiratory tract infections. J Chemother (Florence, Italy). 1997;9 Suppl 3:38–44. 33. Jacobs .MR. Building in efficacy: developing solutions to combat drug-resistant S. pneumoniae. Clin Microbiol Infect. 2004;10 Suppl 2:18–27.
  33. Jacobs M.R. How can we predict bacterial eradication? Int J Infect Dis. 2003;7 Suppl 1:S13–20. doi: 10.1016/s1201-9712(03)90066-x.
  34. Reed M.D. Clinical pharmacokinetics of amoxicillin and clavulanate. Pediatr Infect Dis J. 1996;15(10):949–54. doi: 10.1097/00006454-199610000-00033.
  35. Piroth L., Martin L., Coulon A,. et al. Development of a new experimental model of penicillin-resistant Streptococcus pneumoniae pneumonia and amoxicillin treatment by reproducing human pharmacokinetics. Antimicrob Agents Chemother. 1999;43(10):2484–92. doi: 10.1128/AAC.43.10.2484.
  36. Woodnutt G., Berry V. Efficacy of high-dose amoxicillin-clavulanate against experimental respiratory tract infections caused by strains of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1999;43(1):35–40.
  37. Berry V., Singley C., Satterfield J., Woodnutt G., editors. Efficacy of a pharmacokinetically enhanced formulation of amoxicillin/clavulanate against experimental respiratory tract infection (RTI) in rats caused by Streptococcus pneumoniae (Sp). Poster presented at the 41st Interscience Conference on Antimicrobial Agents and Chemotherapy; 2001.
  38. Amores R., Alou L., Gimenez M.J., et al. In vitro combined effect of co-amoxiclav concentrations achievable in serum after a 2000/125 mg oral dose, and polymorphonuclear neutrophils against strains of Streptococcus pneumoniae exhibiting decreased susceptibility to amoxicillin. Int J Antimicrob Agents. 2004;24(1):79–82. doi: 10.1016/j.ijantimicag.2004.01.016.
  39. MacGowan A.P., Noel A.R., Rogers C.A., Bowker K.E. Antibacterial effects of amoxicillin-clavulanate against Streptococcus pneumoniae and Haemophilus influenzae strains for which MICs are high, in an in vitro pharmacokinetic model. Antimicrob Agents Chemother. 2004;48(7):2599–603.
  40. Berry V., Hoover J., Singley C., Woodnutt G. Comparative bacteriological efficacy of pharmacokinetically enhanced amoxicillin-clavulanate against Streptococcus pneumoniae with elevated amoxicillin MICs and Haemophilus influenzae. Antimicrob Agents Chemother. 2005;49(3):908–15. doi: 10.1128/AAC.49.3.908-915.2005.
  41. Ball .P, Geddes A., Rolinson G. Amoxycillin clavulanate: an assessment after 15 years of clinical application. J Chemother (Florence, Italy). 1997;9(3):167–98. doi: 10.1179/joc.1997.9.3.167.
  42. Severin A., Severina E.., Tomasz A. Abnormal physiological properties and altered cell wall composition in Streptococcus pneumoniae grown in the presence of clavulanic acid. Antimicrob Agents Chemother. 1997;41(3):504–10. doi: 10.1128/AAC.41.3.504.
  43. Cuffini AM., Tullio V., Ianni Palarchio A., et al. Enhanced effects of amoxycillin/clavulanic acid compared with amoxycillin and clavulanic acid alone on the susceptibility to immunodefenses of a penicillin-resistant strain of Streptococcus pneumoniae. Drugs Exp Clin Res. 1998;24(4):173-84.
  44. Kays M.B., Wood K.K., Miles D.O. In vitro activity and pharmacodynamics of oral beta-lactam antibiotics against Streptococcus pneumoniae from southeast Missouri. Pharmacotherapy. 1999;19(11):1308–14. doi: 10.1592/phco.19.16.1308.30869.
  45. Garcia Y., Gomez M.J., Ramos M.C., et al. The postantibiotic effect of amoxicillin/clavulanic acid on Streptococcus pneumoniae strains of different serotypes and penicillin sensitivity. Rev Esp Quimioter. 1998;11(2):157-60.
  46. Thorburn C.E., Molesworth S.J., Sutherland R., Rittenhouse S. Postantibiotic and post-beta-lactamase inhibitor effects of amoxicillin plus clavulanate. Antimicrob Agents Chemother. 1996;40(12):2796–801. doi: 10.1128/AAC.40.12.2796.
  47. Martin M., Gomez-Lus M.L., Aguilar L., et al. Effect of clavulanic acid and/or polymorphonuclear neutrophils on amoxicillin bactericidal activity against Streptococcus pneumoniae. Eur J Clin Microbiol Infect Dis. 1997;16(7):512–6. doi: 10.1007/BF01708234.
  48. Gomez-Lus M.L., Gimenez M.J., Prieto J., et al. Effect of polymorphonuclear neutrophils on serum bactericidal activity against Streptococcus pneumoniae after amoxicillin administration. Eur J Clin Microbiol Infect Dis. 1998;17(1):40–3. doi: 10.1007/BF01584362.
  49. Hofbauer R., Moser D., Gmeiner B., et al. Amoxycillin/clavulanic acid combinations increase transmigration of leucocytes through endothelial cell monolayers: endothelial cells play a key role. J Antimicrob Chemother. 1999;44(4):465–9. doi: 10.1093/jac/44.4.465.
  50. Gomez-Lus M.L., Aguilar L., Martin M., et al. Intracellular and extracellular killing of a penicillin-resistant, serotype-9 strain of Streptococcus pneumoniae by polymorphonuclear leucocytes in the presence of sub-inhibitory concentrations of clavulanic acid. J Antimicrob Chemother. 1997;40(1):142–4. doi: 10.1093/jac/40.1.142.
  51. Aguilar L., Gimenez M.J., Casal J., Prieto J. Pharmacodynamics of beta-lactams and their modification by the immune system. Rev Esp Quimioter. 2005;18(1):80–2.
  52. Casal J., Gimenez M.J., Aguilar L., et al. Beta-lactam activity against resistant pneumococcal strains is enhanced by the immune system. J Antimicrob Chemother. 2002;50 Suppl S2:83–6. doi: 10.1093/jac/dkf502.
  53. Cuffini A.M., De Renzi G., Tullio V., et al. Potentiation of human polymorphonuclear leukocyte phagocytosis and intracellular bactericidal activity by amoxycillin/clavulanic acid. Drugs Exp Clin Res. 1996;22(1):9–15.
  54. Cuffini A.M., Tullio V., Giacchino F., et al. Impact of co-amoxiclav on polymorphonuclear granulocytes from chronic hemodialysis patients. Am J Kidney Dis. 2001;37(6):1253–9. doi: 10.1053/ajkd.2001.24530.
  55. Cuffini A.M., Tullio V., Giacchino F., et al. Improved phagocyte response by co-amoxiclav in renal transplant recipients. Transplantation. 2001;71(4):575–7. doi: 10.1097/00007890-200102270-00016.
  56. Casal J., Aguilar L., Jado I., et al. Effects of specific antibodies against Streptococcus pneumoniae on pharmacodynamic parameters of beta-lactams in a mouse sepsis model. Antimicrob Agents Chemother. 2002;46(5):1340-4. doi: 10.1128/AAC.46.5.1340-1344.2002.
  57. Tarrago D., Aguilar L., Gimenez M.J., et al. Effects of amoxicillin subinhibitory concentrations on the cross-protection developed by pneumococcal antibodies in mouse sepsis caused by an amoxicillin-resistant serotype 6B Streptococcus pneumoniae strain. Antimicrob Agents Chemother. 2004;48(11):4144–7.
  58. File T., Lode H.., Kurz H., Crann R., Group S., editors. Comparative efficacy/safety of pharmacokinetically enhanced amoxicillin/clavulanate 2000/125 mg vs amoxicillin/clavulanate 875/125 mg in community-acquired pneumonia (CAP). 99th International Conference of the American Thoracic Society, Seattle, WA; 2003.
  59. Garau J., Twynholm M., Garcia-Mendez E., et al. Oral pharmacokinetically enhanced co-amoxiclav 2000/125 mg, twice daily, compared with co-amoxiclav 875/125 mg, three times daily, in the treatment of community-acquired pneumonia in European adults. J Antimicrob Chemother. 2003;52(5):826–36. doi: 10.1093/jac/dkg458.
  60. Neu H.C., Wilson A.P., Gruneberg R.N. Amoxycillin/clavulanic acid: a review of its efficacy in over 38,500 patients from 1979 to 1992. J Chemother (Florence, Italy). 1993;5(2):67–93. doi: 10.1080/1120009x.1993.11739213.
  61. File T.M. Jr., Lode H., Kurz H., et al. Double-blind, randomized study of the efficacy and safety of oral pharmacokinetically enhanced amoxicillin-clavulanate (2,000/125 milligrams) versus those of amoxicillin-clavulanate (875/125 milligrams), both given twice daily for 7 days, in treatment of bacterial community-acquired pneumonia in adults. Antimicrob Agents Chemother. 2004;48(9):3323–31. doi: 10.1128/AAC.48.9.3323-3331.2004.
  62. Calver A.D., Walsh N.S., Quinn P.F., et al. Dosing of amoxicillin/clavulanate given every 12 hours is as effective as dosing every 8 hours for treatment of lower respiratory tract infection. Lower Respiratory Tract Infection Collaborative Study Group. Clin Infect Dis. 1997;24(4):570–4. doi: 10.1093/clind/24.4.570.
  63. Sifaoui F., Kitzis M.D., Gutmann L. In vitro selection of one-step mutants of Streptococcus pneumoniae resistant to different oral beta-lactam antibiotics is associated with alterations of PBP2x. Antimicrob Agents Chemother. 1996;40(1):152–6. doi: 10.1128/AAC.40.1.152.
  64. Kozlov R.S., Ivanchik N.V., Skleenova E.Y., et al. In vitro activity of cefpodoxime against Russian clinical isolates of Haemophilus influenzae, Streptococcus pneumoniae and Streptococcus pyogenes. Clin Microbiol Antimicrob Chemother. 2023;25(4):372–8. doi: 10.36488/cmac.2023.4.372-378.
  65. Российские рекомендации. Определение чувствительности микроорганизмов к антимикробным препаратам. Версия 2024-02. Год утверждения 2024. МАКМАХ, СГМУ: Смоленск, 2024. 192 с. [Russian recommendations. Determination of the sensitivity of microorganisms to antimicrobial drugs. Version 2024-02. Year of approval 2024. MAKMAH, SSMU: Smolensk, 2024. 192 p. (In Russ.)]. URL: https://www.antibiotic.ru/files/334/ocmap2024.pdf 15.02.2025.
  66. Rodriguez-Leal C.M., Gonzalez-Corralejo C., Candel F.J., Salavert M., Medical societies for the 5th edition of Pneumonia D. Candent issues in pneumonia. Reflections from the Fifth Annual Meeting of Spanish Experts 2023. Rev Esp Quimioter. 2024;37(3):221–51. doi: 10.37201/req/018.2024.
  67. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters.Version 15.0, 2025. https://www.eucast.org.
  68. Ivanchik N.V., Chagaryan A.N., Mikotina A.V., et al. Antimicrobial susceptibility of Moraxella catarrhalis in Russia: results of the PEGAS 2010–2021 multicenter study. Clin Microbiol Antimicrob Chemother. 2024;26(2):188-93. doi: 10.36488/cmac.2024.2.188-193.
  69. Feikin D.R., Schuchat A., Kolczak M., et al. Mortality from invasive pneumococcal pneumonia in the era of antibiotic resistance, 1995-1997. Am J Public Health. 2000;90(2):223–9. doi: 10.2105/ajph.90.2.223.
  70. Pallares R., Linares J., Vadillo M., et al. Resistance to penicillin and cephalosporin and mortality from severe pneumococcal pneumonia in Barcelona, Spain. N Engl J Med. 1995;333(8):474–80.
  71. Yu V.L., Chiou C.C., Feldman C., et al. An international prospective study of pneumococcal bacteremia: correlation with in vitro resistance, antibiotics administered, and clinical outcome. Clin Infect Dis. 2003;37(2):230–7.
  72. Wei J., Uppal A., Nganjimi C., et al. No evidence of difference in mortality with amoxicillin versus co-amoxiclav for hospital treatment of community-acquired pneumonia. J Infect. 2024:106161. doi: 10.1016/j.jinf.2024.106161.
  73. Tan T.Q., Mason E.O. Jr., Barson W..J., et al. Clinical characteristics and outcome of children with pneumonia attributable to penicillin-susceptible and penicillin-nonsusceptible Streptococcus pneumoniae. Pediatrics. 1998;102(6):1369–75.
  74. Dagan R., Hoberman A., Johnson C., et al. Bacteriologic and clinical efficacy of high dose amoxicillin/clavulanate in children with acute otitis media. Pediatr Infect Dis J. 2001;20(9):829–37. doi: 10.1097/00006454-200109000-00002.
  75. Dagan R., Klugman K.P., Craig W.A., Baquero F. Evidence to support the rationale that bacterial eradication in respiratory tract infection is an important aim of antimicrobial therapy. J Antimicrob Chemother. 2001;47(2):129-40. doi: 10.1093/jac/47.2.129.
  76. Российское респираторное общество, Межрегиональная ассоциация по клинической микробиологии и антимикробной химиотерапии. «Внебольничная пневмония у взрослых» ID 654_2. Клинические рекоммендации Министерства здравоохранения Российской Федерации, год одобрения 2024. 2024. [Russian Respiratory Society, Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy. «Community-Acquired Pneumonia in Adults» ID 654_2. Clinical Guidelines of the Ministry of Health of the Russian Federation, year of approval 2024. 2024. (In Russ.)].
  77. Ewig S., Kolditz M., Pletz M., et al. [Management of Adult Community-Acquired Pneumonia and Prevention - Update 2021 - Guideline of the German Respiratory Society (DGP), the Paul-Ehrlich-Society for Chemotherapy (PEG), the German Society for Infectious Diseases (DGI), the German Society of Medical Intensive Care and Emergency Medicine (DGIIN), the German Viological Society (DGV), the Competence Network CAPNETZ, the German College of General Practitioneers and Family Physicians (DEGAM), the German Society for Geriatric Medicine (DGG), the German Palliative Society (DGP), the Austrian Society of Pneumology Society (OGP), the Austrian Society for Infectious and Tropical Diseases (OGIT), the Swiss Respiratory Society (SGP) and the Swiss Society for Infectious Diseases Society (SSI)]. Pneumologie (Stuttgart, Germany). 2021;75(9):665–729. doi: 10.1055/a-1497-0693.
  78. Metlay J.P,. Waterer G.W., Long A.C., Anzueto A., Brozek J., Crothers K., et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care med. 2019;200(7):e45–e67. doi: 10.1164/rccm.201908-1581ST.
  79. Heffelfinger J.D., Dowell S.F., Jorgensen J.H., et al. Management of community-acquired pneumonia in the era of pneumococcal resistance: a report from the Drug-Resistant Streptococcus pneumoniae Therapeutic Working Group. Arch Int Med. 2000;160(10):1399-408.
  80. Martin-Loeches I., Torres A., Nagavci B., et al. ERS/ESICM/ESCMID/ALAT guidelines for the management of severe community-acquired pneumonia. Eur Respir J. 2023;61(4). doi: 10.1183/13993003.00735-2022.
  81. Mandell L.A., Marrie T.J., Grossman R.F., et al. Canadian guidelines for the initial management of community-acquired pneumonia: an evidence-based update by the Canadian Infectious Diseases Society and the Canadian Thoracic Society. The Canadian Community-Acquired Pneumonia Working Group. Clin Infect Dis. 2000;31(2):383–421.
  82. Mandell L.A., Bartlett J.G., Dowell S.F., et al. Update of practice guidelines for the management of community-acquired pneumonia in immunocompetent adults. Clin Infect Dis. 2003;37(11):1405-33. doi: 10.1086/380488.
  83. “Summary of the evidence Pneumonia (community-acquired): antimicrobial prescribing Guidance NICE.” Accessed: Feb. 16, 2025. [Online]. URL: https://www.nice.org.uk/guidance/ng138/chapter/Summary-of-the-evidence.
  84. Lim W.S., Smith D.L., Wise M.P., Welham S.A., British Thoracic S. British Thoracic Society community acquired pneumonia guideline and the NICE pneumonia guideline: how they fit together. Thorax. 2015;70(7):698–700. doi: 10.1136/thoraxjnl-2015-206881.
  85. Candel F.J., Salavert M., Basaras M., et al. Ten Issues for Updating in Community-Acquired Pneumonia: An Expert Review. J Clin Med. 2023;12(21). doi: 10.3390/jcm12216864.
  86. Yanagihara K., Kohno S., Matsusima T. Japanese guidelines for the management of community-acquired pneumonia. Int J Antimicrob Agents. 2001;18 Suppl 1:S45–8. doi: 10.1016/s0924-8579(01)00402-2.
  87. Yatera K., Yamasaki K. Management of the Diagnosis and Treatment of Pneumonia in an Aging Society. Internal medicine (Tokyo, Japan). 2024. doi: 10.2169/internalmedicine.4203-24.
  88. Garcia Vazquez E., Mensa J., Martinez J.A., et al. Lower mortality among patients with community-acquired pneumonia treated with a macrolide plus a beta-lactam agent versus a beta-lactam agent alone. Eur J Clin Microbiol Infect Dis. 2005;24(3):190–5. doi: 10.1007/s10096-005-1295-9.
  89. Waterer G.W., Somes G.W., Wunderink R.G. Monotherapy may be suboptimal for severe bacteremic pneumococcal pneumonia. Arch Int Med. 2001;161(15):1837–42. doi: 10.1001/archinte.161.15.1837.
  90. Metlay J.P., Waterer G.W. Treatment of Community-Acquired Pneumonia During the Coronavirus Disease 2019 (COVID-19) Pandemic. Ann Int med. 2020;173(4):304–5. doi: 10.7326/M20-2189.
  91. Olson G., Davis A.M. Diagnosis and Treatment of Adults With Community-Acquired Pneumonia. JAMA. 2020;323(9):885-6. doi: 10.1001/jama.2019.21118.
  92. Bai A.D., Srivastava S., Wong B.K.C., et al. Comparative Effectiveness of First-Line and Alternative Antibiotic Regimens in Hospitalized Patients With Nonsevere Community-Acquired Pneumonia: A Multicenter Retrospective Cohort Study. Chest. 2024;165(1):68–78. doi: 10.1016/j.chest.2023.08.008.
  93. Akinosoglou K., Leventogiannis K., Tasouli E., et al. Clarithromycin for improved clinical outcomes in community-acquired pneumonia: A subgroup analysis of the ACCESS trial. Int J Antimicrob Agents. 2025;65(2):107406. doi: 10.1016/j.ijantimicag.2024.107406.
  94. Ассоциация врачей и специалистов медицины труда, Общероссийская общественная организация «Российское научное медицинское общество терапевтов», Российское респираторное общество. «Хроническая обструктивная болезнь легких». Клинические рекомендации Министерства здравоохранения Российской Федерации ID603_3. Год одобрения 2024. [Association of Doctors and Specialists in Occupational Medicine, All-Russian Public Organization «Russian Scientific Medical Society of Therapists», Russian Respiratory Society. «Chronic Obstructive Pulmonary Disease». Clinical Guidelines of the Ministry of Health of the Russian Federation ID603_3. Year of approval 2024. (In Russ.)]. URL: https://cr.minzdrav.gov.ru/view-cr/603_3
  95. Osman M.E., Abo-Elnasr A.A., Mohamed E.T. Therapeutic potential activity of quercetin complexes against Streptococcus pneumoniae. Sci Rep. 2024;14(1):12876. doi: 10.1038/s41598-024-62782-w.
  96. McCluskey E.S., Liu N., Pandey A., et al. Quercetin improves epithelial regeneration from airway basal cells of COPD patients. Respir Res. 2024;25(1):120. doi: 10.1186/s12931-024-02742-0.
  97. Emran T.B., Eva T.A., Zehravi M., et al. Polyphenols as Therapeutics in Respiratory Diseases: Moving from Preclinical Evidence to Potential Clinical Applications. Int J Biol Sci. 2024;20(8):3236–56. doi: 10.7150/ijbs.93875.
  98. Russo R.L., D’Aprile M. Role of antimicrobial therapy in acute exacerbations of chronic obstructive pulmonary disease. Ann Pharmacother. 2001;35(5):576-81. doi: 10.1345/aph.19411.
  99. Anthonisen N.R., Manfreda J., Warren C.P., et al. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Annals of internal medicine. 1987;106(2):196–204. doi: 10.7326/0003-4819-106-2-196.
  100. Suzuki Y., Sato K., Sato S., et al. Antibiotic treatment for patients with exacerbation of chronic obstructive pulmonary disease: A systematic review and meta-analysis. Respir Invest. 2024;62(4):663–8. doi: 10.1016/j.resinv.2024.05.007.
  101. Zhou L., Deng Y., Liu K., et al. The use of antibiotics in the early stage of acute exacerbation of chronic obstructive pulmonary disease in patients without obvious signs of infection: a multicenter, randomized, parallel-controlled study. Front Pharmacol. 2024;15:1380939. doi: 10.3389/fphar.2024.1380939.
  102. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of COPD (2025 Report). Accessed Feb 22, 2025. URL: https://goldcopd.org/2025-gold-report.
  103. Цой А., Сафонова Е., Гучев И. Цефиксим. Клиническая эффективность при обострении нетяжелой хронической обструктивной болезни легких и влияние на развитие рецидивов заболевания. Лечащий врач. 2011;1:86–90. [Tsoi A., Safonova E., Guchev I. Cefixime. Clinical efficacy in exacerbation of mild chronic obstructive pulmonary disease and impact on development of disease relapses. Lechashchiy vrach. 2011;1:86–90. (In Russ.)].
  104. Torres A., Garau J., Arvis P., et al. MOTIV (MOxifloxacin Treatment IV) Study Group. Moxifloxacin monotherapy is effective in hospitalized patients with community-acquired pneumonia: the MOTIV study–a randomized clinical trial. Clin Infect Dis. 2008;46: 1499–509.
  105. Pechere J. Modelling and predicting clinical outcomes of antibiotic therapy. Infect med. 1998;15(Suppl E):46-54.
  106. Destache C.J. Optimizing economic outcomes in acute exacerbations of chronic bronchitis. Pharmacotherapy. 2002;22(1 Pt 2):12S-7S; discussion 30S-2S. doi: 10.1592/phco.22.2.12s.33134.
  107. Destache C.J., Dewan N., O’Donohue W.J., et al. Clinical and economic considerations in the treatment of acute exacerbations of chronic bronchitis. J Antimicrob Chemother. 1999;43 Suppl A:107–13. doi: 10.1093/jac/43.suppl_1.107.
  108. Llor C., Moragas A., Hernandez S., et al. Efficacy of antibiotic therapy for acute exacerbations of mild to moderate chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(8):716–23. doi: 10.1164/rccm.201206-0996OC.
  109. Llor C., Moragas A., Miravitlles M., et al. Are short courses of antibiotic therapy as effective as standard courses for COPD exacerbations? A systematic review and meta-analysis. Pulm Pharmacol Ther. 2022;72:102111. doi: 10.1016/j.pupt.2022.102111.
  110. Зырянов С.К., Байбулатова Е.А. Использование новых лекарственных форм антибиотиков как путь повышения эффективности и безопасности антибактериальной терапии. Антибиотики и Химиотерапия. 2019;64(3-4):81–91. [Zyryanov S.K., Baybulatova E.A. The Use of New Dosage Forms of Antibiotics as a Way to Improve the Effectiveness and Safety of Antibiotic Therapy. Antibiotics and Chemotherapy. 2019;64(3–4):81–91. (In Russ.)]. doi: 10.24411/0235-2990-2019-10020.
  111. Карпищенко С.А., Рябова М.А., Колесникова О.М., Улупов М.Ю. Антибактериальная терапия острого стрептококкового тонзиллофарингита: результаты рандомизированного сравнительного клинического исследования по применению препарата Амоксициллин+Клавулановая кислота ЭКСПРЕСС. Терапевтический архив. 2024;96(3):273–279. [Karpishchenko S.A., Ryabova M.A., Kolesnikova O.A., Ulupov M. Yu. Antibacterial therapy of acute streptococcal tonsillopharyngitis: results of a randomized comparative clinical trial on the use of Amoxicillin + Clavulanic acid EXPRESS. Terapevticheskij arhiv. 2024;96(3):273–279. (In Russ.)].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bionika Media, 2025